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Abstract
If a finite element mesh contains elements with negative Ja-
cobian, it is said to tangled. Tangled meshes lead to erro-
neous results during finite element analysis. Consequently,
many untangling methods have been proposed; however, un-
tangling is not always achievable. To address this challenge,
the authors recently introduced the isoparametric tangled
finite element method (i-TFEM), allowing the use of tan-
gled meshes in finite element analysis. By introducing minor
modifications to standard FEM, i-TFEM offers an easy im-
plementation and reduces to standard FEM for non-tangled
meshes. It efficiently handles complex configurations of tan-
gled elements, making it suitable for real-world scenarios,
including linear/non-linear elasticity, free and forced vibra-
tions, and thermal for quadrilateral, hexahederal and higher
order triangular elements. Numerical experiments demon-
strate the accuracy and applicability of the method to real-
world tangled meshes. The numerical results also empha-
sizes the importance of reevaluating the notion of mesh qual-
ity for tangled meshes.

1 Introduction
Automatic high-quality hexahedral mesh generation re-
mains an open challenge [4, 17]. The underlying reasons
are due to the severe topological and geometric con-
straints imposed [26]: (a) the mesh must not be tangled,
(b) the elements must be of high quality, (c) the mesh
must conform to the geometry, and (d) the mesh must
be topologically well-structured. Satisfying all these re-
quirements is non-trivial. The focus of this work is on
the first constraint that requires that the Jacobian de-
terminant must remain positive over the entire mesh. It
is well known that finite element analysis over a tangled
mesh will lead to erroneous results.

To address tangled elements, numerous untangling
algorithms have been developed [11, 28, 15]. However,
untangling is not always guaranteed [15, 1, 28, 23].
Several non-traditional finite element techniques [29, 6,
13] including the virtual element method [3] have been
developed to directly handle some of the tangled mesh
configurations. However, these methods cannot handle
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some of the tangled meshes generated by current mesh
generators. For instance, practical meshes generated
from state-of-the-art mesh generation algorithms, often
contain ‘self-penetrating’ tangled elements [22], which
are not addressed by these approaches. Moreover, these
methods may require significant changes to the FEM
framework.

Recently, an isoparametric tangled finite element
method (i-TFEM) [20, 21, 19, 18, 22] was proposed
which specifically addresses tangled elements (mesh re-
quirement 1) by modifying traditional FEM. I-TFEM
reduces to standard FEM for non-tangled meshes and
requires minimal changes to the existing FEM frame-
work. It can effectively handle real-world tangled
meshes generated by the state-of-the-art mesh gener-
ation methods such as Polycube mapping [5, 16, 8] and
frame-field [10] based approaches.

I-TFEM has been demonstrated for linear and non-
linear elasticity, free and forced vibrations, and Pois-
son problems over meshes containing partially inverted
(tangled) triangular, quadrilateral and hexahederal el-
ements. This work reports some of these recent re-
sults. Note that i-TFFEM specifically deals with tan-
gled meshes characterized by partially inverted ele-
ments, i.e. elements with negative Jacobian determi-
nant at some (not all) Gauss points.

2 Isoparametric Tangled Finite Element
Method (i-TFEM)

The detailed mathematical framework for i-TFEM is
presented in [22, 21]; here, we provide a brief summary.

Recall that, for a typical boundary value problem,
such as a linear elasticity problem, FEM reduces to
solving the following linear system of equations:

(2.1) Ku = f

where, u is the unknown nodal displacement vector, f
are the nodal loads, and K is the stiffness matrix. When
the mesh is tangled, the solution to this system leads
to inaccurate results [22, 21]. To illustrate, consider
the tangled (non-convex) 8-node hexahedral element in
the physical space (x1, x2, x3) in Fig. 1a. The Fig. 1b
illustrates the parametric space (ξ1, ξ2, ξ3) associated
with the tangled element. Due to the non-convex nature
of the element, one can show that [20] the parametric
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space can be divided into positive and negative regions,
denoted by J+ and J− respectively. The corresponding
regions in the physical space are referred to as positive
(C+) and negative (C−) components respectively; see
Fig. 1c. Furthermore, the parametric points a ∈ J−

and b ∈ J+ map to the same point p in the physical
space; such physical points p lie outside the element. In
other words, an overlapping region or a fold F is created
(see Fig. 1c). Since standard FEM does not handle this
inverted region correctly, it leads to erroneous results.
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Figure 1: (a) Physical space of the tangled H8 element.
(b) Parametric space of the tangled element, that can
be divided into positive and negative Jacobian regions.
Corresponding physical space with positive and negative
components. (c) Tangled element with the overlapping
region.

In i-TFEM, the positive and negative parametric
regions J+ and J− are treated separately. In other
words, the non-invertible mapping is replaced with
piecewise invertible mapping. Next, to construct the
stiffness matrix, we define two shape functions N+ and
N− corresponding to C+ and C− respectively. Thus,
for any point p in the fold F that belongs to both
C+ and C−, one can define two fields N+ (p)u and
N− (p)u due to the fold. To resolve this ambiguity, in
i-TFEM, a piecewise compatibility constraint is enforced
over the fold (see [20] for further discussion):

(2.2) N+(p)u = N−(p)u, ∀p ∈ F.

Incorporating the piecewise invertible mapping and
compatibility constraint, i-TFEM involves solving the
following system of equations:

(2.3)
[
K C

C⊤ 0

]{
u
λ

}
=

{
f
0

}
Here, the stiffness matrix K and the forcing term f

are computed exactly as in the standard FEM, albeit us-

ing the signed value of the Jacobian (many commercial
FE software use the absolute value of the Jacobian). In
addition, a constraint matrix C is required that enforces
the field compatibility [21]. For an untangled/untangle-
free meshes, the constraint matrix C does not exist and
i-TFEM reduces to the standard FEM.

3 Results
In this section, we consider the practical tangled meshes,
generated by the state-of-the-art hex meshing algo-
rithms, and demonstrate the application of i-TFEM to
solve linear elasticity and free vibration problems.

3.1 Real-world meshes We demonstrate the appli-
cation of i-TFEM for some of the real-world tangled
meshes generated using a range of state-of-the-art mesh
generators (and available at [2]).
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Figure 2: Displacement plots obtained via i-TFEM for
practically occurring tangled meshes; the red elements
in the inset are tangled.

For instance, the mesh in Fig. 2b is generated using
a PolyCube based approach [16], mesh in Fig. 2c is
created using frame-field based approach [2]. Fig. 2a is
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produced semi-manually using dual-sheet modeling [27]
while automatic block decomposition [14] is employed
for meshes in Fig. 3.
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Figure 3: Displacement plots obtained via i-TFEM for
tangled meshes obtained via [14]; the red elements in
the inset are tangled.

Using the tangled meshes in Fig. 2 and 3, i-TFEM
was employed to solve linear elasticity problem with a
synthetic solution [22]

u1 = ζ31ζ2ζ
2
3 + 2ζ21ζ

3
2ζ

2
3 + 0.5 sin(2πζ1);(3.4a)

u2 = ζ21ζ
3
2ζ3 + 2ζ21ζ

2
2ζ

3
3 ;(3.4b)

u3 = ζ33 + 2ζ31ζ
2
2ζ

2
3/100(3.4c)

where ζi are computed by dividing each component xi

by its corresponding length-scale Li, i.e., ζi = xi/Li.
The problem is solved with the material properties,

E = 400/3, ν = 1/3. Dirichlet boundary condition
is imposed over the entire boundary. The resultant
displacement fields are shown in Fig. 2 and 3. As one
can observe, despite numerous tangling elements, the
L2 error is within the acceptable/nominal range.

Table 1: Time comparison with i-TFEM and FEM.

Model |J |min
Time (s)

iTFEM FEM
(incorrect)

i02u_m2 [2] -0.41 95.68 92.72
rod [27] -0.59 0.53 0.52

i-TFEM was also employed to compute the vibra-
tion modes over these tangled meshes. Table 1 provides
the computational time required for i-TFEM as well as
FEM (albeit with inaccurate results). Observe that the
computational overhead due to i-TFEM is within 3% of
the FEM simulation time.

3.2 Comparison of tangled and untangled
meshes Next, we consider that the tangled meshes
which have been successfully untangled using the untan-
gling algorithm provided in [15]. Some of these meshes
are shown in Fig. 4a and Fig. 4c where the tangled ele-
ments are highlighted in red color. These are generated
using multi-sweep [24] and PolyCube mapping based
[8] methods respectively. Although it may be feasible
to these meshes [15], the use of i-TFEM eliminates the
need for untangling.

First, the linear elasticity problem with the syn-
thetic solution (Eq. 3.4) is solved using the two meth-
ods: (a) i-TFEM for tangled meshes and (b) standard
FEM for untangled meshes. The results, presented in
Table 2, reveal that the L2 error norm obtained via i-
TFEM over tangled meshes is comparable with that ob-
tained over the corresponding untangled meshes. More-
over, the time required to handle tangled elements is
minimal. This suggests that i-TFEM can provide so-
lutions with comparable accuracy over tangled meshes,
thus eliminating the need for mesh untangling.

Finally, free vibration problem is solved (a) over
tangled meshes using i-TFEM (see Fig. 4) and (b) over
the corresponding untangled meshes using FEM; the
comparison of the first natural frequency is provided in
Table 3. It can be observed that the natural frequencies
obtained from both methods are comparable, and the
additional computational time required for i-TFEM is
minimal. The time required to untangle the mesh is not
included.

4 Mesh Quality Indicators for Tangled Meshes
Traditionally, tangled elements are deemed to be in-
valid, and/or assigned a quality of zero [12]. However,
using i-TFEM, tangled meshes can provide comparable
or even superior accuracy compared to regular meshes.
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Table 2: Comparison of solutions over tangled and
untangled meshes provided in [15].

Model [15] |J |min

Relative Time
L2 error (s)
×10−2

linking rod tangled -0.39 0.21 10.46
linking rod untangled 0.55 0.21 10.17
block tangled -0.70 1.58 2.02
block untangled 0.25 1.58 1.87
cap tangled -0.94 4.23 4.73
cap untangled 0.11 4.36 4.13
bust tangled -0.60 3.71 5.15
bust untangled 0.11 3.93 5.11

(a)
(b)

(c)
(d)

Figure 4: Tangled mesh of (a) linking rod and (b) block
provided by [15]. Tangled elements are highlighted in
red.

Table 3: Comparison of solutions for free vibration
problem over tangled and untangled meshes provided
in [15].

Model [15] |J |min
Fund. Time

freq. (Hz) (s)
linking rod tangled -0.39 6.370 17.17
linking rod untangled 0.55 6.361 17.14
block tangled -0.70 1542 3.55
block untangled 0.25 1547 3.52
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Figure 5: Plot of (a) displacement error (b) stress error
vs minimum Jacobian.

To evaluate the effect of mesh quality on i-TFEM so-
lution, we consider a 3D torsion problem solved over a
synthetically highly tangled hexahederal mesh (see [22]
for more details). In Fig. 5a, we plot the relative L2

norm error in stress as a function of the minimum Jaco-
bian within the mesh. As one can observe, accuracy im-
proves as we move away from zero Jacobian, whether in
the positive or negative direction. Similar observations
can be drawn from the data provided in Table 2. This
suggests that one must reevaluate mesh quality indica-
tors to accommodate tangled elements. One potential
indicator, for instance, could be the absolute value of the
Jacobian instead of the signed value. In other words, we
can eliminate the tangle-free constraint on mesh gener-
ators. Further research is needed since these findings
are specific to the problem and mesh considered.

5 Conclusion
The isoparametric tangled FEM (i-TFEM) can poten-
tially address the challenge of handling tangled meshes
that are conventionally considered unacceptable due to
the erroneous results they produce. Real-world tangled
meshes obtained from a wide range of mesh generators
could be efficiently handled by i-TFEM. The results em-
phasize the need for a new definition of mesh quality
that accommodates tangled elements, and potentially a
new class of mesh generators. Further research relating
mesh quality and solution accuracy [7, 25] is required in
the context of tangled meshes.
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