
Differential Geometry for Mesh Generation III

David Gu

Computer Science Department
Applied Mathematics Department

State University of New York at Stony Brook

gu@cs.stonybrook.edu

Short Course International Meshing Roundtable
SIAM IMR 2024, Baltimore, USA

March 5th, 2024

David Gu (SUNY) Quad-Meshing March 5th, 2024 1 / 82



Structured Surface Quadrilateral Mesh Generation
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Motivation
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Spline Surfaces for IGA

Figure: Bicubic spline representation of vehicle (joint work with Tom Hughes and
K. Sheperd).
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Spline Surfaces for IGA

Figure: Dodge Neon model represented as bicubic set of NURBS splines (joint
work with Tom Hughes and K. Sheperd).
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Central Challenge

1 zero 2 zeros 4 zeros 8 zeros

Problem (Central Task)

Find the governing equations for the singularities of a quad-mesh.
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Singularities on a Topological Torus

Smooth cross fields on genus one closed surfaces with two singularities.
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Singularities on a Topological Torus

Problem (3-5 Quad-Mesh on a Torus)

Is there a quad-mesh on a topological
torus with one valence 3 singular point
and one valence 5 singular point?
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Singularities on a Topological Torus

There is no 3-5 quad-mesh;

The combinatorial Euler formula is
satisfied;

There are flat metrics with 2 cone
singularities, whose curvatures are
−π/2 and π/2 respectively;

There are cross fields with 2
singularities, whose indices are
−1/4 and 1/4 respectively;

This means differential topolgy and Riemannian geometry are not enough
for quad-mesh theory. Conformal geometry is essential.
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Quad-Mesh Metric Structure
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Quad-Mesh Metric

Definition (Quad-Mesh Metric)

Given a quad-mesh Q, each face is treated as the unit planar square, this
will define a Riemannian metric, the so-called quad-mesh metric gQ, which
is a flat metric with cone singularities.

Uf Ue

Uv
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Discrete Gauss Curvature

Definition (Curvature)

Given a quad-mesh Q, for each vertex vi , the curvature is defined as

K (v) =

{
π
2 (4− k(v)) v ̸∈ ∂Q
π
2 (2− k(v)) v ∈ ∂Q

where k(v) is the topological valence of v , i.e. the number of faces
adjacent to v .

k = π/2 k = 0 k = −π/2 k = −π k = −2π
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Quad-Mesh Metric Conditions

Theorem (Quad-Mesh Metric Conditions)

Given a quad-mesh Q, the induced quad-mesh metric is gQ, which satisfies
the following four conditions:

1 Gauss-Bonnet condition;

2 Holonomy condition;

3 Finite horizontal/vertical geodesic condition;

4 Boundary Alignment condition.

David Gu (SUNY) Quad-Meshing March 5th, 2024 15 / 82



1. Gauss-Bonnet Condition

Theorem (Gauss-Bonnet)

Given a quad-mesh Q, the induced metric is gQ, the total curvature
satisfies ∑

vi∈∂Q
K (vi ) +

∑
vi ̸∈∂Q

K (vi ) = 2πχ(Q).

Namely ∑
vi∈∂Q

(2− k(vi )) +
∑

vi ̸∈∂Q
(4− k(vi )) = 4χ(Q).
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2. Holonomy Condition

Theorem (Holonomy Condition)

Suppose Q is a closed quad-mesh, then the holonomy group induced by

gQ is a subgroup of the rotation group {e i
k
2
π, k ∈ Z}.

π
2

σ0
γ

Figure: Parallel transportation along a face loop.David Gu (SUNY) Quad-Meshing March 5th, 2024 17 / 82



3. Boundary Alignment Condition

Definition (Boundary Alignment Condition)

Given a quad-mesh Q, with induced metric gQ, one can define a global
cross field by parallel transportation, which is aligned with the boundaries.

Figure: Aligned and mis-aligned with the inner boundaries.
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4. Finite Horizontal/Vertical Geodesic Condition

Definition (Finite Horizontal/Vertical Geodesic Condition)

The stream lines parallel to the cross field are finite geodesic loops.
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Riemann Surface Theory
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Riemann Surface

Uα Uβ

φα
φβ

φαβ

zα zβ

Figure: A Riemann surface.

A surface is covered by a complex atlas A, such that all chart transitions
are bi-holomorphic. φαβ : (x , y) 7→ (u, v) satisfies Cauchy-Riemann
equation:

ux = vy , uy = −vx ,
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Riemann Surface

Definition (Meromorphic Function)

Suppose f : M → C ∪ {∞} is a complex function defined on the Riemann
surface M. If for each point p ∈ M, there is a neighborhood U(p) of p
with local parameter z(p) = 0, f has Laurent expansion

f (z) =
∞∑
i=k

aiz
i ,

then f is called a meromorphic function.

If all k ’s are non-negative, then f is a holomorphic function.

David Gu (SUNY) Quad-Meshing March 5th, 2024 23 / 82



Meromorphic Differential

Definition (Meromorphic Differential)

Given a Riemann surface (M, {zα}), ω is a meromorphic differential of
order n, if it has local representation,

ω = fα(zα)(dzα)
n,

where fα(zα) is a meromorphic function, n is an integer; if fα(zα) is a
holomorphic function, then ω is called a holomorphic differential of order n.
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Zeros and Poles

Definition (Zeros and Poles)

Suppose f : M → C ∪ {∞} is a meromorphic function. For each point p,
there is a neighborhood U(p) of p with local parameter z(p) = 0, f has
Laurent expansion

f (z) =
∞∑
i=k

aiz
i ,

if k > 0, then p is a zero with order k ; if k = 0, then p is a regular point;
if k < 0, then p is a pole with order k . The assignment of p with respect
to f is denoted as νp(f ) = k.
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Divisor

Definition (Divisor)

The Abelian group freely generated by points on a Riemann surface is
called the divisor group, every element is called a divisor, which has the
form D =

∑
p npp. The degree of a divisor is defined as deg(D) =

∑
p np.

Definition (Meromorphic Function Divisor)

Given a meromorphic funciton f defined on a Riemann surface S , its
divisor is defined as (f ) =

∑
p νp(f )p, where νp(f ) is the assignment of p

with respect to f .

The divisor of a meromorphic function is called a principle divisor.
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Principle Divisor

Theorem

Suppose M is a compact Riemann surface, f is a meromorphic function,
then

deg((f )) = 0.
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Canonical Fundamental Group Generators

q

b1

b2

a2

a1

a1

b1

a−1
1

b−1
1

a2

b2

a−1
2

b−1
2

Algebraic intersection numbers satisfy the conditions:

ai · bj = δij , ai · aj = 0, bi · bj = 0.
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Holomorphic Differential Group Basis

The holomorphic one-form basis {φ1, φ2, · · · , φg} satisfy the dual
condition ∫

aj

φi = δij .
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Period Matrix

Definition (Period Matrix)

Suppose M is a compact Riemann surface of genus g , with canonical
fundamental group basis

{a1, a2, · · · , ag , b1, b2, · · · , bg}

and holomorphic one form basis

{φ1, φ2, · · · , φg}

The period matrix is defined as [A,B]

A =

(∫
aj

φi

)
,B =

(∫
bj

φi

)
.
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Jacobi Variety

Definition (Jacobi Variety)

Suppose the period matrix

A = (A1,A2, · · · ,Ag ), B = (B1,B2, · · · ,Bg ),

the lattice Γ is

Γ =


g∑

i=1

αiAi +

g∑
j=1

βjBj

 ,

the Jacobi variety of M is defined as

J(M) = Cg/Γ.
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Jacobi Map

Definition (Jacobi Map)

Given a compact Riemann surface M, choose a set of canonical
fundamental group generators {a1, · · · , ag , b1, · · · , bg}, and obtain a
fundamental domain Ω,

∂Ω = a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga−1
g b−1

g .

choose a base point p0, the Jacobi map µ : M → J(M) is defined as
follows: for any point p ∈ M, choose a path γ from p0 to p inside Ω,

µ(p) =

(∫
γ
φ1,

∫
γ
φ2, · · · ,

∫
γ
φg

)T

.
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Abel Theorem

Theorem (Abel)

Suppose M is a compact Riemann surface with genus g , D is a divisor,
deg(D) = 0. D is principle if and only if

µ(D) = 0 in J(M).
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Quad-Mesh Conformal Structure
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Quad-Mesh Riemann Surface

Theorem (Quad-Mesh Riemann Surface)

Suppose Q is a closed quadrilateral mesh, then Q induces a conformal
structure and can be treated as a Riemann surface MQ .

Proof.

Uf Ue

Uv

(a) conformal atlas (b) singularities

ze = zf +
1

2
(±1± i), z

k
4
v = e i

nπ
2 zf +

1

2
(±1± i) (1)
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Quad-Mesh Meromorphic Differential

Theorem (Quad-Mesh Meromorphic Differential)

Suppose Q is a closed quadrilateral mesh, then Q induces meromorphic
quartic differential.

Proof.

On each face f , define dzf , ωQ = (dzf )
4; vertex face transition

z
k
4
v = e i

nπ
2 zf +

1

2
(±1± i)

where k is the vertex valence, therefore(
k

4

)4

zk−4
v (dzv )

4 = (dzf )
4 = ωQ . (2)
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Divisor

Definition (Divisor)

The Abelian group freely generated by points on a Riemann surface is
called the divisor group, every element is called a divisor, which has the
form D =

∑
p npp. The degree of a divisor is defined as deg(D) =

∑
p np.

Suppose D1 =
∑

p npp, D2 =
∑

p mpp, then D1 ± D2 =
∑

p(np ±mp)p;
D1 ≤ D2 if and only if for all p, np ≤ mp.

Definition (Quad-Mesh Divisor)

Suppose Q is a closed quadrilateral mesh, then Q induces a divisor

DQ =
∑
vi∈Q

(k(vi )− 4)vi ,

where vi is a vertex with valence k(vi ).
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Quad-Mesh Abel-Jacobi Condition

Theorem (Quad-Mesh Abel-Jacobi Condition 2020)

Suppose Q is a closed quadrilateral mesh, then for any holomorphic
one-form φ

µ(DQ − 4(φ)) = 0 in J(MQ). (3)
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Genus One Polycube Surface Example

A genus one closed surface S , which is a polycube surface (union of
canonical unit cubes). The holomorphic one form ω ∈ Ω1(S).
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Genus One Polycube Surface Example

The homology basis is {a, b}, the surface is sliced along {a, b} to get a
fundamental domain D, ∂D = abab−1b−1. The conformal mapping
µ : D → C is given by

µ(q) =

∫ q

p
ω,

where p is a base point and the integration path is arbitrarily chosen in D.

a
b

a

b

b−1

a−1
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Genus One Polycube Surface Example

Suppose qi ’s are poles (degree 3), pj ’s are zeros (degree 5), then we have
found that the number of poles equals to that of the zeros, furthermore,

22∑
j=1

µ(pj)−
22∑
i=1

µ(qi ) = 0.
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Genus Two Polycube Surface Example

Suppose S is a genus two polycube surface, ω is a holomorphic one-form.
The red circles show the poles (degree 3), the blue circles show the zeros
(degree 5), the purple circles the zeros of ω.

(a). front view (b). back view
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Genus Two Polycube Surface Example

The surface is sliced along a1, b1, a2, b2, τ , and integrate ω to obtain
µ : S → C

µ(q) =

∫ q

p
ω,

it branch covers the plane, the branching points are zeros of ω, c1, c2.

a1

b1

a2

b2

τ

a1

b1

a−1
1

b−1
1

a2

b2

a−1
2

b−1
2 c1

c2
τ

(a). cuts (b). conformal fattening
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Genus Two Polycube Surface Example

Suppose pi ’s are zeros (degree 5), qj ’s are poles (degree 3), ck ’s are
branch points, then we have

16∑
i=1

µ(pi )−
8∑

j=1

µ(qj) = 4
2∑

k=1

µ(ck).
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Computational Algorithm
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Algorithm Pipeline

Jacobi Map Algorithm

1 Compute the fundamental group π1(S , p) of the surface;

2 Compute the cohomology group basis H1(S ,Z)
3 Compute the harmonic form group basis H∆(S ,R);
4 Compute the holomorphic 1-form group basis Ω1(S);

5 Compute the Period Matrix of the surface.
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Algorithm Pipeline

T-Mesh Generation Algorithm

1 Compute the singularity configuration by optimizing Abel-Jacobi
condition;

2 Compute the flat cone metric using discrete surface Yamabe flow;

3 Compute the motorcycle graph;

4 Partition the surface into patches along the motorcycle graph, each
patch is conformally flattened onto a quadrilateral;

David Gu (SUNY) Quad-Meshing March 5th, 2024 49 / 82



Algorithm Pipeline

Figure: Step 1. Compute the singularities by optimizing Abel-Jacobi condition.
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Algorithm Pipeline

Figure: Step 2. Compute the flat cone metric using surface Ricci flow, and
compute the motorcycle graph.
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Algorithm Pipeline

Figure: Step 3. Partition the surface into patches, each patch is conformally
flattened onto a quadrilateral.

David Gu (SUNY) Quad-Meshing March 5th, 2024 52 / 82



T-Meshes

Figure: Step 4. Construct quad-meshes on each patch, with consistent boundary
condition and adjust the width and the height of each quadrilateral.
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T-Meshes

Figure: Singularities, white: T-junctions, blue: valence 5, green: valence 6, red
:valence 3.
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T-Meshes

Figure: Singularities and T-Mesh of the Loveme model.
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T-Meshes

Ornament Dancer Hermanubis

Figure: Singularities and T-Meshes of high genus surfaces.
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T-Meshes

Witch model Kiss model Monk model

Figure: Singularities and T-Meshes of the surfaces with complicated geometries.David Gu (SUNY) Quad-Meshing March 5th, 2024 57 / 82



T-Meshes

(a) Kitten model (b) Amphora model (c) Bull head

Figure: Singularities and T-Meshes of various surfaces.
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T-Meshes

Star cup model Sculpture model

Figure: Singularities and T-Meshes of high genus surfaces.
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T-Meshes

Figure: The motorcycle graph and T-mesh of the genus 3 kiss model.
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T-Meshes

Rocker arm 3 holes surface

Figure: Singularities and T-Meshes of high genus surfaces.
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T-Mesh to Quad-Mesh

1. Puncture the surface at the singularities, isometrically immerse the
universal covering space of the punctured surface obtain a fundamental
polygon.
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T-Mesh to Quad-Mesh

2. Deform the fundamental polygon, such that the translation components
of all deck transformations are rational.
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Quad-meshing Experimental Results
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Quad-Meshes

1 zero 2 zeros 4 zeros 8 zeros

Figure: Quad-meshes of a planar domain with two holes.
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Quad-Meshes

Figure: A quad-mesh of a genus two surface with 4 zeros.
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Quad-Meshes

Figure: A quad-mesh of a genus two surface with 8 zeros.
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Quad-Meshes

(a). genus 3 (b). genus 1

Figure: Quad-Meshes.
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Quad-Meshes

Figure: Quad-Meshes.
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Quad-Meshes

Figure: Quad-Meshes.
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Quad-Meshes

Figure: Quad-Meshes for an airplane.
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Quad-Meshes

Figure: Quad-Meshes for an airplane.
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Spline Surfaces for IGA

Figure: Dodge Neon model represented as bicubic set of NURBS splines (joint
work with Tom Hughes and K. Sheperd).
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IGA Application

Figure: Crash analysis with Beta-CAE.

David Gu (SUNY) Quad-Meshing March 5th, 2024 74 / 82



Automatically Generated Quad-Mesh

Figure: Devcom Stiffeners Bottom.
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Automatically Generated Quad-Mesh

Figure: Floor board.
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Automatically Generated Quad-Mesh

Figure: Air plane.

David Gu (SUNY) Quad-Meshing March 5th, 2024 77 / 82



Automatically Generated Quad-Mesh

Figure: Industrial part.
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Conclusion

1 Bridge quadrilateral meshes and meromorphic quartic differentials; A
global section of a holomorphic line bundle (4-th power of the
cotangent bundel);

2 Singularities of a quad-mesh correspond to the divisor of the
differential, which satisfies the Abel-Jacobi condition; characteristic
class of the holomorphic line bundle;

3 T-mesh/Quad-mesh generation based on Abel-Jacobin condition and
discrete surface Yamabe flow;
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Thanks

For more information, please email to gu@cs.stonybrook.edu.

Thank you!
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