
Differential Geometry for Mesh Generation II

David Gu

Computer Science Department
Applied Mathematics Department

State University of New York at Stony Brook

gu@cs.stonybrook.edu

Short Course International Meshing Roundtable
SIAM IMR 2024, Baltimore, USA

March 5th, 2024

David Gu (IMR 2024) Surface Meshing by Differential Geometry March 5th, 2024 1 / 76



Cross Field Construction

This part focuses on the construction of cross fields on surfaces, using
Hodge decomposition and surface Ricci flow.
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Simplicial Homology and Cohomology Group
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Triangular mesh

Definition (triangular mesh)

A triangular mesh is a surface Σ with a triangulation T ,

1 Each face is counter clockwisely oriented with respect to the normal
of the surface.

2 Each edge has two opposite half-edges.
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Simplicial Complex

Definition (Simplicial Complex)

Suppose k + 1 points in the general positions in Rn, v0, v1, · · · , vk , the
standard simplex [v0, v1, · · · , vk ] is the minimal convex set including all of
them,

σ = [v0, v1, · · · , vk ] = {x ∈ Rn|x =
k∑

i=0

λivi ,
k∑

i=0

λi = 1, λi ≥ 0},

we call v0, v1, · · · , vk as the vertices of the simplex σ.

Suppose τ ⊂ σ is also a simplex, then we say τ is a facet of σ.

Figure: Simplex
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Simplicial Complex

Definition (Simplicial complex)

A simplicial complex Σ is a union of simplices, such that

1 If a simplex σ belongs to Σ, then all its facets also belongs to Σ.

2 If σ1, σ2 ⊂ Σ, σ1 ∩ σ2 ̸= ∅, then their intersection is also a common
facet.

Figure: Simplicial complex.
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Chain Space

Definition (Chain Space)

A k chain is a linear combination of all k-simplicies in Σ,
σ =

∑
i λiσi , λi ∈ Z. The k dimensional chain space is the linear space

formed by all k-chains, denoted as Ck(Σ,Z).

A curve on the mesh is a 1-chain, a surface patch is a 2-chain.
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Boundary Operator

Definition (Boundary Operator)

The n-th dimensional boundary operator ∂n : Cn → Cn−1 is a linear
operator, such that

∂n[v0, v1, v2, · · · , vn] =
∑
i

(−1)i [v0, v1, · · · , vi−1, vi+1, · · · , vn].

Boundary operator extracts the boundary of a chain.
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Boundary Operator

p [p, q] [p, q, r]

[p, q, r, s]

p q

p q

r

+q−p
∅

∂0 ∂1
∂2

∂3

Figure: Boundary operator.
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Closed Chains

Definition (closed chain)

A k-chain γ ∈ Ck(σ) is called a closed k-chain, if ∂kγ = 0.

A closed 1-chain is a loop. A non-closed 1-chain has boundary vertices.

closed 1-chain open 1-chain
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Exact Chains

Definition (Exact Chain)

A k-chain γ ∈ Ck(σ) is called an exact k-chain, if there exists a (k + 1)
chain σ, such that ∂k+1σ = γ.

exact 1-chain closed, non-exact 1-chain
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Boundary of Boundary

Theorem (Boundary of Boundary)

The boundary of a boundary is empty

∂k ◦ ∂k+1 ≡ ∅.

namely, exact chains are closed. But the reverse is not true.
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Homology

The difference between the closed chains and the exact chains indicates
the topology of the surfaces.

1 Any closed 1-chain on genus zero surface is exact.

2 On tori, some closed 1-chains are not exact.
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Homology Group

Closed k-chains form the kernel space of the boundary operator ∂k . Exact
k-chains form the image space of ∂k+1.

Definition (Homology Group)

The k dimensional homology group Hk(Σ,Z) is the quotient space of
ker∂k and the image space of img∂k+1.

Hk(Σ,Z) =
ker∂k

img∂k+1
.

Two k-chains γ1,γ2 are homologous, if they boundary a (k + 1)-chain σ,

γ1 − γ2 = ∂k+1σ.
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Homological Classes

γ1

γ2

S

γ1

γ2

Σ1

γ3

γ1

γ2

γ3 γ3

Σ3

Σ2

∂Σ1 = γ1 − γ2, ∂Σ2 = γ3 − γ1 + γ2, ∂Σ3 = −γ3.

γ1 and γ2 are not homotopic but homological; γ3 is not homotopic to e,
but homological to 0; γ3 is homological to γ1 − γ2.
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Homology vs. Homotopy

Abelianization

The first fundamental group in general is non-abelian. The first homology
group is the abelianization of the fundamental group.

H1(Σ) = π1(Σ)/[π1(Σ), π1(Σ)].

where [π1(Σ), π1(Σ)] is the commutator of π1,

[γ1, γ2] = γ1γ2γ
−1
1 γ−1

2 .

Fundamental group encodes more information than homology group, but
more difficult to compute.
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Homology vs. Homotopy

Homotopy group is non-abelian, which encodes more information than
homology group.

q

b1

b2

a2

a1

γ

in homotopy group π1(S , q), γ ∼ [a, b],

in homology group H1(S ,Z), γ ∼ 0.
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Poincaré Duality

Figure: Poincaré Duality.
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Poincaré Duality

Given a triangulated manifold T , there is a corresponding dual polyhedral
decomposition T ∗, which is a cell decomposition of the manifold such that
the k-cells of T ∗ are in bijective correspondence with the (n − k)-cells of
T .
Let σ be a simplex of T . Let ∆ be a top-dimensional simplex of T
containing σ, so we can think of σ as a subset of the vertices of ∆. Define
the dual cell σ∗ corresponding to σ so that ∆ ∩ σ∗ is the convex hull in ∆
of the barycentres of all subsets of the vertices of ∆ that contain σ.

σ ∆

σ∗ ∩∆

Figure: Poincaré dual.David Gu (IMR 2024) Surface Meshing by Differential Geometry March 5th, 2024 19 / 76



Homology Group

Theorem

Suppose M is a n dimensional closed manifold, then
Hk(M,Z) ∼= Hn−k(M,Z).

Proof.

The intersection map Ck(T )× Cn−K (T ) → Z gives an isomorphism
Ck(T ) → Cn−k(T ∗).

Theorem

Suppose M is a genus g closed surface, then H0(M,Z) ∼= Z,
H1(M,Z) ∼= Z2g , H2(M,Z) ∼= Z.

If H0(M,Z) = Zk , then M has k connected components.

David Gu (IMR 2024) Surface Meshing by Differential Geometry March 5th, 2024 20 / 76



Computation for Homology Basis

Each boundary operator: ∂k : Ck → Ck−1 is a linear map between linear
spaces Ck and Ck−1, therefore it can be represented as a integer matrix.
Suppose there are nk k-simplexes of Σ, {σk

1 , σ
k
2 , . . . , σ

k
nk
}.

Ck =

{
nk∑
i=1

λiσ
k
i

}
.

Boundary Matrix

The boundary matrix is defined as: ∂k = ([σk−1
i , σk

j ]), where

[σk−1
i , σk

j ] =


+1 +σk−1

i ∈ ∂kσ
k
j

−1 −σk−1
i ∈ ∂kσ

k
j

0 σk−1
i ̸∈ ∂kσ

k
j
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Computation for Homology Basis

Cominatorial Laplace Operator

Construct linear operator ∆k : Ck → Ck ,

∆k := ∂T
k ∂k + ∂k+1∂

T
k+1,

the eigen vectors of zero eigen values of ∆k form the basis of Hk(M,Z).

Smith Norm

The eigen vectors can be found using Smith norm of integer matrix. The
computational cost is very high.
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Simplicial Cohomology Group
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Figure: 1-Cochain.
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Simplicial Cohomology Group

Figure: 1-Cochain.
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Simplicial Cohomology Group

Definition (Cochain Space)

A k-cochain is a linear function

ω : Ck → Z.

The k cochain space C k(Σ,Z) is a linear space formed by all the linear
functionals defined on Ck(Σ,Z). A k-cochain is also called a k-form.

Definition (Coboundary)

The coboundary operator δk : C k(Σ,Z) → C k+1(Σ,Z) is a linear operator,
such that

δkω := ω ◦ ∂k+1, ω ∈ C k(Σ,Z).
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Simplicial Cohomology Group

Example

M is a 2 dimensional simplicial complex, ω is a 1-form, then δ1ω is a
2-form, such that

δ1ω([v0, v1, v2]) = ω(∂2[v0, v1, v2])

= ω([v0, v1]) + ω([v1, v2]) + ω([v2, v0])
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Cohomology

Coboundary operator is similar to differential operator. δ0 is the gradient
operator, δ1 is the curl operator.

Definition (closed forms)

A k-form is closed, if δkω = 0.

Definition (Exact forms)

A k-form is exact, if there exists a k − 1 form σ, such that

ω = δk−1σ
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Cohomology

suppose ω ∈ C k(Σ), σ ∈ Ck(Σ), we denote the pair

⟨ω, σ⟩ := ω(σ).

Theorem (Stokes)

⟨dω, σ⟩ = ⟨ω, ∂σ⟩.

Theorem

δk ◦ δk−1 ≡ 0.

All exact forms are closed. The curl of gradient is zero.
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Cohomology

The difference between exact forms and closed forms indicates the
topology of the manifold.

Definition (Cohomology Group)

The k-dimensional cohomology group of Σ is defined as

Hn(Σ,Z) =
kerδn

imgδn−1
.

Two 1-forms ω1, ω2 are cohomologous, if they differ by a gradient of a
0-form f ,

ω1 − ω2 = δ0f .
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Homology vs. Cohomology

Duality

H1(Σ) and H1(Σ) are dual to each other. suppose ω is a closed 1-form, σ
is a closed 1-chain, then the pair ⟨ω, σ⟩ is a bilinear operator.

Definition (dual cohomology basis)

suppose a homology basis of H1(Σ) is {γ1, γ2, · · · , γn}, the dual
cohomology basis is {ω1, ω2, · · · , ωn}, if and only if

⟨ωi , γj⟩ = δji .

Cohomology was introduced by H. Whitney in order to represent stiefel
whitney class characteristic class. Prof. Chern learned it from Whitney.
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Algorithm for Cohomology Group

Algorithm for H1(M ,R)
Input: A genus g closed triangle mesh M;
Output: A set of basis of H1(M,R)

1 Compute a set of basis of H1(M,Z), denoted as

{γ1, γ2, · · · , γ2g},

2 for each γi , slice M along γi , to obtain a mesh with two boundaries
Mi , ∂Mi = γ+i − γ−i ;

3 set a 0-form τi on Mi , such that τi (v) = 1 for all v ∈ γ+i and
τi (w) = 0, for all w ∈ γ−i ; set ωi = dτi ;

4 All {ω1, ω2, · · · , ω2g} form a basis of H1(M,R).
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Hodge Decomposition
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Discrete Hodge Operator

e
fi fj

v̄i v̄j

ē

Cotangent edge weight:

wij =
1

2
(cotα+ cotβ) (1)
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Dual Mesh

Poincaré’s duality, equivalent to Delaunay triangulation and Voronoi
diagram. The Delaunay triangulation is the primal mesh, the Voronoi
diagram is the dual mesh.
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Duality

|v| = 1

∗v

|∗v|
∗e

|∗e|

e

|e|

f

|f |

∗f

|∗f | = 1

Ω(f)
|f | =

∗Ω(∗f)
|∗f |

ω(e)
|e| =

∗ω(∗e)
|∗e|

η(v)
|v| =

∗η(∗v)
|∗v|

0− form η 1− form ω 2− form Ω

v
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Discrete Operator

Discrte Codifferential Operator

The codifferential operator δ : Ωp → Ωp−1 on an n-dimensional manifold,

δ := (−1)n(p+1)+1 ∗d∗.

Discrte Hodge star operator
∗∗ : Ωp → Ωp,

∗∗ := (−1)(n−p)p

ω(e)

|e| =
∗ω(∗e)
|∗e| =

∗∗ω(∗∗e)
|∗∗e| =

∗∗ω(−e)

| − e| = −
∗∗ω(e)
|e|

Therefore ∗∗ω(e) = −ω(e), this verifies when n = 2,p = 1, ∗∗ = −1.
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Harmonic 1-form

Definition (Harmonic 1-form)

Suppose ω is a 1-form, ω is harmonic iff

dω = 0, δω = 0.
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Dual Mesh

Theorem (Hodge Decomposition)

Suppose ω is a one-form on the prime mesh, it has the unique
decomposition:

ω = dη + δΩ+ h

where η is a 0-form, Ω a 2-form and h a harmonic one-form.
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Discrete Harmonic One-form

compute dω,

dω = d2η + dδΩ+ dh = dδΩ, Ω = (dδ)−1(dω).
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δ2 operator

Lemma

The operator δ2 : Ω2 → Ω1 on a surface, has the following formula:

δ2Ω([vi , vj ]) =
1

wij

(
Ω(f∆)

|f∆|
− Ω(fk)

|fk |

)
(2)

Proof.

δ2 = (−1)n(p+1)+1∗d∗ = (−1)1(∗d0∗)

δ2Ω([vi , vj ]) = (−1)(∗d0∗)Ω([vi , vj ]) (3)

(∗d0∗)Ω([vi , vj ])
|[vi , vj ]|

=
(∗∗d0∗)Ω(∗[vi , vj ])

|∗[vi , vj ]|
= −(d0∗)Ω([∗fk , ∗f∆])

|[∗fk , ∗f∆]|
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δ2 operator

Proof.

− (d0∗)Ω([∗fk , ∗f∆])
|[∗fk , ∗f∆]|

= −
∗Ω(∂1[∗fk , ∗f∆])

|[∗fk , ∗f∆]|
= −

∗Ω(∗f∆ − ∗fk)
|[∗fk , ∗f∆]|

=−
∗Ω(∗f∆)− ∗Ω(∗fk)

|[∗fk , ∗f∆]|

(4)

Ω(f∆)

|f∆|
=

∗Ω(∗f∆)
|∗f∆|

= ∗Ω(∗f∆),
Ω(fk)

|fk |
=

∗Ω(∗fk)
|∗fk |

= ∗Ω(∗fk), (5)

Plug (5) into (4), then plug (4) to (3), obtain the formula (2).
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Discrete Harmonic One-form

Fi

vi vj

vk

F∆

Fk

Fj

e
∗e

δΩ([vi , vj ])

=(−1)(∗d∗)Ω([vi , vj ])

=(−1)(d∗Ω)(∗[vi , vj ])
1

wij
(−1)

=
1

wij
(d∗Ω)([∗fk ,

∗f∆])

=
1

wij
(∗Ω)(∂[∗fk ,

∗f∆])

=
1

wij
{∗Ω(∗f∆)− ∗Ω(∗fk)}

=
1

wij

{
Ω(f∆)

|f∆|
− Ω(fk)

|fk |

}

David Gu (IMR 2024) Surface Meshing by Differential Geometry March 5th, 2024 42 / 76



Discrete Harmonic One-form

Fi

vi vj

vk

F∆

Fk

Fj

e
∗e

δΩ([vi , vj ]) =
1

wij

{
Ω(f∆)

|f∆|
− Ω(fk)

|fk |

}

For each face ∆, we have the equation dω(∆) = ω(∂∆) = dδΩ(∆),

ω(∂∆) =
Fi − F∆
wjk

+
Fj − F∆

wki
+

Fk − F∆
wij

(6)

where Fi = −Ω(fi )
|fi | ’s are 2-forms, ω is 1-form, wij ’s are cotangent edge

weights.
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Discrete Harmonic One-form

Fi

Fj

vi

vj

vk F∆ ∂M

For each boundary face ∆, we have the equation

dω(∆) = ω(∂∆) =
Fi − F∆
wjk

+
Fj − F∆

wki
+

0− F∆
wij

(7)
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Discrete Harmonic One-form

compute δω,

δω = δdη + δ2Ω+ δh = δdη, η = (δd)−1(δω).
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Discrete Harmonic One-form

Lemma

Suppose δ1 : Ω1 → Ω0 on a surface, then

δ1ω(vi ) = (−1)
1

|∗vi |
∑
j

wijω([vi , vj ]).

Proof.

δ1 = (−1)n(p+1)+1∗d∗ = (−1)2(1+1)+1∗d1∗ = (−1)∗d1∗,

δ1ω(vi ) = (−1)(∗d∗)ω(vi ) = (−1)∗(d1∗)ω((vi )0) = (−1)
1

|∗vi |
(d1∗)ω((∗vi )2)

= (−1)
1

| ∗ vi |
d1(∗ω)(∗vi ) = (−1)

1

| ∗ vi |
(∗ω)(∂2(

∗vi ))

= (−1)
1

| ∗ vi |
∑
j

(∗ω)(∗[vi , vj ]) = (−1)
1

| ∗ vi |
∑
j

(∗ω)(∗[vi , vj ])

= (−1)
1

| ∗ vi |
∑
j

wijω([vi , vj ])
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Discrete Harmonic One-form

vi vj

vk

e

∗e

δω(vi )

= (−1)(∗d∗)ω(vi )

= (−1)(d∗ω)(∗vi )
1

|∗vi |

= (−1)(∗ω)(∂ ∗vi )
1

|∗vi |

= (−1)
∑
j

(∗ω)(∗eij)
1

|∗vi |

= (−1)
1

|∗vi |
∑
j

wij ω(eij)
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Discrete Harmonic One-form

vi vj

vk

e

∗e

δω(vi ) = (−1)
1

|∗vi |
∑
j

wij ω(eij)

For each vertex vi , we obtain an equation δω(vi ) = δdη(vi ),∑
vi∼vj

wij ω([vi , vj ]) =
∑
vi∼vj

wij(ηj − ηi ). (8)

where ηi ’s are 0-forms, wij ’s are cotangent edge weights.
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Discrete Harmonic One-form

vi v2

v3

v0

v1

vn

∂M

for each boundary vertex vi , we obtain an equation:

n−1∑
j=0

wij ω([vi , vj ]) −wi ,n ω([vn, vi ]) =
n∑

j=0

wij(ηj − ηi ). (9)
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Algorithm for Random Harmonic One-form

Input:A closed genus one mesh M;
output: A basis of harmonic one-form group;

1 Generate a random one form ω, assign each ω(e) a random number;

2 Compute cotangent edge weight using Eqn. (1);

3 Compute the coexact form δF using Eqn. (6);

4 Compute the exact form df using Eqn. (8);

5 Harmonic 1-form is obtained by h = ω − dη − δΩ;
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Wedge Product

Fi

Fj

Fk

vi vj

vk

F∆

eiej

ek

θi θj

θk

Given two one-forms ω1 and ω2 on a triangle mesh M, then the 2-form
ω1 ∧ ω2 on each face ∆ = [vi , vj , vk ] is evaluated as

ω1 ∧ ω2(∆) =
1

6

∣∣∣∣∣∣
ω1(ei ) ω1(ej) ω1(ek)
ω2(ei ) ω2(ej) ω2(ek)

1 1 1

∣∣∣∣∣∣ (10)
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Wedge Product Formula

Proof.

Since ω1 and ω2 are linear,∫
∆
ω1 ∧ ω2 =

1

2
ω1 ∧ ω2(ei × ej)

=
1

6
[ω1 ∧ ω2(ei × ej) + ω1 ∧ ω2(ej × ek) + ω1 ∧ ω2(ek × ei )]

=
1

6

{∣∣∣∣ ω1(ei ) ω1(ej)
ω2(ei ) ω2(ej)

∣∣∣∣+ ∣∣∣∣ ω1(ej) ω1(ek)
ω2(ej) ω2(ej)

∣∣∣∣+ ∣∣∣∣ ω1(ek) ω1(ei )
ω2(ek) ω2(ei )

∣∣∣∣}

=
1

6

∣∣∣∣∣∣
ω1(ei ) ω1(ej) ω1(ek)
ω2(ei ) ω2(ej) ω2(ek)

1 1 1

∣∣∣∣∣∣
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Wedge Product Formula

vi vj

vk

−sk

−si
−sj

θi θj

θk

ek

ei
ej

Set f : ∆ → R,
f (vi ) = 0

f (vj) = ω(ek)

f (vk) = −ω(ej)

∇f (p) =
1

2A
(f (vi )si + f (vj)sj + f (vk)sk)

w =
1

2A
[ω(ek)sj − ω(ej)sk ]

=
n

2A
× [ω(ek)(vi − vk)− ω(ej)(vj − vi )]

= − n

2A
× [ω(ek)vk + ω(ej)vj + ω(ei )vi ]
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Wedge Product Formula

vi vj

vk

−sk

−si
−sj

θi θj

θk

ek

ei
ej

w = 1
2A(ωksj − ωjsk)

w =
−1

6A

∣∣∣∣∣∣
ωi ωj ωk

si sj sk
1 1 1

∣∣∣∣∣∣

∫
∆
ω1 ∧ ω2 = A|w1 ×w2|

=
A

4A2
(ω1

kω
2
j − ω1

j ω
2
k)|sj × sk |

=
1

2

∣∣∣∣ ω1
k ω1

j

ω2
k ω2

j

∣∣∣∣
since ωγ

i + ωγ
j + ωγ

k = 0, γ = 1, 2, we obtain

∫
∆
ω1 ∧ ω2 =

1

6

∣∣∣∣∣∣
ω1
k ω1

j ω1
i

ω2
k ω2

j ω2
i

1 1 1

∣∣∣∣∣∣
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Wedge Product

Fi

Fj

Fk

vi vj

vk

F∆

eiej

ek

θi θj

θk

Given two one-forms ω1 and ω2 on a triangle mesh M, then the 2-form
ω1 ∧ ∗ω2 on each face ∆ = [vi , vj , vk ] is evaluated as

ω1∧∗ω2(∆) =
1

2
[cot θiω1(ei )ω2(ei )+cot θjω1(ej)ω2(ej)+cot θkω1(ek)ω2(ek)]

(11)
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Wedge Product Formula

vi vj

vk

−sk

−si
−sj

θi θj

θk

ek

ei
ej

w1 =
1

2A
(ω1

ksj − ω1
j sk)

w2 =
1

2A
(ω2

ksj − ω2
j sk)

∫
∆
ω1 ∧ ∗ω2 = A⟨w1,w2⟩

=
1

4A

{
ω1
kω

2
k⟨sj , sj⟩+ ω1

j ω
2
j ⟨sk , sk⟩

−(ω1
kω

2
j + ω1

j ω
2
k)⟨sj , sk⟩

}
=

1

4A

{
−ω1

kω
2
k⟨sj , si + sk⟩

− ω1
j ω

2
j ⟨sk , si + sj⟩

−(ω1
kω

2
j + ω1

j ω
2
k)⟨sj , sk⟩

}
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Wedge Product Formula

vi vj

vk

−sk

−si
−sj

θi θj

θk

ek

ei
ej

=
1

4A

{
−ω1

kω
2
k⟨sj , si ⟩ − ω1

kω
2
k⟨sj , sk⟩

− ω1
j ω

2
j ⟨sk , si ⟩ − ω1

j ω
2
j ⟨sk , sj⟩

−(ω1
kω

2
j + ω1

j ω
2
k)⟨sj , sk⟩

}
= −ω1

kω
2
k

⟨sj , si ⟩
4A

− ω1
j ω

2
j

⟨sk , si ⟩
4A

− ⟨sk , sj⟩
4A

(ω1
kω

2
k + ω1

j ω
2
j + ω1

kω
2
j + ω1

j ω
2
k)

= −ω1
kω

2
k

⟨sj , si ⟩
4A

− ω1
j ω

2
j

⟨sk , si ⟩
4A

− ⟨sk , sj⟩
4A

(ω1
k + ω1

j )(ω
2
k + ω2

j )

= −ω1
kω

2
k

⟨sj , si ⟩
4A

− ω1
j ω

2
j

⟨sk , si ⟩
4A

− ω1
i ω

2
i

⟨sj , sk⟩
4A

=
1

2

(
ω1
i ω

2
i cot θi + ω1

j ω
2
j cot θj + ω1

kω
2
k cot θk

)
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Holomorphic 1-form Basis

Given a set of harmonic 1-form basis ω1, ω2, . . . , ω2g ; in smooth case, the
conjugate 1-form ∗ωi is also harmonic, therefore

∗ωi = λi1ω1 + λi2ω2 + · · ·+ λi ,2gω2g ,

We get linear equation group,
ω1 ∧ ∗ωi

ω2 ∧ ∗ωi
...

ω2g ∧ ∗ωi

 =


ω1 ∧ ω1 ω1 ∧ ω2 · · · ω1 ∧ ω2g

ω2 ∧ ω1 ω2 ∧ ω2 · · · ω2 ∧ ω2g
...

...
...

ω2g ∧ ω1 ω2g ∧ ω2 · · · ω2g ∧ ω2g




λi ,1

λi ,2
...

λi ,2g


(12)

We take the integration of each element on both left and right side, and
solve the λij ’s.
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Holomorphic 1-form Basis

In order to reduce the random error, we integrate on the whole mesh,
∫
M ω1 ∧ ∗ωi∫
M ω2 ∧ ∗ωi

...∫
M ω2g ∧ ∗ωi

 =


∫
M ω1 ∧ ω1 · · ·

∫
M ω1 ∧ ω2g∫

M ω2 ∧ ω1 · · ·
∫
M ω2 ∧ ω2g

...
...∫

M ω2g ∧ ω1 · · ·
∫
M ω2g ∧ ω2g




λi ,1

λi ,2
...

λi ,2g


(13)

and solve the linear system to obtain the coefficients.
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Algorithm for Holomorphic 1-form Basis

Input: A set of harmonic 1-form basis ω1, ω2, . . . , ω2g ;
Output: A set of holomorphic 1-form basis ω1, ω2, . . . , ω2g ;

1 Compute the integration of the wedge of ωi and ωj ,
∫
M ω ∧ ωj , using

Eqn. (10);

2 Compute the integration of the wedge of ωi and
∗ωj ,

∫
M ω ∧ ∗ωj ,

using Eqn. (11);

3 Solve linear equation group Eqn. (13), obtain the linear combination
coefficients, get conjugate harmonic 1-forms, ∗ωi =

∑2g
j=1 λijωj

4 Form the holomorphic 1-form basis
{ωi +

√
−1∗ωi , i = 1, 2, . . . , 2g}.
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Holomorphic One-form
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Holomorphic One-form
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Holomorphic One-form
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Cross Fields on Surfaces
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Index Theorem

Theorem (Cross Field Singularity)

Suppose (S , g) is an orientable, closed metric surface. Given a 0-form
θ =

∑n
i=1 λipi , where λi ∈ Z, λi ≤ 2, then θ is the singularity

configuration of a continuous cross field on S , if and only if

n∑
i=1

λi = 4χ(S), (14)

where χ(S) is the Euler characteristic number of the surface, λi is the
index of pi .
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Cross Field Construction Algorithm

Input : Closed Triangle mesh M, singularities θ =
∑

i λipi
Output: Cross field σ with prescribed singularities θ

1 Set target curvature K̄i = λiπ/2;

2 Compute a flat metric ḡ with target curvature using Ricci flow;

3 Choose a base point q ∈ S \ {pi}, compute the generators of
fundamental group {γ1, γ2, . . . , γ2g};

4 Parallel transport a fixed cross c at the base point q along γi ’s to
compute the holonomy βk ;

5 Compute harmonic 1-form basis of H1
dR(M,R)

{ω1, ω2, . . . , ω2g−1, ω2g}, such that
∫
γi
ωj = δji ;

6 Construct a harmonic 1-form ω =
∑

i βiωi ;
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Cross Field Construction Algorithm

For each vertex vi ∈ M

1 Find a path γ ⊂ S \ {qi} from q to vi ;

2 Parallel transport c along γ to obtain c ′;
3 Rotate c ′ by angle

∫
γ ω clockwisely;
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Singularities on a Topological Torus

Smooth cross fields on genus one closed surfaces with two singularities.
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Singularities on a Topological Torus

Smooth cross fields on surfaces.
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Singularities on a Topological Torus

Smooth cross fields on surfaces.
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Thanks

For more information, please email to gu@cs.stonybrook.edu.

Thank you!
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