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Abstract
This research note explores the use of different machine
learning (ML) techniques, specifically comparing a random
forest and Convolutional Neural Networks (CNN), for
predicting local mesh quality in solid CAD models. Mesh
quality is a critical factor in engineering simulations, and
automating its prediction is a key step towards efficient
Computer-Aided Design (CAD) defeaturing. The study,
building on prior work, assesses the performance of these
ML models, highlighting the constraints of the random
forest and the adaptability of CNNs in capturing topological
relationships in CAD models. The results indicate that
while the random forest outperformed the CNN, the
latter shows promise, suggesting a pathway for further
development in ML-based CAD defeaturing processes.

1 Introduction.

The process of defeaturing Computer-Aided Design
(CAD) models assumes a pivotal role in modern en-
gineering simulations. Defeaturing, the act of stream-
lining CAD models by removing extraneous geometric
intricacies, is instrumental in achieving efficient and re-
liable meshes for finite element analysis and other en-
gineering simulations. Complex CAD assemblies, often
laden with intricate mechanisms and details, demand
meticulous user intervention and time-consuming man-
ual model preparation to meet the prerequisites for ac-
curate analyses.

Automating aspects of the defeaturing process with
Machine Learning (ML) is an active area of research
across a wide range of engineering disciplines[3, 4]. In
our previous work[1], we created a system to assist users
in defeaturing CAD models by suggesting defeaturing
operations that will lead to the greatest improvements
in mesh quality. Beginning with a solid model composed
of surfaces, edges, and vertices, the system uses a
random forest to predict which entities have the worst
mesh quality and then provides a list of those entities
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to the user.
One of the constraints of the random forest is its

requirement for feature information to be expressed as
fixed-length vectors, limiting its ability to fully capture
contextual information about an elements surroundings.
Other methods like Convolutional Neural Networks
(CNN) aren’t bound to fixed-length feature vectors[5].
They can adapt to feature vectors of arbitrary length,
allowing us to represent the topological relationships
between a surface and any number of neighboring
entities. In this study, we compared the performance of
a new CNN implementation for mesh quality prediction
against our existing random forest approach.

2 Methods.

We compared a random forest and CNN for predicting
the local mesh quality of surfaces in a solid CAD
model. Both ML methods were trained with the surface
features (referred to as surface no op in prior work)
and local mesh quality labels described in our paper
on ML defeaturing[1]. The CNN was given additional
information in the form of adjacency matrices that
encode the topological relationships between a surface
and it’s surrounding edges and surfaces. Our goal was
to see if a CNN adapted from BRepNet could use the
adjacency matrices in conjunction with our existing
feature and label set to out perform our existing random
forest solution.

2.1 Machine Learning Methods. We imple-
mented a CNN adapted from the BRepNet[2] architec-
ture, which was originally designed for classifying the
CAD modeling operations that created each surface.
However, our CNN adaptation was reconfigured to han-
dle regression tasks, aligning with the objective of pre-
dicting mesh quality metrics. Key differences from the
original BRepNet architecture include the replacement
of the final classification layer with a regression layer
to suit our regression problem. Additionally, our CNN
was tailored to exclusively consider surface feature vec-
tors, eliminating the need for features from edges and
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Figure 1: Some examples of the single-part CAD models contained in our 272 part dataset.

coedges, rendering it a more appropriate comparison to
the random forest method, which relies solely on surface
features for mesh quality prediction.

Our CNN was trained using a single input and out-
put layer, two hidden layers, and a batch size of 20.
The data split used for training, validation, and test-
ing was maintained at a consistent 70% training, 15%
validation, and 15% testing ratio, aligning with the per-
centages utilized in the original BRepNet architecture
by Lambourne et al. This setup ensured that our CNN
and RF methods were evaluated on an equal footing in
the experiment. The random forest was trained with a
maximum tree depth of 25, maximum forest size of 75
using a 5x2 k-fold cross validation strategy. Both meth-
ods trained until convergence used a standard L1 loss
function between predictions and targets.

2.2 Data Preparation. We assembled a dataset of
272 CAD models from the open-source CAD library
GrabCAD[7] that encompass a diverse range of real-
world geometries. These CAD models represent single-
volume parts commonly encountered in practice, such
as gears, bolts and motors. The training data for the
experiment was created in a two part process.

Part one involves using Cubit[8], our meshing and
geometry toolkit, to mesh each CAD model and extract
our surface features and mesh quality labels. A step-
by-step guide to this process is shown below. Part two
involves building the adjacency matrices that are used
to represent neighboring relationships for each surface
by the CNN. Building adjacency matrices involved using
constructing representations of topological relationships

among the surfaces and edges that make up the CAD
models. These adjacency matrices will later be used
by the CNN to form the convolutional kernels, a key
element in the original BRepNet design. A more
detailed description of this process can be found in the
original BRepNet paper by Lambourne et al.[2].

1. For each CAD part in our dataset, repeat steps 2-8.

2. Import CAD part to Cubit.

3. Compute a fine target auto-size S based on the part
characteristics.

4. Mesh the part with tetrahedral elements of size S.

5. For each surface in the part, repeat steps 6-8.

6. Compute a fixed-length vector of features X for the
surface.

7. Compute the mesh quality metrics M for the
surface.

8. Write the features X and labels M to a new row in
a .csv file containing our training data.

3 Results.

The random forest outperformed the CNN at predicting
each of the three mesh quality metrics. While the ran-
dom forest did better, the CNN was relatively successful
with an R2 score above 0.85 for each metric. While the-
ses scores aren’t excellent, they do prove that the CNN
approach is viable for this type of problem. It’s possible
that with more development, a more optimal CNN con-
figuration would be able to close the gap in prediction
accuracy.
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Figure 2: Model prediction accuracy’s for the minimum
scaled Jacobian (min sj), minimum scaled inner ra-
dius (min sir) and maximum deviation (max dev) mesh
quality metrics.
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