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Research Background

> The mesh is a foundational representation for 3D
models, supporting applications like the metaverse,

digital twins, numerical simulations, and more.

> Intelligent mesh generation technology significantly
complements traditional methods, improving their
practicality and generality, and unlocking new

possibilities for mesh generation applications.



Research Background

 Definition of intelligent mesh generation

Narrow definition:

Mesh generatioin techniques in which machine learning is

involved in part or all of the process.

Broad definition:
A technique involving machine learning with the mesh as the

final representation.




Research Background

1 Key components in intelligent mesh generation

Intelligent Mesh Representation

(1) How to put mesh data into a neural network?
(2) How to handle input information?

(3) How to use neural networks to extract deep

features?

Intelligent Mesh Generation
(1) What kind of framework is suitable for mesh

generation?
I M E I M G (2) What role do intelligent frameworks play in
mesh generation?

Intelligent I esh Evaluation

(1) Conversion of metrics in traditional meshing to
losses or reward functions in intelligent meshing
(2) Network gives integrated evaluation metrics
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Intelligence Mesh Representation

/ How to represent meshes by neural network? \

/ Mesh Data \ / Neural Network\
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Intelligent Mesh Representation

/ How to put mesh data into a neural network? \
v Dual graph-based \
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Intelligent Mesh Representation
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How to put mesh data into a neural network?
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How to put mesh data into a neural network?

I
Method 1: Employing vertices as the core mesh data, enriched with

v’ Utilizes the x, y, and z

v’ [Batchsize, VertexNum, X, [& .o

v’ Some networks process

supplementary geometric characteristics.

coordinates of vertices as

Input features.

Y, Z]

these coordinates
v' MeshWalker employs
coordinate offsets(AX,AY, AZ)
in the vertex sequence

DiffusionNet

HodgeNet

SpiraNet

Step=0.4-V @ —
d

MeshWalker

10



How to put mesh data into a neural network?

m  Method 2. Representing the mesh with edges as the primary data supplemented

by other geometric properties.

v' Utilizes the geometric properties
of edges as primary data:
v’ [Batchsize, EdgeNum, N-
geometric attributes]
v' dihedral angle
v' internal angles
v two edge-to-height ratios

v Some networks add extral
information
v TPnet add two vertex degrees

TPnet 11



How to put mesh data into a neural network?

I
m  Method 3: Utilizing faces as the fundamental data for mesh representation,

augmented by additional geometric attributes.

v Utilizes the feature of faces as
Input features:

v’ [Batchsize, FaceNum, N-geometric
attributes]
v" Center
v' Corner
v Normal
v' Area

v" Some networks process
additional information
v" SubdivNet employs inner

products of face normal with
vertex normals
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Mesh Representation for Numerical Simulation

® Store physical information on vertices or edges

® Fusion of mesh geometry information and physical quantities using networks

/ | ; Iterative
Learned one-step simulator e
. - — Interpolation 7 q ot %

< J Actiona, ‘W'. ——>.—>Update ey . + e -
7 \

‘ Vertex Vertex v 4 :

Deep Q Selection Removal W

Network

p P
i WS Mt Mt
Reward Property Velocltles ! p
| r Property Calculation Encoder
Reward | b Pressures

Cloth mesh nodes
Processor DeCOder/ Obstacle mesh nodes
re l\ ‘ /\>‘ —— Mesh-space edges EM
1 Fas I 7 Bl w
Coordlnates ; / \\ §-*/ \ ¢ \i < \ \ fl—// Wrid-space edges  E
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! X | Message 5
St+1 ¢ passing x L == Decoded accelerations Pi

MeshDQN MeshGraphNets
The physical quantities are stored on vertices. The physical quantities are stored on edges.
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How to handle input information?

Mesh data

) Parameter/
Find rojection

Data Structure Proj )
mapping

[ Mesh(Graph) data

Image data ]

[ Designed operator ] Image operator ]

g"ﬁ i - NN .
L '\;'_b : ; urface
Ay s = ) =

(a) Solid model (b} Our representation (c) Image convolutions for curve
and cusfane o

.|n i =
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s images
g
8_| i
8 H

prediction loss for consistenc
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fake/real
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How to handle input information?

m Operator 1: Spiral vertex operator, derived from SpiralNet *

> Spiral patch operator:  S(z) = {x, Ri(x), Ry(z),. .,Rf’“‘Rh|},

> Spiral convolution: (f % q)s = Z ge [(Se(x)).

> Initial point: Ri(z) = arg min dpq(zo, ),
yeR!(x)
mesh convolution
@ @ | IFC I FC ) @
g T k‘ > Pool+Flatten U npool
m Fo-: \_‘/m X anool\—/ _’I Un—p5

mesh pooling and unpooling

*Lim I, Dielen A, Campen M, et al. A simple approach to intrinsic correspondence learning on unstructured 3d
meshes[C]//Proceedings of the European Conference on Computer Vision (ECCV) Workshops. 2018: 0-0. 15



How to handle input information?

m Operator 2: Random Walk Vertex Operator, derived from MeshWalker *

Walk step: :—0 Walk step: % ‘ Walk step: 2V_5

V7 being the number of vertices
- -

gorilla  flamingo hand  camel gorilla horse hand camel gorilla horse hand camel

walk (in green) proceeds along the surface
Walk: A sequence of vertices

» Generation: Randomly select the starting vertex and select the next vertex according to the
adjacency until the present walk length is reached
» Representation: Each vertex is represented as the 3D translation from the previous vertex in

the walk (AX, AY, AZ)
Step=0.4-V @ — M £ — *‘*( ’\/“:—’ //ﬁ\/ —’\/—\ : —i Camel
- Input walk - FC Layers RNN Layers  FC Layers

* Lahav A, Tal A. Meshwalker: Deep mesh understanding by random walks[J]. ACM Transactions on Graphics
(TOG), 2020, 39(6): 1-13. 16



How to handle input information?

m Operator 3: Classic edge operator, derived from MeshCNN *

Invariant convolutions mesh pooling and unpooling
(el,eZ,e3’e4) =(la—cl,a+c|b—d|,b+d) b p= avg(ab e)
4 pool unpool
e-k0+ij-ej,
j=1 q= avg(c d,e)

. ” ‘r‘ \ r . ‘ 'u‘. ‘E‘ 1‘ I' ,
| y, [\ \‘.':"I /| / “ A\ 4:
b MY S c ALY/

MeshCNN pooling example

* Hanocka R, Hertz A, Fish N, et al. Meshcnn: a network with an edge[J]. ACM Transactions on Graphics (ToG),
2019, 38(4): 1-12. 17



How to handle input information?

I
m Operator 4: Rotational face operator, derived from MeshNet *

: Structural Descriptor \  Face kernel correlation
— o TITT T |
| Neignbor |7 | Face Kernel | | ]
| s [S[T 00 Comelation 1 3 - . Define the face kernel as M learnable
: _— rl J=[E[E[ ey [ 1 normals and correlation refers to the
MNorma. b w w | e . . .
| _ . B&F : similarity between the face normals
] 1
D e |2l1 FaceRotate | | and the kernel normal.
| = : Convolution | | 1
e e e e e e e e e | KC(i, k) = NI Z Z K, (n,m)
Face rotate convolution S RENi memk
e n — m||?
ﬁ7 . K, (n,m) = exp(—
o 252
Ey—ﬂj:l@ ==
\27»7;;@ N:the set of normal of the i-th
el == face and its neighbor faces
&VW C— M,:the set of normals in the k-th

1 kernel
g(g (f (v vy) + f(vyv3) + f(V3, V)

*Feng Y, Feng Y, You H, et al. Meshnet: Mesh neural network for 3d shape representation[C]//Proceedings of
the AAAI conference on artificial intelligence. 2019, 33(01): 8279-8286. 18



How to handle input information?

m  Operator 5: Analogous to 2-D convolution, face operator derived from SubdivNet *

LY 4 - N guY: S
mesh convolution | mesh pooling
k=3, d=1 k=5, d=1 k=3,d=2 k=3, d=3 k=5, d=1 k=7, d=1
A
. EE S
SEa"Ea"

k=3, d=1 k=5, d=1 k=3, d=2 k=3, d=3

Face convolution kernel
analogous to 2D convolution

*Hu S M, LiuZN, Guo M H, et al. Subdivision-based mesh convolution networks[J]. ACM Transactions on
Graphics (TOG), 2022, 41(3): 1-16. 19

k=5, d=2 k=5, d=3

Zig-zag dilated convolution



How to handle input information?

m Operator 6: Mesh operator based on the dual graph, derived from PD-NET *

(a) Input mesh M

PO
(NAL AT
AVE V4

(b) Primal graph P (M)

D

(c) Dual graph D(M)

Primal-dual graphs associated to an input mesh in PD-MeshNet.
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Invariant convolutions in D(M)

* Milano F, Loquercio A, Rosinol A, et al. Primal-dual mesh convolutional neural networks[J]. Advances in
Neural Information Processing Systems, 2020, 33: 952-963.
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How to handle input information?

m  Operator 7: Diffusion Mesh Operator, derived from DiffusionNet *

DiffusionNet block Computing diffusion h;(u)
. T o -1
scalars addltlon implicit timestep h,(u) := (M +tL)" Mu
per-vertex or
j/ fast spectral solve [ oot

- precompute _ . hy(u) := @ e M| © (T Mu)
i Laplace & spatial : _ -precompute .

L,M I patia spatial . |
e ' diffusion gradient features concat : ~ ! -
| spatial ' he(u) per-vertex MLP NN\ .
| dient g ! zy < Gu [3N,N,N,N] RVAVAVAVAR Q:= P 1

gradien ' learned t wy — [24] I d weigh ! |
[ matrix | v ulv = earned weights ] B | | |
! , per-channel tanh(Re(w, © Aw,)) L Lo =AiMg;
| eigenbasis A,¢ 2 . eigenbasis
\ _ (optional) ’ N e Do .
DiffusionNet
— input [— DiffusionNet —— DiffusionNet —— DiffusionNet —— DiffusionNet — output —>
U — Apu block block block block
block 0 block 1 block 2 block 3
, ¢1"g P '

!
1
|
I
|
5

0 .25 ) 0 25 D 0 .25 5 0 25
learned times

* Sharp N, Attaiki S, Crane K, et al. Diffusionnet: Discretization agnostic learning on surfaces[J] ACM
Transactions on Graphics (TOG), 2022, 41(3): 1-16. 21



How to handle input information?

m Operator 8: Mesh Operator based on the Hodge star, derived from HodgeNet *
n to be the number of output features

(*O(F))vv =&+ Zf‘P(FUPFTJz’Fﬁs)Z
t~ov h(I) : R -_> Rn

: \ A & e E
g ST
\ : A 5 B

Per-vertex features \ Eigenvalues )\’ / Feature matrix H

‘ 2\
.

\_ Eigenvectors z' / Output features G,
Take m to be the number of

eigenvectors ' ‘ '
» | G =) Hij- (xh)(x))T,
i

Per-edge features %

(*1 (F))ee =&+ g(I)(FUpFUgaFUg:FUz;)z:

* Smirnov D, Solomon J. HodgeNet: Learning spectral geometry on triangle meshes[J]. ACM Transactions on
Graphics (TOG), 2021, 40(4): 1-11. 22



Intelligent Mesh Representation

How to use neural networks to extract deep features?

7’

\

identity I I A

o (W, [h—1, 7))
o (W [he—1, 24])

tanh (W [ry = hy—y, 24])
(1

2t
Tt

hy
hy

— ) * By 1+Zl*f7-l

- . O S O S E E E E EE B S E S .y
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Convolutional Network

B ResNet™

X 64-d 256-d
weigl':': layer [ 1x1T 64
F(x) relu x | 3x3{';e4lu |
weight layer identity | 1X1’Jr2r§;“
F(x) +x
Residual Block Residual Block Instance

« Utilize shortcut connection to construct a residual learning framework
 Solve the problem of deep network degradation and difficulty in training

 Suitable for various Computer Vision(CV) tasks(e.g. image classification,
object detection)

* He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016: 770-778.

24



Convolutional Network

B U-Net"

input
image |a{ |

output
tile

segmentation
map

>

128 64 64 2
» ||
all of of o
ol o = o
ol of of o
all of of o
ol of o =

U-Net Architecture m_|H
sls r‘" L ) -‘b: ' 3
fH’U'D 1|:|:|"|:|’[| = conv 3x3, ReLU
ks ,,:' . - . ' ' EE copy and crop
D"_I:H:‘] : g |;|.:|:|.>|:| ¥ max pool 2x2

4 up-conv 2x2
= conv 1x1

« Comprise contracting path and symmetric expansive path, with skip-connections
between corresponding levels

» Improve performance under limited training samples through data augmentation
« Applicable to various biomedical image segmentation tasks

* Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image
segmentation[C]//Medical Image Computing and Computer-Assisted Intervention—-MICCAI 2015: 18th

International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part 111 18. Springer International
Publishing, 2015: 234-241.

: ﬂ:l-blﬁbi:l
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Convolutional Network

Global Feature

» For ResNet like networks,
residual connections deepen it to
obtain semantic features of mesh

Information :
» For U-Net like networks,
hierarchical structure can obtain —
multi-granularity deep features T =[] fe
» Combine the above two neural *\-—DEWEQ """
structures gradually becomes a L
broader idea CurvaNet
DB el
:ﬁ ﬁli { @,“ y
Comol O b g

DualConvMesh-Net HSN Laplacian2Mesh



Recurrent Network

B LSTM!&GRU?

® ® @)
T T T hi_q 4
~ ._f x . ™ . S

@n| |
A [TAL A ]
I l
© ® ©
Long Short-Term Memory Gated Recurrent Unit

« LSTM: Utilize a series of interconnected units to construct a recurrent
learning framework and avoid gradient anomaly problem

« GRU: Simplify the structure of LSTM and process simpler sequence data
more efficiently

 Suitable for processing various sequence data-related tasks(e.g. Natural

Language Processing(NLP))

[1] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[2] Cho K, Van Merriénboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for
statistical machine translation[J]. arxiv preprint:1406.1078, 2014. 27



Recurrent Network

Input Walk 1. FC Layers 2. RNN Layers 3. FC Layer

Dimension: 3 Output dimesion: 256 Output dimension: 512 Output dimension: Prediction
# of classes (argmax)
A A A
- r 2, X l = . —_ I' =%, |
R 4 J A / il
. K & ;
Step=0.02-V @ KH " _il = — = — =\ sl e _)

o @D BP0 —® —— @
v v v
SRS ©_M_’ - R —+(H—CH —CH)+— —— Camel

MeshWalker*

* Represent the mesh by random walks along the surface, which explore
the mesh’s geometry and topology

«  Treat walk as sequence data and feed it into a GRU-based RNN that
remembers the history of the walk

« Achieves top results for mesh-based classification and segmentation

* Lahav A, Tal A. Meshwalker: Deep mesh understanding by random walks[J]. ACM Transactions on Graphics
(TOG), 2020, 39(6): 1-13. 28



Graph Network

B GNN”

0,(1)
i

15 - Sw 0, (1) fw
I 1
! x HJT_ ; 3 1,1
i 2 Fow =—lodpng e 1 - ot ‘ __‘-|f1
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0,(1) {_:ume Lo

Graph Neural Network

« Update nodes’ state and exchange information
 Solve the problem of losing topology information when preprocessing graph
type data in traditional machine learning

 Suitable for various relationship-related tasks (e.g. knowledge graph,
proteomics, social analysis)

* Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model[J]. IEEE transactions on neural networks,
2008, 20(1): 61-80. 29




Graph Network

lterative
rollout
----- > EEEEEE =
Pi \
ML Mtt2
Cloth mesh nodes

t+1
7

DeCOder/ Obstacle mesh nodes GNN H
/\>| —— Mesh-space edges EM
\\7\}\\ %‘—/: World-space edges E"
.8 )
\7/\\\2\/\\ == Mesh-space messages e'f‘j[
= | \>: <3\7;\ World-space messages e’ 2’ e
{>!/\ ; [ i Message ]> = ) )
. passing x L < == Decoded accelerations Pi
MeshGraphNets?!

« Transform the mesh information into a graph

« Characterize the transfer of information (eg. geometry, physics) as
updates of GNNs

[1] Pfaff T, Fortunato M, Sanchez-Gonzalez A, et al. Learning mesh-based simulation with graph networks[J]. arXiv preprint
arXiv:2010.03409, 2020.

[2] Jayaraman, Pradeep Kumar and Sanghi, Aditya and Lambourne, Joseph and Willis, Karl and Davies, Thomas and Shayani,
Hooman and Morris, Nigel. "Uv-net: Learning from boundary representations.” CVPR. 2021. 30
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What kind of framework is suitable for mesh generation?
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B Variational Auto-Encoders

Minimize the re-parameterized
variational lower bound, to learn
distribution of data

Suitable for image generation task

VAE

For mesh

Generate mesh models with the same  SP-VAE
topology but different geometries
(geometrically similar)

The generation process requires only
the input of the latent vectors and
decoding them with the previously
trained decoder

MeshVAE

Framework for Mesh generation

Define
ttttttttttt
distributions

sssssssssssssss

\\| Variance




Framework for Mesh generation

B Diffusion Model

 Diffusion process involves
gradually adding Gaussian noise
to the original image.

» Denoising process gradually
generates images through the
learned Markov chain

 Suitable for image generation task

For mesh

 Learns the categorical
distribution of the mesh data

O H@ @H = {3

‘ *“1}‘

2

Diffusion and Denoising Process

Forward Diffusion (Train)

PolyDiff

34



Framework for Mesh generation

B Transformer Architecture

Use self-attention mechanism to focus
on information at different positions of

Transformer
sequence data
Suitable for language generation task
For mesh
PolyGen |
. - . A
During training, the mesh objects are < <7 k& <G @
viewed as ordered lists of points and faces | = [z [z ez [
The whole process can be viewed as AR (YRR,
conditional generation of sequence faces v v Vv Vv
POIyDiff Emibedding Traglsﬂ:lnTcr Linaar MGShGPT 3"{)‘1 WI —
- g [ v i
én-:F | ] | u —
] ..-I: : =] 4! E -‘lw W E-»Predicted GT
'.q ) "n N - 'r 'I' I Embe;ﬂdings | indices ndices
I 1 - T f - ' —;ﬁ E]‘l““ W L CELoss -
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Framework for Mesh generation

B Reinforcement Learning -
L
. . - \‘ Tewa,d
» Reinforcement Learning focuses on interpreter y
how software agents should take actions - /
In an environment to maximize some '

notion of cumulative reward.

For mesh RLOMG
» By formulating the mesh generation as {(©) Reinforcement Learning |
.. ‘1 Input: local .
a Markov decision process (MDP) | inomaton 11y
problem, we are able to use a SR -assisted AEM | e
0.81 U.BEJE’_{T )Cl\

reinforcement learning algorithm

43 01 o i
squareness. ' EP penalty

E OutputA(S) i 4 :rﬁ 4 :rf
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Intelligence Mesh Generation

7’
/

/
/ Mesh Generation \

Algorithm

Advancing front
Method

Cross field Method
Parameterization
Method

etc.

Full process intelligent

Partial process intelligent
Extended Input Data Types

<

)

Provide algorithmic framework

Provide loss and valuation criteria
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/ Intelligent

Framework
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The Role of Intelligent Methods in Mesh Generation

Full process Intelligent mesh generatlon

’ STTEEETEETEEETEETT T TmEEEEEEEE =~ \

'/ AFM Based IMG \ '/ Sequencing based IMG \ Classmcatlon based IMG \
I I I

| 1 1! |
| 1 1! 1
l - I LI R T '
I 1 L R = g [y I
I I I I | . 7-m s iriangles T ~e_____a scores py | |
| N S I L — l
| po Pem— 11 i1 "l“.fh’, poies we I
I \ o i = 7 I | / e encode(q. 71) 'Es’“ﬁ'mju }max |
l - ‘_\@ 1 " e L \o g | |
I I / b P e i
| I " 0| S o s [ . l
! — 1l 1! pVe " Gemum I
| 1 1! |
| 1] 1! I

. I
: : , : ! Representing mesh data as : I Estimate the existence or non- :
\  AFMusing Reinforcement ;1 sequenced data to be processed ) £ o ; |
Learning Architecture A using the Transformer I existence of points or surfaces
___________ s / \ S o e o e mm e o / —
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AFM-based IMG: RLOMG

> Reinforcement learning for automatic quadrilateral mesh generation: a

soft actor-critic approach

® First, view mesh generation as a
Markov decision process, given
the initial boundary state S, the
possible action set A, the reward
R, and the initial state transition
probabilityP (Se+1, Re+11Se Rel)s

® Based on the current state S;, take
action A, obtain the next state
St+1, and calculate the
corresponding reward R;.

® Repeat the second step, using
existing reinforcement learning
techniques like soft actor-critic
(SAC) to solve and implement
mesh generation.

Agent Environment
State
St i St+1
State Reward ) ‘
Rt Ri+1
Reward

Update

RL EIDI ithms
Action AL B‘t
[t ] ~
Pet, Xt, ¥

Pan, Jie and Huang, Jingwei and Cheng, Gengdong and Zeng, Yong. Reinforcement
learning for automatic quadrilateral mesh generation: A soft actor—critic approach[J].
Neural Networks, 2023

Y
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AFM-based IMG: RLOMG

Selection of initial reference points.

n'J'"U

* : ]' ; r
Vi = argmin — 3 ZVi,ViVi.i € N,

1

' i=1

V| 1

r=qa* L.
1

ﬂ Z |I‘:}-.J1’:}-j—l| + |1'f;'._fvr,j+1 | 0<n< *MI'IQ

g=0

L =

Action Set A [type, V;,V, ]

(a)type O (b) type 1

1 Coordinate space

Vo ' Vo V1

(reference vertex) (reference vertex)

(c) type 2

Coordinate space

Vo V4
(reference vertex)

The light blue area represents the sampling area for
V; , V, with a length of
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AFM-based IMG: RLOMG

State Set S

St = {Vln' LR Vllf VO' Vrli L) Vrnr VCll L) V{g: pt} o

L.=p*L p=4n=2,9g=3

V, is the reference point, V; and V. are the left
and right boundary points, respectively, and V; is

the inner point closest to V; in each sector, with
a sector radius of L,

Reward Function R

¢ . .
—0.1, invalid element;
ri(se, ap) = < 10, the element is the last element;
wi otherwise.

where m, = n¢ + 1} + 1.
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AFM-based IMG: RLOMG

Element quality:

?’!f — \/qft.:),’ge(1,.4::m,g£ej
edge __ ‘/Em'ij{G,lﬂ,?)} {]J}
q _ D ?
max

angle MitTrie{o,1,2,3} {(L?’Lgltfj }

g = )
maxjcqoa,2,31angle; }
—1? lf At < Amﬁin;
= AcAmin i A < A < A
l"{'t o ATT!{I{C_A'H'J-QJ-TL? 1 man. — t < mats
0, otherwise.

Boundary quality:

n? = minge 2 {min(Se, Mangie)} .,
= _
ﬂ’{a-ngle

drnin ] . .
dist _ (di+d3) /27 if d‘mm < (dl + dg)/Q,
L, otherwise.

Dinax represents the maximum diagonal
length of the quadrilateral, A; represents the
area of the quadrilateral, M,p, 4. = 60°, and
¢ represents the angle of the newly generated
facet.

The corresponding reward value for each
quadrilateral facet.

1,
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AFM-based IMG: RLOMG

Meshing & boundary evolution process

Initial boundary SESE e B Final mesh
i A
: | o LI e % ey
Domain 4 : ¥ ..
: B
1

X 2=
= < )
: e/
Domain 5 AV
L
i 2 '

Domain 6 /—_\

_,.,A-.-

}

15

— Update boundary e Apply meshing policy 4-3

A



AFM-based IMG: SRL-assisted AFM

SRL-assisted AFM: Generating planar unstructured quadrilateral meshes with supervised

and reinforcement learning-assisted advancing front method

Trainning
Boundary
* X 360

Generation
P

" (a) SRL-Assisted AFM

Quad Mesh

Supervised | learning
Learning

Input: Initial boundary f\?fj
~

r

Select next vertex
from the front

Random
Boundary

X5

Transfer

Reinforcement
Learning

front
becomes a

- Output: Final
quad mesh

Training: (Blue arrow )

1. Input planar closed manifold boundaries

2. Use ANSYS to generate quad meshes for
SL training

3. Transferring Supervised learning (SL)
parameters to Reinforcement learning (RL)

4. Train Iteratively to improve mesh quality

Inference (Black arrow)

* Replace rule-based algorithms with policy neural networks (SL and RL)

» Generate high quality mesh with primitive feature

Hua Tong, Kuanren Qian, Eni Halilaj, Yongjie Jessica Zhang, SRL-assisted AFM: Generating planar unstructured quadrilateral
meshes with supervised and reinforcement learning-assisted advancing front method, Journal of Computational Science,Volume

72,2023,102109.

44



AFM-based IMG: SRL-assisted AFM

-----------------------------------------------------

(b) Supervised Learning

Input: local

J

B
f‘f G

i information

-------------------------------------------------------

. (Check vertex &| [ Place new |
i | determine type vertex

h ol N N

i T Ty, T, T,
Focal loss | MSE
Output A(S): =, m,, 7, 7,

Training data:

(1) Initial boundary (360 spline models):

(2) Set seed interval function s(i):

s(i) = k()p(i), where p(i) # 0.

. . l
p(i) represents curvature, k(i) = fv"l -

Sa Zi=1p()

For sampling points by curvature

1 (3) Get local information for input:

Similar to above

(4) Calculation of supervisory signals

' x360
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AFM-based IMG: SRL-assisted AFM

Input: local
information

(a) Locate reference point P, \

y <10

Direct feed

Loss function: Focal loss

Res Block

’ (b) Determine Type \

4-type classification

1

(c) Predict new vertices
><l(]

Output: P}
Loss function: MSE

Typ

Type3 | Seal
» Q—»Output
Xl(‘l

J

Loss function: Focal loss

> QOutput: P‘,
Loss function: MSE

c2| Seal . ]
> ec]ge}->0ut]:lut‘ v

The role of neural networks:

m,. The classification network determines the

reference point P,.

1y, . The classification network determines the type

of action.

.. Network for predicting the location of a single

point .

m4:Network for predicting the position of two

points.

iLoss function:

For , and m,,

u,l‘b

Tapp a,r‘bEI l_

Focal Loss

) log p'] .

Ngp is training rows for i, or m,,

aq/p 1S a scaling factor of
two/four classes.

For . and m

N¢q is training rows for 7. or my;
0, p are normalized polar angle and

polar radius;

6, p are ground truth (given by ansys

result).
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AFM-based IMG: SRL-assisted AFM

Reward:
PN AL . LT i Squareness reward function
(¢) Reinforcement Learning :
Input: local [ e, A ) s
information ] Pt i | e
"!‘:i-:rr"i E
'S ~ [ Reward function | ' EP penalty reward function
| :
II II-l :-—I—v A ;
;'T'r H-h {]3] {}89| ] U i Rgp:(l_ Nep)(l_Ncep)
I : Ni'rili' Ni‘rji' .
A 7 Mk
T 43 0 ) 1 0]
Y a ) | squareness. EP penalty | |
- fin _ SR + min{ R* R, RSR, ... 5 pep .
Olltpllt A(S,} j'r _;11'IrJ R‘ Fl':} 5 R ZR + min{ R} R", RS R Ry R}
Noise: A ~ gl (S) + (1 = ) Dir(@/?), where M is the number of quads produced.
A N (;r({_],d(s,}, sz").
Introduce additional exploration to the Structured metrics added to the reward function

neural network-guided action by adding
noise to RL neural networks.



AFM-based IMG: SRL-assisted AFM

Domain Mesh size Aspect ratio Valence Angle Jacobian Time
[Verts#, Elemd#] [Best, Worst] [EP, cEP*] [Min, Max] [Worst, Best] (s)
Curve [1361, 1420] [1.0,3.8] [128, B8] [35°,148%] [0.75,1.0] 0.8
CMU Logo 1924, 1115] 11.0,3.5] [111,92] 1247, 1407 [0.68, 1.0] 0.4
Knee Joint [2694,2931] [1.0,2.4] [210,153] [27°,147°] [0.72,1.0] 8.1
Air Foil [2782,2953] [1.0,48]" [250, 167] [29°, 1507] [0.68, 1.0] a.1
Lake Superior [12,150,11,618] [1.0,7.2] [389,223] [157,156%] [0.60, 1.0] 118.1

AcEP is the number of pairs of EPs that are adjacent to each other.
bAfter adding boundary layers, the worst aspect ratio becomes 16.0.
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Sequencing based IMG: PolyGen

Pradicton

Canditioning

Tl I F

o S
Vartax Face TS T
I’T::‘E.;n;:ar | Tanatormse | Tanstormse T"ans;ma | ‘I'rnnar-l}'mer I i (\?{ Il \\v
AN |I ) .|| v (/A (/14 |
| "-.\ ld' | ‘ i | J (a) Triangle mesh (b) n-gon mesh
| A g 1 P
5 '. o « f > \/ ) L 7
:b ~J ~ ~J \‘/ \\\/,
Vertex Modal Face Model
ol
Vwi ‘9) H P U:1|Uc:-n 6) n |- — ; . p(M) = p(V, F)
’ p(FNV;0) = | | p(fulf<n, Vi 0)
n=1 ’ ?l];[l " " 1 =[i(f|V)[i(V)

® [ocus on polygon mesh generation.

Both of vertex and face models are Transformer based Autoregressive.

® To generate a mesh, first sample the vertex model, and then pass the resulting vertices as input
to the face model, from sample faces.

® In addition, conditional generation is also possible, such as mesh class identity, an input image,
or a voxelized shape.

Nash C, Ganin Y, Eslami S M A, et al. Polygen: An autoregressive generative model of 3d meshes[C]//International conference on machine learning. PMLR, 2020: 7220-7229.
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Sequencing based IMG : PolyGen

Verticas

v=(0.3 01,05
v={-0.1.0.4, 0.2

The Vertex Transformer outputs discrete distributions over the individual
coordinate locations, as well as the stopping token s.

Faces

8=
g
g
g8
3
kS
g3
EEEEHE B
23
£g
H
2

-

e

_.
iz
E)
ER

.

4

pif)=
plElf)=
piflfed=
pifIf )=
pifslf=
pifelf )=
piflfA=

pifelfes)=

HIB|E[EEEE
x

a8
g

E
ay

The Face Transformer outputs pointer embeddings which are compared to the
vertex embeddings using a dot-product to produce the desired distributions.

PolyGen first generates mesh vertices,
and then generates mesh faces
conditioned on those vertices.

Vertices are generated sequentially from
lowest to highest on the vertical axis.

To generate the next vertex the current
sequence of vertex coordinates is passed
as context to a vertex Transformer,
which outputs a predictive distribution
for the next coordinate.

The face model takes as input a
collection of vertices, and the current
sequence of face indices, and outputs a
distribution over vertex indices.



Sequencing based IMG: PolyGen

Bits per vertex Accuracy — D=
Model Vertices Faces Vertices Faces i N\ A\~ N\ A\ i -
Uniform 24.08 39.73 0.004 0.002 (; 550 mIna c; zslo St‘)ﬂ ?;o r; ; Jln 0 ) 10 20 oln nlz 0I4 000 005 010 015
val_id pl"cdicﬁuns 21-41 25.79 0_00'9 0_038 Num. Vertices Num. Faces Vertex Degree Num. Companants. Edge Length Face Area
Draco* (Google) Total: 27.68 - - Distribution of mesh statistics for unconditional samples from our model and the
ShapeNet test set. We compare samples generated using with nucleus sampling and
PolyGen 2.46 1.79 0.851 0.900 top-p = 0.9, to true model samples (p = 1).
- valid predictions 2.47 1.82 0.851 0.900 s AT B> & oo & 57 - v 1 - §5
g 0 . a7 T - o T | ¥ \ (\l |
- discr. embed. (V) 2.56 - 0.844 - - I] \ g L [ v | ¥ ‘ \//q ¥ v ~ N 5 ! : L
- data augmentation 3.39 2.52 0.803  0.868 1" A AN
+ cross attention (F) - 1.87 - 0.899 ‘ =
W

Cabinet

Jar

E : “55 é rm B & U
T T —

 bekakalk okl arrtree |, |
e P 2l s g U Wer o= B
+

HW("@ oo PWIETWRE

Bst¢T¢ QUHHUD e

@*\‘ﬁﬁfs‘?%f‘@ ‘? wa R/i ’§>t|‘ Rh?”‘\rh '? ; | T 0 E e g

HBoovee PFrormE® guresd vwUOTE®THE~
Image Voxel Class Random unconditional
condition condition condition samples

Monitor Ben

Chair

zZ

Tabl
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Sequencing based IMG: MeshGPT

> MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers

= A R kg Ng

MeshGPT: Autoregressive Mesh Generation

® Utilizing graph convolutional neural network and to learn a vocabulary of
geometric embedding from a large dataset.

FERSON -
T

Embedding
Codebook

GPT-Style Transformer

|

® Training a decoder-only transformer (GPT) for mesh generation.

Siddiqui Y, Alliegro A, Artemov A, et al. MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers[J]. CVPR 2024.
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Sequencing based IMG: MeshGPT

|F| % €,

Fal:EI:ira H|—”_||_||_|

Input Mesh

+ Graph Convolutional
Input Encoder

reure: SN |NINININ

Reconstructed
Mesh

c, 3
Sum
Residual g Reshape Feature
Featiires Codebook

Residual Face Quantization Module

Sequence
Of Faces

By e AL

IF| = C,

(1)Utilizing GNN on the dual graphs
of the mesh to encode faces .

Residual Face

IF| =€, Quantization

aodule Z=(z1,29,...,2n) = E(M),

(2)These features are then quantized
— into codebook embeddings using
GERE residual quantization.

T = (t1,t2,. .., tv) =RQ(Z;C, D),

t; = (f'g-.-t-? ----- tzﬂ}?

] i _ Vertex feature to face feature
All of the above are trained with reconstruction

loss and commit loss.

53
Z=(2,...,2yn), with Z; = EBE:[: Z E{tf.ﬂ-l-d}'

3 128 - -
(3)Decoding the quantized
on nij 1 P‘ntj .
e 2;;;‘“ 08 Pk embeddings through a 1D Resnet.
D M = G(Z)
Leommit(2,2) = Y _ |1z — sg[zV]13
d=1
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Sequencing based IMG: MeshGPT

fE EE r%ll
% .
Bl €

Sequence & Flatten

= 508 =

< EOS =

The same token decoder is used to generate the mesh

M = G(Z)

Needs post-processing to remove duplicate points.

+ Predicted aT
Codebook Codebook

Indices Indices

GPT-5tyle Transformer

- CE Loss -

This transformer decoder predicts
the subsequent codebook index
for each embedding, optimized
via cross-entropy loss.

[C| ok
Lyecon = 2 Z 2 lng i = ti
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Sequencing based IMG: MeshGPT

GT Samples

BSPNet

GET3D-QEM

Polygen

Class Method COvT  MMD)  I-NNA FIn}l  KID) vl |E|
AdlasMet [18] 9.03 4.05 9513 17071 0.169 2500 4050

BSPNet [7] 1648 162 LTS 4673 0030 673 1165

Chai Polygen [43] 322 441 9356 6110 0043 248 603
U GETID [14] 40.85 356 B3.04 145 0054 13725 27457
GET3ID* 38.75 357 84.07 7829 0065 199 399
MeshGPT 43.28 3.29 75.51 1846 0.010 125 228
AtlasMet [15] AL 3E5 9630 16138 050 2500 4050
BSPNct[7] 1683 304 9358 3078 0017 420 699

Table Polygen [43] 3299 3.00 8865 3853 0029 147 454
GET3» [14] 41.70 278 85.54 93935 0076 13767 XT53T
GET3D* 31.95 185 8193 5046 0.037 199 599
MeshGPT 45.08 236  T1LE8 6.24 0,002 99 187
AtlasMet [18]  20.53 247 S0.58 18839 0063 2500 4050
BSPNet [T] 28.74 2,05 BE.44 3911 0.030 457 756

Benct Polygen [43] 5192 1.97 To.98 4934 0,031 172 430
MeshGPT 55.23 144 68,24 872 0.001 159 291
AdlasNet [15] 19.97 4.68 9185 17791 0039 2500 4050

BSPNet [7] 18.38 532 9313 11265 0077 587 1ont

Lamp Polygen [43] 47.86 418 8142 5248 0025 185 558
MeshGPT 53.88 394 65.73 19.91  0.004 150 288

|l

I

Incomplete Shape

Completed Shapes using MeshGPT

I}

=7 4
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Classification-based IMG: PointTriNet

> PointTriNet: Learned Triangulation of 3D Point Sets

input Y output

© o o0 . .
0o 0 g © © greedy seed neEw mangle iterative tIl:angle

© o o° [Fmatorad =3 | proposals processing classification | =g
° 0 © g o0 © g (Section 3.3) (Section 3.2)
O e

o © .
“© o triangles 7 ~< Jy scores py

3D point set triangulation

The initial candidate triangular facets are first constructed by selecting the two nearest

neighbors centered on each vertex;

The probability of candidate triangles appearing is predicted using a PointNet-based
classification network, while another PointNet-based proposal network is used to give the

candidate triangul for the next step;

Repeat the second step five times, leaving at the end the triangular with probability greater

than a given threshold.

Sharp, Nicholas and Ovsjanikov, Maks. Pointtrinet: Learned triangulation of 3d point

sets[C]. ECCV 2020
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Classification-based IMG: PointTriNet

classification network

nearby points
{x1,..., 2}
O

o]
© o]
o fo

[a] [o]
o o]

query o o °
triangle °

| 4

nearby triangles
{t1,....tm}

e
encode (q, ;)

—_—
encode(q, t%)
encode(q, 1}
encode (g, t;)

\--\F-'J

(max, min)

(n,6)

(m,13)

) max min p;

MLP
[6,64,128,1024] max
I 1

\e

MLP
[2048,512,256,1]

/

MLP
[13,64,128,1024]

}JDaX

xXm

prediction
p € [0,1]

« encode(t, p) — [x',y'.z’,u,v,w]. Rule-based encoding of information
about the triangles to be queried and neighboring triangles into a 6-
dimensional vector

« % tP t¢ refers to the three vertices of the neighboring triangle

« max and min are obtained on all neighboring triangles t
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Classification-based IMG: PointTriNet

proposal network

query nearby pomts neighbor sample

triangle /v {3:1, ) nax scores neighbors
pel0,1] __,

VA -}{-

encode(q, :cz)

ol 4

input point set learned triangulation + learned vertex offset  + fill small holes



The Role of Intelligent Methods in Mesh Generation

Partial Process Intelllgent Mesh Generatlon method

____________ ~ N / ~ /

. \/ \
{ Parameterization Y [ Cross field based .1 Iso-surfaces based
| Based IMG N IMG o IMG :
I 11 _ I
I I I i ) | ’Gloha\Nemm\ I ‘ e I I %O 5; ¥ .' .- ! 1T I
| | | V l\m II Features o % DPS| '7“ Marchin; I
! I 0| 2 e A o0 Cmom |
I I I v ‘ (SpiralNet) || J I I Noisy Input . g\? Ll_ I
: L R L [ gy ||

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, R
I 11 .
| | _ 11 Network learning iso-surfaces |
| 1 Learncrossfield togenerate ‘\ and combining Marching cube /'
' AN meshes PN to build meshes. P
: Delaunay &7~ : P -—s ——————————————————————— e e e e T T T T T
~ triangulation
I | 0 Deform Based IMG
I 11
I 11 i | _Laset LS P
| Network learning parameter (N P / /4',-3" o ‘..} g»—:}’ I—} L~
] mapping /’ '
P I This class method is an intelligent extension to 3D Alpha Wrapping




Parameterization-based DGP

> Deep Geometric Prior for Surface Reconstruction

®First, the input point cloud is divided into
overlapping local blocks y;

®The neural network ¢ learns the 2D to
3D inverse parametrization mapping guided
by the minimization of the \Wasserstein
distance.

@By minimizing the error between
different local blocks' overlapping areas,
these parametrizations are made consistent
with each other in their overlapping
portions.

®Once the local mappings are established,
the mesh on the 2D plane is
correspondingly mapped onto the target
surface.

¢ L(6,)

) |—
. —1—|0(v; 0, —p
L.? — [(v; 0, —r

Williams F, Schneider T, Silva C, et al. Deep geometric
prior for surface reconstruction[C]//Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition. 2019: 10130-10139.

e
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Input Points

Parameterization based IMG: DSE

> Learning Delaunay Surface Elements for Mesh Reconstruction

Euclidean Patch

classification
network

Geodesic Patch

Py, 4
ut
%

projection
network

—g(D_> _,7,

Log Map Delaunay Surface Element
,\T/—‘\ /

¢ / Delaunay

\ ’ =

/ \‘:g\( 'i;/, \\ triangulation
; '/\ “ > —
- /

"/ @)\ /\

e |”

Initially, a neighborhood of 120 points is constructed around each point p;,after which a cIaSS|f|cat|on
network fg is trained to select the closest 30 points in terms of geodesic distance, resulting in local

blocks P; for each point.

Subsequently, another network g, computes the logarithmic map U; for each P; ,which represents the
Euclidean coordinates with the central point p;as the origin.
This is followed by local alignment of U; to enhance consistency between neighboring U;;

A triangulation is performed on all U; resulting in corresponding Delaunay Surface Elements (DSEs),
from which triangles belonging to three DSEs are selected to compose the final mesh.

Rakotosaona, Marie-Julie and Guerrero, Paul and Aigerman, Noam and Mitra, Niloy J and Ovsjanikov,
Maks. Learning Delaunay surface elements for mesh reconstruction[C]//CVPR. 2021
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Parameterization based IMG : DSE

Log maps Rigid alignment Clustering Averaging
Log map Alignment _
Corresponding points in adjacent U; are S % % e .
aligned using a rigid transformation. . © ® & s S
Then, the resulting set of corresponding . s o o g =o.. @
points is clustered to remove outliers, va o o ¢
and the average is taken to obtain the B
final two-dimensional coordinates. ™
triangle is;ncmhcr of three DSEs triangle is member of one DSE
N ;&“"""--—- . . . .
N [\ /’\c@ Triangle Selection Criteria
;’ y o To obtain a mesh as close to the manifold as
i _ { o ;* possible, the criteria established is that
* \ /O triangles appearing in three distinct DSEs are
BN |~ /\| considered most likely to be present in the
[ 'f:jf \ ;‘” ' /)5 manifold mesh. Triangles that appear only once
“——_ T\ /" aredeemed least likely to be present.
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Cross field based IMG: LDFQ

> Learning Direction Fields for Quad Mesh Generation

: \
' A Y :
1| Global Network o S |
: (PointNet) S |
| 4 i
l |
: 4 \ < b, :
| Local Network 2 MLP N |
| (SpiralNet) < c |
=
g / :
: |
: Reference 5. i
! Frame pa :
! |
¥ /
| ' ] | | | |
Inputs Neural Network Output Frame Field Quad Mesh

The problem of quadrilateral mesh generation is transformed into the learning of a

frame field.

» The geometric information of the mesh is extracted through global and local networks. The
reference frame provides the current tangent plane.

» The output is a frame field, which is then used to generate the quadrilateral mesh using traditional
methods.

Dielen, Alexander and Lim, Isaak and Lyon, Max and Kobbelt, Leif. Computer Graphics Forum. 2021 63



Cross field based IMG: LDFQ

Based on the learned
frame field, the final
quadrilateral mesh
generation result is
obtained using
traditional methods.

Comparison with other quadrilateral mesh generation algorithms and ground truth data.
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Isosurface-based :SAP

Features ¢y
Offsets fy
Normals gg

Noisy Iﬁput

e
Marching
Cubes

Indicator Function

Firstly, feature encoding is performed on the input point cloud.

[

: E Mesh Output

Ground Truth

Then, an MLP network f, predicts displacement values for each point, resulting in an offset and k-times

upsampled point cloud.

Next, another MLP network g4 is applied to the resulting point cloud from the previous step to obtain

corresponding normal vectors.

Based on the normal vector field obtained earlier, the Poisson equation is solved to derive the implicit function

field.

Finally, the Marching Cubes algorithm is employed to generate the mesh.

Peng, Songyou and Jiang, Chiyu and Liao, Yiyi and Niemeyer, Michael and Pollefeys, Marc and Geiger,
Andreas, A. Shape as points: A differentiable poisson solver[J]. NeurlIPS, 2021
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|so-surface based IMG: VoroMesh

> VoroMesh: Learning Watertlght Surface Meshes with Voronoi Diagrams
» Find a concise, learnable discrete

— ‘o VorLoss representation of 3D surfaces

- ' -  Reconstruct watertight and non-self-

; oomts rostn G“ét‘fl?;c“;”‘h intersecting meshes

; , To generate a VoroMesh from a grid I € RV*NXN of
. ' ERE BCE signed distances field (SDF).

a 1. Densely sample a set of points X € RM*3 from

: SCNN+MLP,  Occupaney G | a ground truth surface:

””cc """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" % 2. Selected grid points close to the surface serve

as initialized Q € RV*3

._ = — — O 3. Compute the Voronoi diagram of Q;

Position + : 4. Minimize VoroLoss(X, Q);

SDF SCNN +MLP , Occupancy Voromesh ! i
____________________________________________________________________________ 5. Determine the ground truth occupancy O of
g; = v; + MLP,(SCNN(SDF (v;))) the barycenter_of each Voronoi cell;

0; = MLP,(SCNN(SDF(v;))) 6. Compute the final polygonal mesh
VoroMesh(Q, 0).

Maruani, Nissim and Roman Klokov and Maks Ovsjanikov. VoroMesh: Learning Watertight Surface
Meshes with Voronoi Diagrams[C]//ICCV. 2023 66



Iso-surface based IMG: VoroMesh

x x x x x x
x //Z\ x /\

(a) Target (b) MC [26] (¢) DC [18] (d) UDC [6] (e) Ours

’ /ﬁ Figure 2: Marching Cubes (b) and Dual Contouring (c) can-
L& not capture details of a target shape (a) smaller than the grid
B 4 size; UDC (d), based on edge-crossings, can but at the price

%/ of a non-manifold elements. VoroMesh (e) both captures the
. details and returns a closed and manifold mesh
(a) Target surface (b) Optimization (c) VoroMesh

Theorem 1 The distance from x to its closest face in a
Voronoi diagram equals the distance from x to the closest
bisector H;  ; formed between q;, whose Voronoi cell con-
tains x and another Voronoi site q;:

|z — OV;|| = min ||z — H;_ ;||
J#i

------

We thus introduce a loss function, dubbed VoroLoss:

VoroLoss( X, Q) : Z IIllIl |z — Hi, ;||

(a) Closest face (b) Closest bisector J &
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Deformation-based IMG: Point2Mesh

> Point2Mesh: A Self-Prior for Deformable Mesheg

4
y { G
;_, e
- AE, NG M v
@ Build AV 4 @ Sampler
Cloj———s

® Firstly, construct an template mesh that is topologically equivalent to the target object. If the genus of the
target object is zero, a convex hull is constructed. If the genus is not zero, the alpha shape algorithm is used
to construct a concave hull, or Poisson reconstruction is performed based on the point cloud.

® Input the current mesh along with the initial displacement of each edge into MeshCNN, and sequentially
obtain the displacement of faces, edges, and vertices.

® Update the coordinates of the vertices based on the predicted displacement, thereby progressively
approaching the target surface.

® Repeat the second and third steps.

Hanocka, Rana and Metzer, Gal and Giryes, Raja and Cohen-Or, Daniel. Point2Mesh: a self-prior for
deformable meshes[J]. ACM Transactions on Graphics (TOG), 2020 68



The Role of Intelligent Methods in Mesh Generation

Extended Input Data Types for Mesh Generation
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Image to mesh: Pixel2Mesh

> Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images

| : . 2 # E_E

Input Image Perceptual Feature Pooling Perceptual Feature Pooling Perceptual Feature Pooling

|

|
==
)

3x3 conv, 128
3x3 conv, 128

Mesh
Defarmation
Mesh
Defarmation
Deformation

Ellipsoid Mesh 156 vertices 628 vertices 2466 vertices

The entire network consists of an Image Feature Network and a Cascaded Mesh

Deformation Network.

« The Image Feature Network comprises a 2D CNN that extracts perceptual
features from the input image.

« The Mesh Deformation Network gradually deforms an ellipsoid mesh into the
desired 3D model based on the perceptual features extracted from the image.

Wang, Nanyang and Zhang, Yinda and Li, Zhuwen and Fu, Yanwei and Liu, Wei and Jiang, Yu-Gang.

ECCV. 2018
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Voxel to mesh: Scan2Mesh

> Scan2Mesh: From Unstructured Range Scans to 3D Meshes

5 o
z 13 v
-
@
L
323 > @
Input Scan (TSDF) Predicted Predicted Dual Output
Vertices Edges Graph Mesh

» First, based on the input truncated signed distance field (TSDF), a neural network module

predicts the positions of n vertices;
» Using another neural network module, the existence of each edge is predicted based on

the coordinates of the corresponding points and their associated features.

« Treating each face as a node, a neural network module predicts the existence of each face.

The features of each face are represented by an 8-dimensional vector composed of
barycentric coordinates, normal vectors, area, and circumscribing circle radius.

Dai, Angela and Niebner, Matthias. CVPR 2019
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Sketch to mesh: Sketch2PQ

> Sketch2PQ: Freeform Planar Quadrilateral Mesh Design via a Single
Sketch
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» Using stroke lines, depth sampling, and visible/occluded region masks derived from sketches as inputs;

« Ageometric inference module predicts depth maps and normal maps for visible and occluded regions,
using them to infer B-spline surfaces;

« Aconjugate direction field (CDF) inference module predicts an approximate CDF layout for PQ mesh;

« Finally, PQ mesh is extracted from B-spline surfaces and CDF using geometric optimization.

Deng, Zhi and Liu, Yang and Pan, Hao and Jabi, Wassim and Zhang, Juyong and Deng, Bailin. IEEE
Transactions on Visualization and Computer Graphics (2022)
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Sketch to mesh: Sketch2PQ

Reference
Image

B-spline
Surface

-anx = 0.018 Hnux = 0.009 F’nm‘x : 0.008 ])nmx =0.011 131:1;1)( =0.013 Hnux = 0.0095 I)mux =0.024
Prean = 0.0056 Ppean = 0.0026 Prean = 0.0022 Prean = 0.0043 Prhean = 0.0033 Pean = 0.0018 Prean = 0.0063
D¢=173° D¢ = 6.4° D¢ =11.9° Dy=17.1° D¢ = 9.8° Dy =5.9° Di=179°

Pmean and Pmax represent the average planarity error and maximum planarity error of
the entire mesh, respectively.
D¢ is an angle-based alignment error that measures the angle between the direction of

feature lines and their corresponding projected lines on the plane. s



Text to mesh : CLIP-Mesh

m Making it possible to generate meshes by zero-shot textguided with a
differentiable renderer

bro;?:'tlable"_' <~v/) i"” W % )\ \\1'\/ tamp shade: —— O Q Q (;} @

 Using the analytical expression of the Loop subdivision limit surface as an implicit

regularizer.
 Introducing a set of render augmentations and incorporating a text to image

embedding prior.

Mohammad Khalid N, Xie T, Belilovsky E, et al. Clip-mesh: Generating textured meshes from text using
pretrained image-text models[C]//SIGGRAPH Asia 2022 conference papers. 2022: 1-8. 76
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Intelligent Mesh Evaluation
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Intelligent Mesh Evaluation

B Traditional metric-based
» RLOMG & SRL-assisted AFM

—0.1, invalid element;
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my, otherwise.
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1, otherwise. 0 , otherwise.

o Utilizing traditional metrics, including the Jacobian metric, maximum and
minimum angles, aspect ratios, etc., as reward functions in reinforcement
learning-based mesh generation.

1. Pan, Jie and Huang, Jingwei and Cheng, Gengdong and Zeng, Yong. Reinforcement learning for automatic quadrilateral mesh
generation: A soft actor—critic approach[J]. Neural Networks, 2023

2. Hua Tong, Kuanren Qian, Eni Halilaj, Yongjie Jessica Zhang,SRL-assisted AFM: Generating planar unstructured quadrilateral
meshes with supervised and reinforcement learning-assisted advancing front method, Journal of Computational Science,Volume
72,2023,1021009.
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Intelligent Mesh Evaluation

B Neural network-base
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« Employs a two-step structure (volume and global features learning) to map
between the input (ordered point coordinates) and mesh validity

« Studies the role of mesh point distribution on numerical accuracy, and
outputs the overall validity for the simulation

« Since MVE-Net is a black box, its evaluation metrics are not interpretable.

* Chen X, Liu J, Gong C, et al. MVE-Net: An automatic 3-D structured mesh validity evaluation framework using deep
neural networks[J]. Computer-Aided Design, 2021, 141: 103104. 80



Intelligent Mesh Evaluation

B Neural network-based
> MQNEt* o -
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 Learns the quality-related attributes(e.g. mesh orthogonality, smoothness)
« Accounts for both individual element geometry and neighboring attributes

* Chen X, Gong C, Liu J, et al. A novel neural network approach for airfoil mesh quality evaluation[J]. Journal of
Parallel and Distributed Computing, 2022, 164: 123-132. 81
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Summary and Outlook

B \What are the limits of IMG?

[ Raw Data ]

l

[ Intelligent Method ]
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Data Bottleneck

» High Cost: Quality assessment of meshes is
often costly (numerical simulation accuracy)

» Less Open Source: High-quality reference
data is often difficult to obtain

Suboptimal Mesh Quality

* Geometric Information: Most intelligent
methods can only maintain geometric
characteristics

* Topology Information: Only
Reinforcement Learning(RL) can guarantee
topological characteristics at present

33



Summary and Outlook

B \What are the advantages of IMG?

|

Excellent
IMG Method

Generalization: Applicable to various
models, 1.e. not limited to their type

Automation: Automatically generate
grid without parameter tuning

Efficiency: Generate meshes in real-
time

Robustness: Avoid the impact of low-
quality raw data
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