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Surface Mesh Generation

Motivation for Meshing

Surface mesh generation plays a fundamental role in many engineering and
medical fields, specially CAD, CAE and CAM fields. Despite tens of years
of intensive research, there are still remain many challenges.

Central Challenges

© How to generate high quality meshes on surfaces with complicated
topologies and geometric features?

@ How to generate anisotropic meshes?

© How to generate structured quadrilateral meshes (hexahedral meshes
for solids)?
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Planar Mesh Generation

Planar Mesh Generation

Mesh generation on planar domain is relatively mature. There are many
existing algorithms can produce good quality meshes, such as Delaunay
refinement algorithm, Chew's second algorithm (30°), Ruppert’s algorithm
(20.7°), Centroidal Voronoi Tessellation algorithm and so on. These
algorithms can guarantee the minimal angle has specific lower bounds.

Figure: Ruppert’'s Delaunay refinement algorithm.
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Surface Mesh Generation

Surface Mesh Generation

Surfaces generation is much more difficult due to their complicated
topologies and geometries. There are still many theoretic problems, open
for tens of years.

Figure: Meshing for a kitten model.
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Surface Mesh Generation - Key Idea

Problem (Surface Meshing)

How to generate high quality triangle meshes on surfaces with complicated
topology and geometry ?

v

Key Idea
Find a special diffeomorphism ¢ : (S,g) — € maps the 3D surface onto a
planar domain, and converts the 3D meshing problem to a 2D planar
meshing problem.

A\
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Surface Mesh Generation - Key Idea

Key Idea

Find a special diffeomorphism ¢ : (S,g) — Q maps the 3D surface onto a
planar domain, and converts the 3D meshing problem to a 2D planar
meshing problem.

Figure: 3D meshing problems are converted to 2D meshing ones.
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Special Mappings

Special Mappings

@ Angle preserving maps: keep the minimal angles;
@ Area preserving maps: keep the grading;
@ impossible to keep both, otherwise it is isometric.

Figure: Conformal and optimal transport maps.
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Special Mappings

Special Mappings

@ Both can not be solved using conventional FEM;
@ Both can be solved using geometric variational methods;
@ Both do not require good initial meshes.

Figure: Conformal and optimal transport maps.

David Gu (IMR 2024) Surface Meshing by Differential Geometry March 5th, 2024



Conformal Mapping

Figure: Gallery (Escher).
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Conformal Mapping

Figure: Gallery (Escher).
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Conformal Mapping

Figure: Gallery (Escher).
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Conformal Mapping
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Biholomorphic Function

Definition (holomorphic Function)

Suppose a complex function f : C — C, f : z+— w is holomorphic, if it
satisfies the Cauchy-Riemann equation:

ou Ov ou ov

ax dy’ 9y  ox

where z = x + iy and w = u + iv. If f is inevitable, and 1 is also
holomorphic, then f is biholomorphic.

Planar conformal maps are biholomorphic functions.
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Conformal Mapping

Figure: Planar conformal map, local shape preserving.
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Conformal Mapping

Definition (Conformal Mapping)

Suppose ¢ : (S,g) — (T,h) is a C! mapping, if the pull back metric p*h
satisfies the condition

¢*h = g,

where A : S — R is the conformal factor, then ¢ is a conformal map.

Figure: Angle preserving property.
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Conformal Mapping

Figure: Angle preserving property.
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Disk Harmonic Maps
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Conformal Mapping

Figure: Infinitesimal circle preserving property.
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Discrete Surface Ricci Flow J
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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates
A surface X~ with a Riemannian

metric g, a local coordinate system \ =
(u, v) is an isothermal coordinate
system, if 331

g = 2V (du? + dv?).

.

David Gu (IMR 2024) Surface Meshing by Differential Geometry March 5th, 2024 21/88



Gaussian Curvature

Gaussian Curvature

Under the isothermal coordinates, the Riemannian metric is
g = 2 (du? + dv?), then the Gaussian curvature on interior points are
K=—-A,)\= L A
= —QAg) = 2 A,

where ) )

0 0

A= —+—
ou?  Ov2
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Conformal Metric Deformation

Definition
Suppose X is a surface with a
Riemannian metric,

g = ( 811 812 )
821 822
Suppose A : ¥ — R is a function
defined on the surface, then e**g is
also a Riemannian metric on ¥ and

called a conformal metric. A is called
the conformal factor.

Angles are invariant measured by

g —e’g .
conformal metrics.

Conformal metric deformation. )
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Curvature and Metric Relations

Yamabi Equation

Suppose g = e?*g is a conformal metric on the surface, then the Gaussian
curvature on interior points are

K = e 2 (—Ag) + K),

geodesic curvature on the boundary

ke = €M —=0n) + kg).
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Theorem (Poincaré Uniformization Theorem)

Let (X,8) be a compact 2-dimensional Riemannian manifold. Then there
is a metric § = e*g conformal to g which has constant Gauss curvature.
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Surface Uniformization

Figure: Closed surface uniformization.
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Surface Uniformization

Figure: Open surface uniformization.
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Surface Ricci Flow

Proposition
During the curvature flow < dt = —K, then
9y —2K? 4 AgK
dt g
( 72)\A)\)
( ) e—2>\A)\ —2>\A dA
dt
d\ d\
= —2—=)|—e P AN - |ePA "
d>\ dA
- ( - ) K- 00
=2K? + AgK
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Surface Ricci Flow

Key Idea
K = —Ag),
Roughly speaking, K J
P EAgA
Let % =—K, »
= DeK+ 2K?2
Diffusion and reaction equation!

David Gu (IMR 2024) Surface Meshing by Differential Geometry March 5th, 2024



Surface Ricci Flow

Definition (Hamilton’s Surface Ricci Flow)

A closed surface with a Riemannian metric g, the Ricci flow on it is

defined as
9gij
dt

The normalized surface Ricci flow,
dgij _ 2mx(S)

= ) ok,
dt A0 &y

= —2Kg,'j.

where A(0) is the initial surface area.

The normalized surface Ricci flow is area-preserving, the Ricci flow will
converge to a metric such that the Gaussian curvature is constant 272(((())5)
every where.
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Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the total area of
the surface is preserved during the flow, the Ricci flow will converge to a
metric such that the Gaussian curvature is constant (equals to K) every
where.

Theorem (Bennett Chow)

For a closed surface of positive Euler characteristic, if the total area of the
surface is preserved during the flow, the Ricci flow will converge to a metric
such that the Gaussian curvature is constant (equals to K) every where.
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Summary

Surface Ricci Flow
@ Conformal metric deformation

g — g

@ Curvature Change - heat diffusion

— = AgK +2K?
dt
@ Ricci flow d
u =
—=K-—-K
dt
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular meshes.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular meshes.

o Isometric gluing of triangles in 2.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular meshes.

o Isometric gluing of triangles in 2.
o Isometric gluing of triangles in H?, S.
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Discrete Generalization

@ Discrete Riemannian Metric

@ Discrete Curvature

© Discrete Conformal Metric Deformation
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Discrete Metrics

Definition (Discrete Metric)
A Discrete Metric on a triangular mesh is a function defined on the
vertices, | : E = {all edges} — R™, satisfies triangular inequality.

A mesh has infinite metrics.

th, 2024
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Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} — R

K(vi)=2m =Y 0% vi @ OM; K(v)) =7 = Y Oy, vi € OM
jk Jk

Theorem (Discrete Gauss-Bonnet theorem)

Y KW+ D K(v) =2mx(M).

vgoM veoM
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Discrete Metrics Determines the Curvatures

' cos §+cos 6; cos O 2
cosli = —ggams, S
~__ cosh@j+cosh §; cosh 0 2
coshl; = sinh 6 sinh 0, 1l
1 = Cosfitcosficosty o
- sin 6; sin
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Discrete Conformal Metric Deformation

Conformal maps Properties

@ transform infinitesimal circles to infinitesimal circles.

@ preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation

Replace infinitesimal circles by circles with finite radii.
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Discrete Conformal Metric Deformation vs CP
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Circle Packing Metric

We associate each vertex v; with a
circle with radius ;. On edge ej, the
two circles intersect at the angle of
®;;. The edge lengths are

[ =7 + 7} + 277 cos vy

CP Metric (X,I,®), X triangulation,

M= {7ilVvi}, ® = {pj|Ve;}
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Discrete Conformal Factor

Conformal Factor
Defined on each vertex u: V — R,

log i R?
ui=1 logtanhy  H?
logtan % S?
@ Symmetry
0K;  OK;
8Uj - 8u,~
@ Discrete Laplace Equation
dK = Adu,
A is a discrete Lapalce-Beltrami operator.

- = = = >
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Unified Framework of Discrete Curvature Flow

Analogy

@ Curvature flow

o Energy

E(u) = /Z(R,- — Ki)du;,

@ Hessian of E denoted as A,

dK = Adu.
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Criteria for Discretization

Key Points
o Convexity of the energy E(u)

Convexity of the metric space (u-space)

Admissible curvature space (K-space)

Preserving or reflecting richer structures

Conformality
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Unified Discrete Surface Ricci Flow |
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Unified Ricci Flow

(a)Tangential CP (b) Generalized Hyperbolic
Tetrahedron, (n,¢) = (1,1)

Figure: Tangential circle packing.
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Thurston's Circle Packing

(a)Thurston’s Circle packing (b)Generalized Hyperbolic
Tetrahedron, 0 <n < lje=1

Figure: Thurston's circle packing.
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Inversive Distance Circle Packing

el
A *dA WA
(c)Inversive distance CP (d)Generalized Hyperbolic
Tetrahedron, n > 1,e =1

Figure: Inversive distance circle packing.
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Yamabe Flow

(d)Yamabe flow (e)Generalized Hyperbolic
Tetrahedron, n > 0,e =0

Figure: Yamabe flow.
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Virtual Radius Circle Packing

— -

(e)Virtual radius CP (f)Generalized Hyperbolic
Tetrahedron, n > 0,e = —1

Figure: virtual radius circle packing.

2 2
k= —ri = 2.
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Mixed Type

(f)mixed type
Figure: Mixed typed circle packing.
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Conformal Factor

Definition (Discrete Conformal Factor)

The discrete conformal factor is defined as v : V — R,

log i I
ui =< logtanh ¥ H?
logtan¥  §?
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Edge Length

Definition (Edge Length)
The edge lengths are given by

2 i+uj 2u; 2uj 2
2 =onyetitti 4+ gie? 4 ¢je® R
dnye"i T+ (14ee?i)(14¢;*%) H?2
(1—g;e?i)(1— 6 ezu')
—4ne’+l+(1 —¢;€? )(1 gje 24j)

coslj = S?
y (1+e;e?i)(1+eje J)

coshfjj =
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Edge Length

Scheme £j €] njj

Tangential Circle Packing +1 +1 +1
Thurston's Circle Packing +1 +1 [0,1]
Inversive Distance Circle Packing +1 +1 (0,0)
Yamabe Flow 0 0 (0,00)
Virtual Distance Circle Packing -1 -1 (0,0)
Mixed Type {-1,0,+1} {-1,0,+1} (0,00)

Table: Parameters for schemes.
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Entropy Energy

Definition (Entroy on a Face)
A discrete surface with S?,[E2, H? background geometry, and a circle
packing metric (X,v,7,¢). For each triangle [v;, vj, vik] with inner angle
(0i,6;,6k), the entropy energy for the face is given by

(U,’,U‘,Uk)
Ef(u,'7 uj, uk) = / ' 0;du; + 9dej + O duy.
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Entropy Energy

Definition (Entroy on a mesh)

A discrete surface with S, E2, H? background geometry, and a circle

packing metric (X,v,n, ). The discrete entropy energy for the whole
mesh is defined as

(ur,uz,-,up) M
E:/ > (Ki — Ki)du;.

i=1

The mesh entropy can be represented as the face energies

E, = zn:(R,- —omu; + > Er.
i=1

feF
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Suppose a triangle [v;, vj, vk] is with background geometry S2,E2, H?2,
conformal factor (uj, uj, uy), edge length (/;, [;, I), inner angles (6;,6;,6y),
entropy energy is

(uj,uj,uk)
E(u,-,uj,uk) = / i Q;du;—i—ﬁjduj—i—ﬂkduk. (1)
Then the Hessian matrix is given by
d(0;,0;,0k) 1 1
—————=——10L""D 2
8(U,‘, uj, uk) 2A ’ ( )

where, A is the triangle area

A= %sin Bis(1)s(h), (3)
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The matrix L is

s(h) 0 0
L={ o () o (4)
0 0 s(lk)
©
-1 cosfy cos0);
©=| cosfp -1 cos 0; (5)
cosflj cosf; —1
matrix D is

0 7(i,j, k) 7(i k,J)
D=1 7(,i k) 0 T(j, k, i) (6)
T(k,iyj) 7(k,j, i) 0
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where

and

7(i,j, k) =

X E?

s(x) ={ sinhx H?

sinx  S?
3P+ 677 — enid) E?
cosh /; cosh® ~; — cosh H?
cos I; cos yj — cos S?

David Gu (IMR 2024)
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Geometric Interpretation

For each triangle, there is a power circle, orthogonal to three vertex circles.
The distance from the power center to each edge is h;, h;, h. Then we
have the geometric interpretation to the Hessian matrix: with E2, H? and

S? background geometry,
oy _ 00: _hs
du, Ok

0 0 tanh h
@ = @ = Lf‘\/2 cosh ry cosh® ry cosh /5 — cosh?! r; — cosh?®2 r,
Oup  Oui  sinh“

004 06, tan hs
== —— \/—2 COS®1 1y COSC2 Iy COS l3 + C0S2°1 ry + COS2€2 ry
aUQ 8U1 sin /3

March 5th, 2024 59/88
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Existence and Uniqueness Theorem for Discrete
Ricci Flow J
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Discrete Conformality

Definition (Discrete Conformality)

Two discrete metrics d, d’ on (S, V) are discrete conformal if there exists
sequence of discrete metrics on (S, V), d =di,d>,...,dyn = d’, and
triangulations of (S, V), Ty, Ta,..., Tp, satisfying

© each T; is Delaunay in dj;

@ if T; = Tj41, there exists a discrete conformal factor u: V — R, for
each edge e € T; with vertices v; and v, then

ldi(e) = Idi(e)e”(vl)+u(v2)’

@ if T; # Tiy1, then (S, d;) is isometric to (S, dj+1) by an isometry
homotopic to the identity in (S, V).

The discrete conformal class of discrete metrics is called a discrete
Riemann surface.
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Discrete Conformality

Definition (Discrete Conformality)

Two discrete metrics d, d’ on (S, V) are discrete conformal if there exists
sequence of discrete metrics on (S, V), d =di,d>,...,dyn = d’, and
triangulations of (S, V), Ty, Ta,..., Tp, satisfying

© each T; is Delaunay in dj;

@ if T; = Tj41, there exists a discrete conformal factor u: V — R, for
each edge e € T; with vertices v; and v, then

ldi(e) = Idi(e)e”(vl)+u(v2)’

@ if T; # Tiy1, then (S, d;) is isometric to (S, dj+1) by an isometry
homotopic to the identity in (S, V).

The discrete conformal class of discrete metrics is called a discrete
Riemann surface.
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Discrete Uniformization Theorem

Theorem (Existence and Uniqueness)

Suppose (S, V) is a closed connected marked surface and d is any discrete
metric on (S, V). The for any discrete Gaussian curvature

K*:V — (—00,2m) with )\, K*(v) = 2mx(S), there exists a discrete
metric d’, unique up to scaling on (S, V), so that d’ is discrete conformal
to d and the discrete curvature of d’ is K*. Furthermore, the discrete
curvature flow with surgery associated to curvature K* with initial value d
converges to d’' exponentially fast.

v

X. Gu, F. Luo, J. Sun and T. Wu, "A Discrete Uniformization Theorem for
Polyhedral Surfaces”, Journal of Differential Geometry, Volume 109,
Number 2, Pages 223-256, 2018.
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Discrete Uniformization Theorem

Definition (Discrete Entropy Energy)

The entropy energy of (S, V/,d) is defined as

(u1,u2,...,un) _
E(u) = / > (K(vi) = K(vi))du;.

vieV

The discrete Ricci flow is the gradient flow of the entropy energy:

du,-(t)

e K(vi) — K(vi, t),

the entropy is strictly concave on the space ) ; u; = 0, therefore can be
optimized using Newton's method.
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Experimental Results |
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Robustness Test

Figure: Initial mesh is with low quality triangulation.
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Robustness Test

Figure: Conformal mapping by discrete surface Ricci flow.
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Robustness Test - genus 39 anatomical model
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Surface Remesh

Figure: Conformal mapping by discrete surface Ricci flow.
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Surface Remesh

Figure: Conformal mapping by discrete surface Ricci flow.
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Surface Remesh
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Figure: Multi-resolution Remeshing results.
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Surface Multiresolution Compression

input surface conformal mapping OT mapping

Figure: Conformal and optimal transport mappings.
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Surface Multiresolution Compression

Figure: Optimal transport mappings, the target measures are weighted Gaussian
curvature and the area element.
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Surface Multiresolution Compression
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Chassis Model

Figure: Remeshing a mechanical part.
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Chassis Model
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Car Model

remeshing result
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Car Model

(d) remeshing result
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(d) remeshing result
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