# Differential Geometry for Mesh Generation II 

David Gu<br>Computer Science Department<br>Applied Mathematics Department<br>State University of New York at Stony Brook<br>gu@cs.stonybrook.edu<br>Short Course International Meshing Roundtable<br>SIAM IMR 2024, Baltimore, USA

March 5th, 2024

## Cross Field Construction

This part focuses on the construction of cross fields on surfaces, using Hodge decomposition and surface Ricci flow.

## Simplicial Homology and Cohomology Group

## Triangular mesh

## Definition (triangular mesh)

A triangular mesh is a surface $\Sigma$ with a triangulation $T$,
(1) Each face is counter clockwisely oriented with respect to the normal of the surface.
(2) Each edge has two opposite half-edges.


## Simplicial Complex

## Definition (Simplicial Complex)

Suppose $k+1$ points in the general positions in $\mathbb{R}^{n}, v_{0}, v_{1}, \cdots, v_{k}$, the standard simplex $\left[v_{0}, v_{1}, \cdots, v_{k}\right]$ is the minimal convex set including all of them,

$$
\sigma=\left[v_{0}, v_{1}, \cdots, v_{k}\right]=\left\{x \in \mathbb{R}^{n} \mid x=\sum_{i=0}^{k} \lambda_{i} v_{i}, \sum_{i=0}^{k} \lambda_{i}=1, \lambda_{i} \geq 0\right\}
$$

we call $v_{0}, v_{1}, \cdots, v_{k}$ as the vertices of the simplex $\sigma$.
Suppose $\tau \subset \sigma$ is also a simplex, then we say $\tau$ is a facet of $\sigma$.


Figure: Simplex

## Simplicial Complex

## Definition (Simplicial complex)

A simplicial complex $\Sigma$ is a union of simplices, such that
(1) If a simplex $\sigma$ belongs to $\Sigma$, then all its facets also belongs to $\Sigma$.
(2) If $\sigma_{1}, \sigma_{2} \subset \Sigma, \sigma_{1} \cap \sigma_{2} \neq \emptyset$, then their intersection is also a common facet.


Figure: Simplicial complex.

## Chain Space

## Definition (Chain Space)

A $k$ chain is a linear combination of all $k$-simplicies in $\Sigma$, $\sigma=\sum_{i} \lambda_{i} \sigma_{i}, \lambda_{i} \in \mathbb{Z}$. The $k$ dimensional chain space is the linear space formed by all $k$-chains, denoted as $C_{k}(\Sigma, \mathbb{Z})$.

A curve on the mesh is a 1-chain, a surface patch is a 2-chain.


## Boundary Operator

## Definition (Boundary Operator)

The $n$-th dimensional boundary operator $\partial_{n}: C_{n} \rightarrow C_{n-1}$ is a linear operator, such that

$$
\partial_{n}\left[v_{0}, v_{1}, v_{2}, \cdots, v_{n}\right]=\sum_{i}(-1)^{i}\left[v_{0}, v_{1}, \cdots, v_{i-1}, v_{i+1}, \cdots, v_{n}\right] .
$$

Boundary operator extracts the boundary of a chain.


## Boundary Operator



Figure: Boundary operator.

## Closed Chains

## Definition (closed chain)

A $k$-chain $\gamma \in C_{k}(\sigma)$ is called a closed $k$-chain, if $\partial_{k} \gamma=0$.
A closed 1-chain is a loop. A non-closed 1-chain has boundary vertices.


## Exact Chains

## Definition (Exact Chain)

A $k$-chain $\gamma \in C_{k}(\sigma)$ is called an exact $k$-chain, if there exists a $(k+1)$ chain $\sigma$, such that $\partial_{k+1} \sigma=\gamma$.

exact 1-chain

closed, non-exact 1-chain

## Boundary of Boundary

## Theorem (Boundary of Boundary)

The boundary of a boundary is empty

$$
\partial_{k} \circ \partial_{k+1} \equiv \emptyset .
$$

namely, exact chains are closed. But the reverse is not true.


## Homology

The difference between the closed chains and the exact chains indicates the topology of the surfaces.
(1) Any closed 1-chain on genus zero surface is exact.
(2) On tori, some closed 1-chains are not exact.


## Homology Group

Closed $k$-chains form the kernel space of the boundary operator $\partial_{k}$. Exact $k$-chains form the image space of $\partial_{k+1}$.

## Definition (Homology Group)

The $k$ dimensional homology group $H_{k}(\Sigma, \mathbb{Z})$ is the quotient space of $k e r \partial_{k}$ and the image space of $i m g \partial_{k+1}$.

$$
H_{k}(\Sigma, \mathbb{Z})=\frac{k e r \partial_{k}}{i m g \partial_{k+1}}
$$

Two $k$-chains $\gamma_{1}, \gamma_{2}$ are homologous, if they boundary a $(k+1)$-chain $\sigma$,

$$
\gamma_{1}-\gamma_{2}=\partial_{k+1} \sigma
$$

## Homological Classes



$$
\partial \Sigma_{1}=\gamma_{1}-\gamma_{2}, \quad \partial \Sigma_{2}=\gamma_{3}-\gamma_{1}+\gamma_{2}, \quad \partial \Sigma_{3}=-\gamma_{3} .
$$

$\gamma_{1}$ and $\gamma_{2}$ are not homotopic but homological; $\gamma_{3}$ is not homotopic to $e$, but homological to $0 ; \gamma_{3}$ is homological to $\gamma_{1}-\gamma_{2}$.

## Homology vs. Homotopy

## Abelianization

The first fundamental group in general is non-abelian. The first homology group is the abelianization of the fundamental group.

$$
H_{1}(\Sigma)=\pi_{1}(\Sigma) /\left[\pi_{1}(\Sigma), \pi_{1}(\Sigma)\right]
$$

where $\left[\pi_{1}(\Sigma), \pi_{1}(\Sigma)\right]$ is the commutator of $\pi_{1}$,

$$
\left[\gamma_{1}, \gamma_{2}\right]=\gamma_{1} \gamma_{2} \gamma_{1}^{-1} \gamma_{2}^{-1}
$$

Fundamental group encodes more information than homology group, but more difficult to compute.

## Homology vs. Homotopy

Homotopy group is non-abelian, which encodes more information than homology group.


- in homotopy group $\pi_{1}(S, q), \gamma \sim[a, b]$,
- in homology group $H_{1}(S, \mathbb{Z}), \gamma \sim 0$.


## Poincaré Duality



Figure: Poincaré Duality.

## Poincaré Duality

Given a triangulated manifold $T$, there is a corresponding dual polyhedral decomposition $T^{*}$, which is a cell decomposition of the manifold such that the $k$-cells of $T^{*}$ are in bijective correspondence with the ( $n-k$ )-cells of $T$.
Let $\sigma$ be a simplex of $T$. Let $\Delta$ be a top-dimensional simplex of $T$ containing $\sigma$, so we can think of $\sigma$ as a subset of the vertices of $\Delta$. Define the dual cell $\sigma^{*}$ corresponding to $\sigma$ so that $\Delta \cap \sigma^{*}$ is the convex hull in $\Delta$ of the barycentres of all subsets of the vertices of $\Delta$ that contain $\sigma$.


## Homology Group

## Theorem

Suppose $M$ is a $n$ dimensional closed manifold, then $H_{k}(M, \mathbb{Z}) \cong H_{n-k}(M, \mathbb{Z})$.

## Proof.

The intersection map $C_{k}(T) \times C_{n-K}(T) \rightarrow \mathbb{Z}$ gives an isomorphism $C_{k}(T) \rightarrow C^{n-k}\left(T^{*}\right)$.

## Theorem

Suppose $M$ is a genus $g$ closed surface, then $H_{0}(M, \mathbb{Z}) \cong \mathbb{Z}$, $H_{1}(M, \mathbb{Z}) \cong \mathbb{Z}^{2 g}, H_{2}(M, \mathbb{Z}) \cong \mathbb{Z}$.

If $H_{0}(M, \mathbb{Z})=\mathbb{Z}^{k}$, then $M$ has $k$ connected components.

## Computation for Homology Basis

Each boundary operator: $\partial_{k}: C_{k} \rightarrow C_{k-1}$ is a linear map between linear spaces $C_{k}$ and $C_{k-1}$, therefore it can be represented as a integer matrix. Suppose there are $n_{k} k$-simplexes of $\Sigma,\left\{\sigma_{1}^{k}, \sigma_{2}^{k}, \ldots, \sigma_{n_{k}}^{k}\right\}$.

$$
C_{k}=\left\{\sum_{i=1}^{n_{k}} \lambda_{i} \sigma_{i}^{k}\right\} .
$$

## Boundary Matrix

The boundary matrix is defined as: $\partial_{k}=\left(\left[\sigma_{i}^{k-1}, \sigma_{j}^{k}\right]\right)$, where

$$
\left[\sigma_{i}^{k-1}, \sigma_{j}^{k}\right]= \begin{cases}+1 & +\sigma_{i}^{k-1} \in \partial_{k} \sigma_{j}^{k} \\ -1 & -\sigma_{i}^{k-1} \in \partial_{k} \sigma_{j}^{k} \\ 0 & \sigma_{i}^{k-1} \notin \partial_{k} \sigma_{j}^{k}\end{cases}
$$

## Computation for Homology Basis

## Cominatorial Laplace Operator

Construct linear operator $\Delta_{k}: C_{k} \rightarrow C_{k}$,

$$
\Delta_{k}:=\partial_{k}^{T} \partial_{k}+\partial_{k+1} \partial_{k+1}^{T}
$$

the eigen vectors of zero eigen values of $\Delta_{k}$ form the basis of $H_{k}(M, \mathbb{Z})$.

## Smith Norm

The eigen vectors can be found using Smith norm of integer matrix. The computational cost is very high.

## Simplicial Cohomology Group



Figure: 1-Cochain.

## Simplicial Cohomology Group



Figure: 1-Cochain.

## Simplicial Cohomology Group

## Definition (Cochain Space)

A $k$-cochain is a linear function

$$
\omega: C_{k} \rightarrow \mathbb{Z}
$$

The $k$ cochain space $C^{k}(\Sigma, \mathbb{Z})$ is a linear space formed by all the linear functionals defined on $C_{k}(\Sigma, \mathbb{Z})$. A $k$-cochain is also called a $k$-form.

## Definition (Coboundary)

The coboundary operator $\delta_{k}: C^{k}(\Sigma, \mathbb{Z}) \rightarrow C^{k+1}(\Sigma, \mathbb{Z})$ is a linear operator, such that

$$
\delta_{k} \omega:=\omega \circ \partial_{k+1}, \omega \in C^{k}(\Sigma, \mathbb{Z})
$$

## Simplicial Cohomology Group

## Example

$M$ is a 2 dimensional simplicial complex, $\omega$ is a 1 -form, then $\delta_{1} \omega$ is a 2-form, such that

$$
\begin{aligned}
\delta_{1} \omega\left(\left[v_{0}, v_{1}, v_{2}\right]\right) & =\omega\left(\partial_{2}\left[v_{0}, v_{1}, v_{2}\right]\right) \\
& =\omega\left(\left[v_{0}, v_{1}\right]\right)+\omega\left(\left[v_{1}, v_{2}\right]\right)+\omega\left(\left[v_{2}, v_{0}\right]\right)
\end{aligned}
$$

## Cohomology

Coboundary operator is similar to differential operator. $\delta_{0}$ is the gradient operator, $\delta_{1}$ is the curl operator.

## Definition (closed forms)

A $k$-form is closed, if $\delta_{k} \omega=0$.

## Definition (Exact forms)

A $k$-form is exact, if there exists a $k-1$ form $\sigma$, such that

$$
\omega=\delta_{k-1} \sigma
$$

## Cohomology

suppose $\omega \in C^{k}(\Sigma), \sigma \in C_{k}(\Sigma)$, we denote the pair

$$
\langle\omega, \sigma\rangle:=\omega(\sigma)
$$

## Theorem (Stokes)

$$
\langle d \omega, \sigma\rangle=\langle\omega, \partial \sigma\rangle .
$$

Theorem

$$
\delta^{k} \circ \delta^{k-1} \equiv 0
$$

All exact forms are closed. The curl of gradient is zero.

## Cohomology

The difference between exact forms and closed forms indicates the topology of the manifold.

## Definition (Cohomology Group)

The $k$-dimensional cohomology group of $\Sigma$ is defined as

$$
H^{n}(\Sigma, \mathbb{Z})=\frac{\operatorname{ker} \delta^{n}}{i m g \delta^{n-1}}
$$

Two 1-forms $\omega_{1}, \omega_{2}$ are cohomologous, if they differ by a gradient of a 0 -form $f$,

$$
\omega_{1}-\omega_{2}=\delta_{0} f
$$

## Homology vs. Cohomology

## Duality

$H_{1}(\Sigma)$ and $H^{1}(\Sigma)$ are dual to each other. suppose $\omega$ is a closed 1-form, $\sigma$ is a closed 1 -chain, then the pair $\langle\omega, \sigma\rangle$ is a bilinear operator.

## Definition (dual cohomology basis)

suppose a homology basis of $H_{1}(\Sigma)$ is $\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right\}$, the dual cohomology basis is $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right\}$, if and only if

$$
\left\langle\omega_{i}, \gamma_{j}\right\rangle=\delta_{i}^{j}
$$

Cohomology was introduced by H. Whitney in order to represent stiefel whitney class characteristic class. Prof. Chern learned it from Whitney.

## Algorithm for Cohomology Group

## Algorithm for $H^{1}(M, \mathbb{R})$

Input: A genus $g$ closed triangle mesh $M$;
Output: A set of basis of $H^{1}(M, \mathbb{R})$
(1) Compute a set of basis of $H_{1}(M, \mathbb{Z})$, denoted as

$$
\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{2 g}\right\}
$$

(2) for each $\gamma_{i}$, slice $M$ along $\gamma_{i}$, to obtain a mesh with two boundaries $M_{i}, \partial M_{i}=\gamma_{i}^{+}-\gamma_{i}^{-}$;
(3) set a 0 -form $\tau_{i}$ on $M_{i}$, such that $\tau_{i}(v)=1$ for all $v \in \gamma_{i}^{+}$and $\tau_{i}(w)=0$, for all $w \in \gamma_{i}^{-}$; set $\omega_{i}=d \tau_{i}$;
(9) All $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{2 g}\right\}$ form a basis of $H^{1}(M, \mathbb{R})$.

## Hodge Decomposition

## Discrete Hodge Operator



Cotangent edge weight:

$$
\begin{equation*}
w_{i j}=\frac{1}{2}(\cot \alpha+\cot \beta) \tag{1}
\end{equation*}
$$

## Dual Mesh



Poincaré's duality, equivalent to Delaunay triangulation and Voronoi diagram. The Delaunay triangulation is the primal mesh, the Voronoi diagram is the dual mesh.

## Duality

$$
0-\text { form } \eta
$$

$$
1-\text { form } \omega
$$

$$
|v|=1
$$

$$
\frac{\eta(v)}{|v|}=\frac{{ }^{*} \eta\left({ }^{*} v\right)}{\left|{ }^{*} v\right|}
$$



$$
\frac{\omega(e)}{|e|}=\frac{\left.{ }^{*} \omega^{*} e\right)}{\left|{ }^{*} e\right|}
$$

$$
\frac{\Omega(f)}{|f|}=\frac{\left.{ }^{*} \Omega^{*} f\right)}{\left|{ }^{*} f\right|}
$$



## Discrete Operator

## Discrte Codifferential Operator

The codifferential operator $\delta: \Omega^{p} \rightarrow \Omega^{p-1}$ on an $n$-dimensional manifold,

$$
\delta:=(-1)^{n(p+1)+1 *} d^{*} .
$$

## Discrte Hodge star operator

$$
{ }^{* *}: \Omega^{p} \rightarrow \Omega^{p},
$$

$$
{ }^{* *}:=(-1)^{(n-p) p}
$$

$$
\frac{\omega(e)}{|e|}=\frac{{ }^{*} \omega\left({ }^{*} e\right)}{\left|{ }^{*} e\right|}=\frac{{ }^{* *} \omega\left({ }^{* *} e\right)}{\left|{ }^{* *} e\right|}=\frac{{ }^{* *} \omega(-e)}{|-e|}=-\frac{{ }^{* *} \omega(e)}{|e|}
$$

Therefore ${ }^{* *} \omega(e)=-\omega(e)$, this verifies when $n=2, p=1,{ }^{* *}=-1$.

## Harmonic 1-form

## Definition (Harmonic 1-form)

Suppose $\omega$ is a 1 -form, $\omega$ is harmonic iff

$$
d \omega=0, \quad \delta \omega=0
$$

## Dual Mesh



## Theorem (Hodge Decomposition)

Suppose $\omega$ is a one-form on the prime mesh, it has the unique decomposition:

$$
\omega=d \eta+\delta \Omega+h
$$

where $\eta$ is a 0 -form, $\Omega$ a 2-form and $h$ a harmonic one-form.

## Discrete Harmonic One-form


compute $d \omega$,

$$
d \omega=d^{2} \eta+d \delta \Omega+d h=d \delta \Omega, \quad \Omega=(d \delta)^{-1}(d \omega)
$$

## $\delta^{2}$ operator

## Lemma

The operator $\delta^{2}: \Omega^{2} \rightarrow \Omega^{1}$ on a surface, has the following formula:

$$
\begin{equation*}
\delta^{2} \Omega\left(\left[v_{i}, v_{j}\right]\right)=\frac{1}{w_{i j}}\left(\frac{\Omega\left(f_{\Delta}\right)}{\left|f_{\Delta}\right|}-\frac{\Omega\left(f_{k}\right)}{\left|f_{k}\right|}\right) \tag{2}
\end{equation*}
$$

## Proof.

$$
\begin{gather*}
\delta^{2}=(-1)^{n(p+1)+1 *} d^{*}=(-1)^{1}\left({ }^{*} d^{0 *}\right) \\
\delta^{2} \Omega\left(\left[v_{i}, v_{j}\right]\right)=(-1)\left({ }^{*} d^{0 *}\right) \Omega\left(\left[v_{i}, v_{j}\right]\right)  \tag{3}\\
\frac{\left({ }^{*} d^{0 *}\right) \Omega\left(\left[v_{i}, v_{j}\right]\right)}{\left|\left[v_{i}, v_{j}\right]\right|}=\frac{\left({ }^{* *} d^{0 *}\right) \Omega\left({ }^{*}\left[v_{i}, v_{j}\right]\right)}{\left|*\left[v_{i}, v_{j}\right]\right|}=-\frac{\left(d^{0 *}\right) \Omega\left(\left[{ }^{*} f_{k},{ }^{*} f_{\Delta}\right]\right)}{\left|\left[{ }^{*} f_{k},{ }^{*} f_{\Delta}\right]\right|}
\end{gather*}
$$

## $\delta^{2}$ operator

## Proof.

$$
\begin{align*}
& -\frac{\left(d^{0} *\right) \Omega\left(\left[{ }^{*} f_{k},{ }^{*} f_{\Delta}\right]\right)}{\left|\left[{ }^{*} f_{k},{ }^{*} f_{\Delta}\right]\right|}=-\frac{{ }^{*} \Omega\left(\partial_{1}\left[{ }^{*} f_{k},{ }^{*} f_{\Delta}\right]\right)}{\left|\left[{ }^{*} f_{k},{ }^{*} f_{\Delta}\right]\right|}=-\frac{{ }^{*} \Omega\left({ }^{*} f_{\Delta}-{ }^{*} f_{k}\right)}{\left|\left[{ }^{*} f_{k},{ }^{*} f_{\Delta}\right]\right|}  \tag{4}\\
= & -\frac{{ }^{*} \Omega\left({ }^{*} f_{\Delta}\right)-{ }^{*} \Omega\left({ }^{*} f_{k}\right)}{\left|\left[{ }^{*} f_{k},{ }^{*} f_{\Delta}\right]\right|} \\
& \frac{\Omega\left(f_{\Delta}\right)}{\left|f_{\Delta}\right|}=\frac{{ }^{*} \Omega\left({ }^{*} f_{\Delta}\right)}{\left|{ }^{*} f_{\Delta}\right|}={ }^{*} \Omega\left({ }^{*} f_{\Delta}\right), \frac{\Omega\left(f_{k}\right)}{\left|f_{k}\right|}=\frac{{ }^{*} \Omega\left({ }^{*} f_{k}\right)}{\left|{ }^{*} f_{k}\right|}={ }^{*} \Omega\left({ }^{*} f_{k}\right), \tag{5}
\end{align*}
$$

Plug (5) into (4), then plug (4) to (3), obtain the formula (2).

## Discrete Harmonic One-form



$$
\begin{aligned}
& \delta \Omega\left(\left[v_{i}, v_{j}\right]\right) \\
= & (-1)\left({ }^{*} d^{*}\right) \Omega\left(\left[v_{i}, v_{j}\right]\right) \\
= & (-1)\left(d^{*} \Omega\right)\left({ }^{*}\left[v_{i}, v_{j}\right]\right) \frac{1}{w_{i j}}(-1) \\
= & \frac{1}{w_{i j}}\left(d^{*} \Omega\right)\left(\left[{ }^{*} f_{k},{ }^{*} f_{\Delta}\right]\right) \\
= & \frac{1}{w_{i j}}\left({ }^{*} \Omega\right)\left(\partial\left[{ }^{*} f_{k},{ }^{*} f_{\Delta}\right]\right) \\
= & \frac{1}{w_{i j}}\left\{{ }^{*} \Omega\left({ }^{*} f_{\Delta}\right)-{ }^{*} \Omega\left({ }^{*} f_{k}\right)\right\} \\
= & \frac{1}{w_{i j}}\left\{\frac{\Omega\left(f_{\Delta}\right)}{\left|f_{\Delta}\right|}-\frac{\Omega\left(f_{k}\right)}{\left|f_{k}\right|}\right\}
\end{aligned}
$$

## Discrete Harmonic One-form



$$
\delta \Omega\left(\left[v_{i}, v_{j}\right]\right)=\frac{1}{w_{i j}}\left\{\frac{\Omega\left(f_{\Delta}\right)}{\left|f_{\Delta}\right|}-\frac{\Omega\left(f_{k}\right)}{\left|f_{k}\right|}\right\}
$$

For each face $\Delta$, we have the equation $d \omega(\Delta)=\omega(\partial \Delta)=d \delta \Omega(\Delta)$,

$$
\begin{equation*}
\omega(\partial \Delta)=\frac{F_{i}-F_{\Delta}}{w_{j k}}+\frac{F_{j}-F_{\Delta}}{w_{k i}}+\frac{F_{k}-F_{\Delta}}{w_{i j}} \tag{6}
\end{equation*}
$$

where $F_{i}=-\frac{\Omega\left(f_{i}\right)}{\left|f_{i}\right|}$ 's are 2-forms, $\omega$ is 1-form, $w_{i j}$ 's are cotangent edge weights.

## Discrete Harmonic One-form



For each boundary face $\Delta$, we have the equation

$$
\begin{equation*}
d \omega(\Delta)=\omega(\partial \Delta)=\frac{F_{i}-F_{\Delta}}{w_{j k}}+\frac{F_{j}-F_{\Delta}}{w_{k i}}+\frac{0-F_{\Delta}}{w_{i j}} \tag{7}
\end{equation*}
$$

## Discrete Harmonic One-form


compute $\delta \omega$,

$$
\delta \omega=\delta d \eta+\delta^{2} \Omega+\delta h=\delta d \eta, \quad \eta=(\delta d)^{-1}(\delta \omega)
$$

## Discrete Harmonic One-form

## Lemma

Suppose $\delta^{1}: \Omega^{1} \rightarrow \Omega^{0}$ on a surface, then

$$
\delta^{1} \omega\left(v_{i}\right)=(-1) \frac{1}{\left|{ }^{*} v_{i}\right|} \sum_{j} w_{i j} \omega\left(\left[v_{i}, v_{j}\right]\right)
$$

## Proof.

$$
\begin{aligned}
\delta^{1} & =(-1)^{n(p+1)+1 *} d^{*}=(-1)^{2(1+1)+1 *} d^{1 *}=(-1)^{*} d^{1 *} \\
\delta^{1} \omega\left(v_{i}\right) & =(-1)(* d *) \omega\left(v_{i}\right)=(-1) * \underline{\left(d^{1} *\right) \omega}\left(\left(v_{i}\right)_{0}\right)=(-1) \frac{1}{\left|* v_{i}\right|}\left(d^{1} *\right) \omega\left(\left(* v_{i}\right)_{2}\right) \\
& =(-1) \frac{1}{\left|* v_{i}\right|} d^{1} \underline{(* \omega)}\left(* v_{i}\right)=(-1) \frac{1}{\left|* v_{i}\right| \frac{1}{}(* \omega)}\left(\partial_{2}\left({ }^{*} v_{i}\right)\right) \\
& =(-1) \frac{1}{\left|* v_{i}\right|} \sum_{j} \underline{(* \omega)}\left(*\left[v_{i}, v_{j}\right]\right)=(-1) \frac{1}{\left|* v_{i}\right|} \sum_{j}(* \underline{\omega})\left(*\left[v_{i}, v_{j}\right]\right) \\
& =(-1) \frac{1}{\left|* v_{i}\right|} \sum_{j} w_{i j} \omega\left(\left[v_{i}, v_{j}\right]\right)
\end{aligned}
$$

## Discrete Harmonic One-form

$$
\begin{aligned}
& \delta \omega\left(v_{i}\right) \\
= & (-1)\left({ }^{*} d^{*}\right) \omega\left(v_{i}\right) \\
= & (-1)\left(d^{*} \omega\right)\left({ }^{*} v_{i}\right) \frac{1}{\left|{ }^{*} v_{i}\right|} \\
= & (-1)\left({ }^{*} \omega\right)\left(\partial^{*} v_{i}\right) \frac{1}{\left|{ }^{*} v_{i}\right|} \\
= & (-1) \sum_{j}\left({ }^{*} \omega\right)\left({ }^{*} e_{i j}\right) \frac{1}{\left|{ }^{*} v_{i}\right|} \\
= & (-1) \frac{1}{\left|{ }^{*} v_{i}\right|} \sum_{j} w_{i j} \omega\left(e_{i j}\right)
\end{aligned}
$$

## Discrete Harmonic One-form



$$
\delta \omega\left(v_{i}\right)=(-1) \frac{1}{\left|{ }^{*} v_{i}\right|} \sum_{j} w_{i j} \omega\left(e_{i j}\right)
$$

For each vertex $v_{i}$, we obtain an equation $\delta \omega\left(v_{i}\right)=\delta d \eta\left(v_{i}\right)$,

$$
\begin{equation*}
\sum_{v_{i} \sim v_{j}} w_{i j} \omega\left(\left[v_{i}, v_{j}\right]\right)=\sum_{v_{i} \sim v_{j}} w_{i j}\left(\eta_{j}-\eta_{i}\right) \tag{8}
\end{equation*}
$$

where $\eta_{i}$ 's are 0 -forms, $w_{i j}$ 's are cotangent edge weights.

## Discrete Harmonic One-form


for each boundary vertex $v_{i}$, we obtain an equation:

$$
\begin{equation*}
\sum_{j=0}^{n-1} w_{i j} \omega\left(\left[v_{i}, v_{j}\right]\right)-w_{i, n} \omega\left(\left[v_{n}, v_{i}\right]\right)=\sum_{j=0}^{n} w_{i j}\left(\eta_{j}-\eta_{i}\right) \tag{9}
\end{equation*}
$$

## Algorithm for Random Harmonic One-form

Input:A closed genus one mesh $M$;
output: A basis of harmonic one-form group;
(1) Generate a random one form $\omega$, assign each $\omega(e)$ a random number;
(2) Compute cotangent edge weight using Eqn. (1);
(3) Compute the coexact form $\delta F$ using Eqn. (6);
(9) Compute the exact form df using Eqn. (8);
(5) Harmonic 1-form is obtained by $h=\omega-d \eta-\delta \Omega$;

## Wedge Product



Given two one-forms $\omega_{1}$ and $\omega_{2}$ on a triangle mesh $M$, then the 2-form $\omega_{1} \wedge \omega_{2}$ on each face $\Delta=\left[v_{i}, v_{j}, v_{k}\right]$ is evaluated as

$$
\omega_{1} \wedge \omega_{2}(\Delta)=\frac{1}{6}\left|\begin{array}{ccc}
\omega_{1}\left(e_{i}\right) & \omega_{1}\left(e_{j}\right) & \omega_{1}\left(e_{k}\right)  \tag{10}\\
\omega_{2}\left(e_{i}\right) & \omega_{2}\left(e_{j}\right) & \omega_{2}\left(e_{k}\right) \\
1 & 1 & 1
\end{array}\right|
$$

## Wedge Product Formula

## Proof.

Since $\omega_{1}$ and $\omega_{2}$ are linear,

$$
\begin{aligned}
& \int_{\Delta} \omega_{1} \wedge \omega_{2}=\frac{1}{2} \omega_{1} \wedge \omega_{2}\left(e_{i} \times e_{j}\right) \\
= & \frac{1}{6}\left[\omega_{1} \wedge \omega_{2}\left(e_{i} \times e_{j}\right)+\omega_{1} \wedge \omega_{2}\left(e_{j} \times e_{k}\right)+\omega_{1} \wedge \omega_{2}\left(e_{k} \times e_{i}\right)\right] \\
= & \frac{1}{6}\left\{\left|\begin{array}{cc}
\omega_{1}\left(e_{i}\right) & \omega_{1}\left(e_{j}\right) \\
\omega_{2}\left(e_{i}\right) & \omega_{2}\left(e_{j}\right)
\end{array}\right|+\left|\begin{array}{cc}
\omega_{1}\left(e_{j}\right) & \omega_{1}\left(e_{k}\right) \\
\omega_{2}\left(e_{j}\right) & \omega_{2}\left(e_{j}\right)
\end{array}\right|+\left|\begin{array}{cc}
\omega_{1}\left(e_{k}\right) & \omega_{1}\left(e_{i}\right) \\
\omega_{2}\left(e_{k}\right) & \omega_{2}\left(e_{i}\right)
\end{array}\right|\right\} \\
= & \frac{1}{6}\left|\begin{array}{ccc}
\omega_{1}\left(e_{i}\right) & \omega_{1}\left(e_{j}\right) & \omega_{1}\left(e_{k}\right) \\
\omega_{2}\left(e_{i}\right) & \omega_{2}\left(e_{j}\right) & \omega_{2}\left(e_{k}\right) \\
1 & 1 & 1
\end{array}\right|
\end{aligned}
$$

## Wedge Product Formula



Set $f: \Delta \rightarrow \mathbb{R}$,

$$
\left\{\begin{aligned}
f\left(v_{i}\right) & =0 \\
f\left(v_{j}\right) & =\omega\left(e_{k}\right) \\
f\left(v_{k}\right) & =-\omega\left(e_{j}\right)
\end{aligned}\right.
$$

$$
\begin{aligned}
\nabla & f(p)=\frac{1}{2 A}\left(f\left(v_{i}\right) \mathbf{s}_{i}+f\left(v_{j}\right) \mathbf{s}_{j}+f\left(v_{k}\right) \mathbf{s}_{k}\right) \\
\mathbf{w} & =\frac{1}{2 A}\left[\omega\left(e_{k}\right) \mathbf{s}_{j}-\omega\left(e_{j}\right) \mathbf{s}_{k}\right] \\
& =\frac{\mathbf{n}}{2 A} \times\left[\omega\left(e_{k}\right)\left(\mathbf{v}_{i}-\mathbf{v}_{k}\right)-\omega\left(e_{j}\right)\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)\right] \\
& =-\frac{\mathbf{n}}{2 A} \times\left[\omega\left(e_{k}\right) \mathbf{v}_{k}+\omega\left(e_{j}\right) \mathbf{v}_{j}+\omega\left(e_{i}\right) \mathbf{v}_{i}\right]
\end{aligned}
$$

## Wedge Product Formula



$$
\mathbf{w}=\frac{1}{2 A}\left(\omega_{k} \mathbf{s}_{j}-\omega_{j} \mathbf{s}_{k}\right)
$$

$$
\begin{aligned}
\int_{\Delta} \omega_{1} \wedge \omega_{2} & =A\left|\mathbf{w}_{1} \times \mathbf{w}_{2}\right| \\
& =\frac{A}{4 A^{2}}\left(\omega_{k}^{1} \omega_{j}^{2}-\omega_{j}^{1} \omega_{k}^{2}\right)\left|\mathbf{s}_{j} \times \mathbf{s}_{k}\right| \\
& =\frac{1}{2}\left|\begin{array}{cc}
\omega_{k}^{1} & \omega_{j}^{1} \\
\omega_{k}^{2} & \omega_{j}^{2}
\end{array}\right|
\end{aligned}
$$

since $\omega_{i}^{\gamma}+\omega_{j}^{\gamma}+\omega_{k}^{\gamma}=0, \gamma=1,2$, we obtain

$$
\mathbf{w}=\frac{-1}{6 A}\left|\begin{array}{ccc}
\omega_{i} & \omega_{j} & \omega_{k} \\
\mathbf{s}_{i} & \mathbf{s}_{j} & \mathbf{s}_{k} \\
1 & 1 & 1
\end{array}\right|
$$

$$
\int_{\Delta} \omega_{1} \wedge \omega_{2}=\frac{1}{6}\left|\begin{array}{ccc}
\omega_{k}^{1} & \omega_{j}^{1} & \omega_{i}^{1} \\
\omega_{k}^{2} & \omega_{j}^{2} & \omega_{i}^{2} \\
1 & 1 & 1
\end{array}\right|
$$

## Wedge Product



Given two one-forms $\omega_{1}$ and $\omega_{2}$ on a triangle mesh $M$, then the 2-form $\omega_{1} \wedge^{*} \omega_{2}$ on each face $\Delta=\left[v_{i}, v_{j}, v_{k}\right]$ is evaluated as
$\omega_{1} \wedge^{*} \omega_{2}(\Delta)=\frac{1}{2}\left[\cot \theta_{i} \omega_{1}\left(e_{i}\right) \omega_{2}\left(e_{i}\right)+\cot \theta_{j} \omega_{1}\left(e_{j}\right) \omega_{2}\left(e_{j}\right)+\cot \theta_{k} \omega_{1}\left(e_{k}\right) \omega_{2}\left(e_{k}\right)\right]$

## Wedge Product Formula



$$
\begin{aligned}
& \int_{\Delta} \omega_{1} \wedge^{*} \omega_{2}=A\left\langle w_{1}, w_{2}\right\rangle \\
& =\frac{1}{4 A}\left\{\omega_{k}^{1} \omega_{k}^{2}\left\langle s_{j}, s_{j}\right\rangle+\omega_{j}^{1} \omega_{j}^{2}\left\langle s_{k}, s_{k}\right\rangle\right. \\
& \left.-\left(\omega_{k}^{1} \omega_{j}^{2}+\omega_{j}^{1} \omega_{k}^{2}\right)\left\langle s_{j}, s_{k}\right\rangle\right\} \\
& =\frac{1}{4 A}\left\{-\omega_{k}^{1} \omega_{k}^{2}\left\langle s_{j}, s_{i}+s_{k}\right\rangle\right. \\
& -\omega_{j}^{1} \omega_{j}^{2}\left\langle s_{k}, s_{i}+s_{j}\right\rangle \\
& \left.-\left(\omega_{k}^{1} \omega_{j}^{2}+\omega_{j}^{1} \omega_{k}^{2}\right)\left\langle s_{j}, s_{k}\right\rangle\right\}
\end{aligned}
$$

## Wedge Product Formula

$$
\begin{aligned}
& =\frac{1}{4 A}\left\{-\omega_{k}^{1} \omega_{k}^{2}\left\langle s_{j}, s_{i}\right\rangle-\omega_{k}^{1} \omega_{k}^{2}\left\langle s_{j}, s_{k}\right\rangle\right. \\
& -\omega_{j}^{1} \omega_{j}^{2}\left\langle s_{k}, s_{i}\right\rangle-\omega_{j}^{1} \omega_{j}^{2}\left\langle s_{k}, s_{j}\right\rangle \\
& \left.-\left(\omega_{k}^{1} \omega_{j}^{2}+\omega_{j}^{1} \omega_{k}^{2}\right)\left\langle s_{j}, s_{k}\right\rangle\right\} \\
& =-\omega_{k}^{1} \omega_{k}^{2} \frac{\left\langle s_{j}, s_{i}\right\rangle}{4 A}-\omega_{j}^{1} \omega_{j}^{2} \frac{\left\langle s_{k}, s_{i}\right\rangle}{4 A} \\
& -\frac{\left\langle s_{k}, s_{j}\right\rangle}{4 A}\left(\omega_{k}^{1} \omega_{k}^{2}+\omega_{j}^{1} \omega_{j}^{2}+\omega_{k}^{1} \omega_{j}^{2}+\omega_{j}^{1} \omega_{k}^{2}\right) \\
& =-\omega_{k}^{1} \omega_{k}^{2} \frac{\left\langle s_{j}, s_{i}\right\rangle}{4 A}-\omega_{j}^{1} \omega_{j}^{2} \frac{\left\langle s_{k}, s_{i}\right\rangle}{4 A} \\
& -\frac{\left\langle s_{k}, s_{j}\right\rangle}{4 A}\left(\omega_{k}^{1}+\omega_{j}^{1}\right)\left(\omega_{k}^{2}+\omega_{j}^{2}\right) \\
& =-\omega_{k}^{1} \omega_{k}^{2} \frac{\left\langle s_{j}, s_{i}\right\rangle}{4 A}-\omega_{j}^{1} \omega_{j}^{2} \frac{\left\langle s_{k}, s_{i}\right\rangle}{4 A}-\omega_{i}^{1} \omega_{i}^{2} \frac{\left\langle s_{j}, s_{k}\right\rangle}{4 A} \\
& =\frac{1}{2}\left(\omega_{i}^{1} \omega_{i}^{2} \cot \theta_{i}+\omega_{j}^{1} \omega_{j}^{2} \cot \theta_{j}+\omega_{k}^{1} \omega_{\underline{\underline{w}}}^{2} \cot \theta_{k}\right)_{a}
\end{aligned}
$$

## Holomorphic 1-form Basis

Given a set of harmonic 1 -form basis $\omega_{1}, \omega_{2}, \ldots, \omega_{2 g}$; in smooth case, the conjugate 1 -form ${ }^{*} \omega_{i}$ is also harmonic, therefore

$$
{ }^{*} \omega_{i}=\lambda_{i 1} \omega_{1}+\lambda_{i 2} \omega_{2}+\cdots+\lambda_{i, 2 g} \omega_{2 g}
$$

We get linear equation group,

$$
\left(\begin{array}{c}
\omega_{1} \wedge^{*} \omega_{i}  \tag{12}\\
\omega_{2} \wedge^{*} \omega_{i} \\
\vdots \\
\omega_{2 g} \wedge^{*} \omega_{i}
\end{array}\right)=\left(\begin{array}{cccc}
\omega_{1} \wedge \omega_{1} & \omega_{1} \wedge \omega_{2} & \cdots & \omega_{1} \wedge \omega_{2 g} \\
\omega_{2} \wedge \omega_{1} & \omega_{2} \wedge \omega_{2} & \cdots & \omega_{2} \wedge \omega_{2 g} \\
\vdots & \vdots & & \vdots \\
\omega_{2 g} \wedge \omega_{1} & \omega_{2 g} \wedge \omega_{2} & \cdots & \omega_{2 g} \wedge \omega_{2 g}
\end{array}\right)\left(\begin{array}{c}
\lambda_{i, 1} \\
\lambda_{i, 2} \\
\vdots \\
\lambda_{i, 2 g}
\end{array}\right)
$$

We take the integration of each element on both left and right side, and solve the $\lambda_{i j}$ 's.

## Holomorphic 1-form Basis

In order to reduce the random error, we integrate on the whole mesh,

$$
\left(\begin{array}{c}
\int_{M} \omega_{1} \wedge^{*} \omega_{i}  \tag{13}\\
\int_{M} \omega_{2} \wedge^{*} \omega_{i} \\
\vdots \\
\int_{M} \omega_{2 g} \wedge^{*} \omega_{i}
\end{array}\right)=\left(\begin{array}{ccc}
\int_{M} \omega_{1} \wedge \omega_{1} & \cdots & \int_{M} \omega_{1} \wedge \omega_{2 g} \\
\int_{M} \omega_{2} \wedge \omega_{1} & \cdots & \int_{M} \omega_{2} \wedge \omega_{2 g} \\
\vdots & & \vdots \\
\int_{M} \omega_{2 g} \wedge \omega_{1} & \cdots & \int_{M} \omega_{2 g} \wedge \omega_{2 g}
\end{array}\right)\left(\begin{array}{c}
\lambda_{i, 1} \\
\lambda_{i, 2} \\
\vdots \\
\lambda_{i, 2 g}
\end{array}\right)
$$

and solve the linear system to obtain the coefficients.

## Algorithm for Holomorphic 1-form Basis

Input: A set of harmonic 1-form basis $\omega_{1}, \omega_{2}, \ldots, \omega_{2 g}$;
Output: A set of holomorphic 1-form basis $\omega_{1}, \omega_{2}, \ldots, \omega_{2 g}$;
(1) Compute the integration of the wedge of $\omega_{i}$ and $\omega_{j}, \int_{M} \omega \wedge \omega_{j}$, using Eqn. (10);
(2) Compute the integration of the wedge of $\omega_{i}$ and ${ }^{*} \omega_{j}, \int_{M} \omega \wedge^{*} \omega_{j}$, using Eqn. (11);
(3) Solve linear equation group Eqn. (13), obtain the linear combination coefficients, get conjugate harmonic 1-forms, ${ }^{*} \omega_{i}=\sum_{j=1}^{2 g} \lambda_{i j} \omega_{j}$
(9) Form the holomorphic 1-form basis $\left\{\omega_{i}+\sqrt{-1}^{*} \omega_{i}, \quad i=1,2, \ldots, 2 g\right\}$.

## Holomorphic One-form



## Holomorphic One-form



## Holomorphic One-form



## Cross Fields on Surfaces

## Index Theorem

## Theorem (Cross Field Singularity)

Suppose $(S, \mathbf{g})$ is an orientable, closed metric surface. Given a 0 -form $\theta=\sum_{i=1}^{n} \lambda_{i} p_{i}$, where $\lambda_{i} \in \mathbb{Z}, \lambda_{i} \leq 2$, then $\theta$ is the singularity configuration of a continuous cross field on $S$, if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}=4 \chi(S) \tag{14}
\end{equation*}
$$

where $\chi(S)$ is the Euler characteristic number of the surface, $\lambda_{i}$ is the index of $p_{i}$.

## Cross Field Construction Algorithm

Input: Closed Triangle mesh $M$, singularities $\theta=\sum_{i} \lambda_{i} p_{i}$
Output: Cross field $\sigma$ with prescribed singularities $\theta$
(1) Set target curvature $\bar{K}_{i}=\lambda_{i} \pi / 2$;
(2) Compute a flat metric $\overline{\mathbf{g}}$ with target curvature using Ricci flow;
(3) Choose a base point $q \in S \backslash\left\{p_{i}\right\}$, compute the generators of fundamental group $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{2 g}\right\}$;
(9) Parallel transport a fixed cross $c$ at the base point $q$ along $\gamma_{i}$ 's to compute the holonomy $\beta_{k}$;
(9) Compute harmonic 1-form basis of $H_{d R}^{1}(M, \mathbb{R})$ $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{2 g-1}, \omega_{2 g}\right\}$, such that $\int_{\gamma_{i}} \omega_{j}=\delta_{i}^{j} ;$
(0) Construct a harmonic 1-form $\omega=\sum_{i} \beta_{i} \omega_{i}$;

## Cross Field Construction Algorithm

For each vertex $v_{i} \in M$
(1) Find a path $\gamma \subset S \backslash\left\{q_{i}\right\}$ from $q$ to $v_{i}$;
(2) Parallel transport $c$ along $\gamma$ to obtain $c^{\prime}$;
(3) Rotate $c^{\prime}$ by angle $\int_{\gamma} \omega$ clockwisely;

## Singularities on a Topological Torus



Smooth cross fields on genus one closed surfaces with two singularities.

## Singularities on a Topological Torus



Smooth cross fields on genus one closed surfaces with two singularities.

## Singularities on a Topological Torus



Smooth cross fields on surfaces.

## Singularities on a Topological Torus



Smooth cross fields on surfaces.

## Singularities on a Topological Torus



Smooth cross fields on surfaces.

## Singularities on a Topological Torus



Smooth cross fields on surfaces.

## Singularities on a Topological Torus



Smooth cross fields on surfaces.

## References

- Na Lei, Yiming Zhu, Xiaopeng Zheng, Hang Si, Xianfeng Gu, Why Cross Fields Are Not Equivalent to Quadrilateral Meshes, CMAME, Accepted, 2023.
DOI: http://dx.doi.org/10.2139/ssrn. 4460747.
- Xianfeng Gu and Shing-Tung Yau. Global Conformal Surface Parameterization. First Eurographics Symposium on Geometry Processing (SGP03), Pages:127-137, Aachen, Germany, June 23-25, 2003.
- Wei Zeng, Xianfeng Gu, Ricci Flow for Shape Analysis and Surface Registration - Theories, Algorithms and Applications, Series Springer Briefs in Mathematics, Publisher: Springer New York, ISBN 978-1-4614-8780-7, 2013.


## Thanks

For more information, please email to gu@cs.stonybrook.edu.


## Thank you!

