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Abstract

Subdividing Sculpt’s background grid often improves the

topological and geometric fidelity of the output mesh to

the input geometry. However, in some simple 2D examples,

topology does not converge as the background grid is refined.

The inclusion of subcells in the output mesh does not behave

monotonically under refinement. However, for a fixed grid

size, the volume fraction threshold for inclusion is a valid

persistence parameter for defining a monotonic filtration.

Thus we can use persistent homology to efficiently predict

or control mesh topology for the volume fraction parameter

(unlike grid size). We demonstrate this on geographical data

through a two-dimensional version of Sculpt.

1 Introduction.

Generating a mesh suitable for analysis often requires
the analyst to modify the input geometry. Common
issues are gaps and overlaps that prevent meshing;
unneeded features smaller than the desired mesh size
that increase element count; and small angles and thin
regions that produce poor-quality elements.

However, the mesh is a discrete approximation to
the geometry. Why require higher fidelity in the input
than we aspire to in the output? Hence, the community
is now creating tools to mesh ugly geometry directly.

Sculpt [10, 11, 12] is one such tool, achieving a hexa-
hedral mesh of reasonable quality, but reconstructing an
approximation of the input geometry and topology. In-
exact reconstruction is a benefit in the case of gaps, over-
laps, and small features. The Sculpt algorithm starts
with a background grid overlaying the input geometry.
The fraction of each grid cell that lies inside the geom-
etry of an input material is its volume fraction. Cells
with volume fractions above a threshold (e.g., one-half)
are retained; the rest are discarded. Heuristics remove
undesirable global topology such as pinch points and
connected components consisting of only a few cells.
Retained cells are then snapped to the geometry, and
mesh quality is achieved through pillowing, smoothing,
etc. Alternatively, TetWild [5] can be used to create
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tet-meshes of ugly geometry. Both Sculpt and TetWild
produce meshes with valid topology, but there is no a
priori knowledge of how the mesh’s homology (i.e., the
number of components, loops, and voids) will compare
to the input, or to the analyst’s desires.

In this work, we explore how to achieve a mesh of
the desired element size and topology without changing
the input. To do so, we leverage the notion of volume
fraction used in Sculpt, but generalized to also operate
on invalid geometries. We then use persistent homology
[3, 9] to enable the analyst to measure and select the
desired mesh topology.

For research and to demonstrate that this tech-
nique is effective, we develop a planar two-dimensional
prototype in Rhinoceros 3D. It mimics the initial
steps of Sculpt, using a background grid, volume frac-
tions, and generalized winding numbers [1, 6] to de-
fine the “interior” of both valid and invalid geome-
tries. Subsequently, persistent homology is used to
explore the topological structure of potential meshes.
Based on this data, topologically-appropriate quadri-
lateral meshes from both clean and messy datasets are
generated. These meshes can then serve as input for
subsequent steps in Sculpt to improve geometric fidelity,
including snapping, pillowing, and smoothing.

2 Background Material

The topology of a mesh should contain the significant
features of a domain for its intended computational
analysis. For simplicity, we shall study mesh topology
using a simplicial complex: nodes are zero-cells, edges
are one-cells, and triangles are two-cells. Homology
[4] is a mathematical tool that distinguishes simplicial
complexes using certain algebraic groups, and the Betti
numbers Bi count their ranks. Specifically, B0 equals
the number of connected components, B1 is the number
of holes, and B2 is the number of cavities or voids. For
planar domains B2 will always be zero.

Persistent homology [3, 9] describes homology
changes as objects are added and connections are made.
A filtration has a “persistence parameter” which defines
when a simplex enters the complex. A filtration is mono-
tonic so no simplex may ever leave. However, the homol-
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Figure 1: An example of converting cell volume fractions
into a filtration of a simplicial complex. Left, the
ordering of grid cells. Center, the dual grid with vertex
values transferred from grid cells. Right, each 2-cell is
subdivided into four triangles. The central vertex gets
the smallest value of its neighbors.

ogy has both additions and removals, because adding a
simplex could e.g., create a new connected component,
or combine two components into one. The parameter
value at which a new homological group is created is
called its “birth,” while the value it disappears is called
its “death.” Persistent homology not only counts Betti
numbers, but tracks individual components and holes.

This work studies the persistent homology of a
quadrilateral background grid using volume fractions as
the persistence parameter. (In other work the signed
distance to a domain boundary was the parameter [8].)

Volume fractions for watertight domains may be
calculated by sampling points and counting the fraction
of them inside the geometry. (For simplicity we will only
discuss domains with a single material.) However, for
poorly defined domains, what is “inside” may be poorly
defined. Despite this, the generalized winding number
[1, 6] gives reasonable and intuitive answers for most
domains. The winding number is a continuous value,
where 0 indicates outside and 1 is inside. The winding
number gives the same answer as ray shooting for
watertight domains with properly oriented boundaries.
For geometry with gaps, the winding number near a gap
is between 0 and 1. (In extreme cases, invalid geometries
may give values beyond these bounds.)

3 Methodology

In this work, we restrict our discussion to two-
dimensional domains. A background grid of cells is
created, e.g., by subdividing an axis-aligned bounding
box into an anisotropic regular grid. Each cell’s volume
fraction is computed as the average of the winding num-
bers of its sample points. We study how the topology
changes as we lower the volume fraction threshold for
including a cell in the output mesh.

The volume fraction is the desired persistence pa-

rameter, but we must first transform our grid of squares
into a topologically-equivalent filtration of a simplicial
complex. They key challenge is to ensure that before
adding a simplex, all of its subsimplices have already
been added. In fig. 1 we convert volume fractions into
the order cells are included. Each ordinal corresponds to
some volume fraction, and cell 1 has the highest volume
fraction. We then form the dual of the background grid.
Grid cells dualize into vertices with the same value.
Then each 2-cell (dual to a grid node) is divided into
four triangles with a central vertex. The central vertex’s
value is the minimal value of any adjacent node (dual
cell). At dual-persistence value 1, all vertices with value
1 are added, then all edges between already-added ver-
tices, then all triangles formed by already-added edges.
At value 2, all vertices with value 2 are added, then all
edges between already-added vertices, etc.

4 Results

4.1 Computational Results The proposed frame-
work was developed and evaluated in 2D using a custom
plugin to Rhinoceros 3D and Grasshopper. Winding
numbers were computed using libigl [7]. Persistent ho-
mology was computed using Aleph [13], which is based
on PHAT [2].

The framework is tested on an oriented planar
representation of the Chesapeake Bay.1 Snapshots of
computed volume fractions, with their associated Betti
numbers, are shown in fig. 2. Model errors include
overlapping edges, repeated/offset edges, and numerous
gaps. Despite the “interior” of the bay being ill-defined,
the proposed method still captures the intended geo-
graphic domain with respect to both the continent and
to islands. A complete view of the homological structure
based on varying the volume fraction is shown in the
persistence diagram of fig. 3. Results demonstrate that
a mesh with the desired homological structure could
be extracted from the background grid by selecting the
right threshold. Finally, we note that these figures are
primarily for illustrative purposes—in practice, a finer
grid may be needed to better capture local behavior.

4.2 Topological Effects of Grid Refinement We
conjectured that persistent homology can measure the
necessary grid size to achieve a desired topology. When
features are isolated or globally the same scale, grid
refinement has intuitive and predictable topological
effects. However, we discovered that this is not true for
general inputs. Counterexamples show non-monotonic
filtration behavior by grid size. Discretization by grid

1Model derived from https://vecta.io/symbols/281/

ecosystems-maps/93/usa-md-va-chesapeake-bay-line-map
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(a) Vol. Frac.: 50%; B0 = 4;B1 = 2 (b) Vol. Frac.: 15%; B0 = 1;B1 = 7 (c) Vol. Frac.: None; B0 = 1;B1 = 0

Figure 2: Chesapeake Bay meshes and their Betti numbers change as the volume fraction threshold is lowered.
Left, cells with volume fraction ≥ 0.5 in the bay. Center, threshold ≥ 0.15. Right, all cells. The model contains
deliberate errors: gaps, overlaps, and offsets.

Figure 3: The persistence diagram of the Chesapeake
Bay grid, with parameter 1 minus the volume fraction.

cells and their alignment with input features strongly
effects topological behavior. Thus Sculpt algorithm
parameters of when to refine the background grid may
have unpredictable effects on mesh topology.

Convergence For some inputs, as the grid is re-
fined, topological features of the input are resolved and
the output mesh topology becomes stable. For these in-
puts there may be some way to define a filtration, with
simplices only appearing, never disappearing. However,
for some other inputs, the topology never converges and
no filtration is possible.

A parallel axis-aligned gap is closed or open depend-
ing on its size and position relative to the grid; see fig. 4.

A gap smaller than half the grid size is always closed.
A gap larger than the grid size is always open. Between
these, shifting the grid to the left will cause the mesh
to alternate between closed and open.

In figs. 5 and 6 a feature is inconsistently resolved
due to aliasing effects of unaligned grids. For the
constant-width gap in fig. 5, refining or coarsening the
grid makes the gap resolved consistently as open or
closed. However, for the variable-sized gap in fig. 6,
global uniform refinement merely moves where the
problem occurs. The example is a wedge of material
bounded by two lines meeting at a small angle α at
an apex. In locations where the grid size is about the
same as the local width, whether a cell is included or
excluded can change every few grid cells, leading to
many separate connected grid components. For any
small grid size, there will be some portion of the wedge
where the lines are about that size apart, specifically in
the range [ 12 , 1] cotα squares away from the apex. The
grid topology may be constant over refinement, but is
undesirable.

Non-convergence In the example in fig. 7 the
output mesh topology does not converge under refine-
ment. That is, there is no grid size below which the
output mesh topology does not change. In fig. 7 the
background grid is uniform, but we only draw some
of the relevant cells at each level of refinement. Blue
(closure) cells are mostly material and thus included in
the output mesh. Red (gap) cells are unfilled and ex-
cluded. Under refinement, the mesh alternates between
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Figure 4: Small grid-aligned gaps are closed, large are
open, and for intermediate it depends on their offset.

(a) raw geometry (b) filled cells

Figure 5: This unaligned gap is resolved inconsistently.

Figure 6: Aliasing may cause several connected com-
ponents near where two lines meet at a sharp angle.
Bold-outlined cells are filled, thin are open.

one and two connected components ad infinitum. The
grid squares containing the corner alternate between
filled and open, because of the corner’s relative position
inside its square. The description of the geometry is fi-
nite, just two triangular blocks meeting at a point. The
geometry is simple and without sharp angles or unusual
features, and plausible to occur in practice.

There may be two of these features, but with
alternate sizes of when they are open and closed. Hence
the two sides are always connected by exactly one
of the features, giving the homology of a disk. The
homology does not change under refinement, but the
local connectivity does. Hence, even if we were to
use persistent homology to measure and predict the
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Figure 7: In this counterexample to convergence, the
grid topology alternates between one and two connected
components ad infinitum under refinement.

topology, it would not distinguish between this case and
a smooth solid block of material.

The analytic description of the geometry in fig. 7 is
two blocks of material with slopes -3 and 1 meeting at
a corner with coordinate ( 23 , 0). If we start with a unit
grid, then under refinement the grid square containing
the corner alternates between having the corner 2/3
of the way along the bottom edge (blue), and 1/3 of
the way (red). A blue square containing the gap is
exactly half filled with material from the left triangle,
and more than half filled when including the material
from the right triangle. This construction is not tight:
the slopes may be different. The corner may lie at some
x-coordinate other than 1/3, but will never be at a grid
corner as long as its x-coordinate is not k/2m for some
{k,m} ∈ Z. Thus more complicated sequences may be
constructed.

5 Conclusion

Sculpt, and perhaps other volume-fraction based algo-
rithms, behave quite differently than boundary-fitted al-
gorithms, such as Delaunay Refinement, when the local
mesh size is decreased. For boundary-fitted algorithms,
reducing the mesh size to the local feature size or less
allows the mesh to have good quality and recover the
input topology exactly. For Sculpt, the mesh quality
is good regardless of the local feature size, but in some
cases the topology does not converge as the mesh size
decreases by subdividing the background grid. How-
ever, for a fixed grid, we may predict the Sculpt topol-
ogy, measure how that changes as we vary the volume-
fraction threshold using persistent homology, and select
an appropriate topology for the mesh’s intended pur-
pose. Future work will focus on mesh optimization to
better match input geometry and on deploying these
techniques for volumetric data.
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