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Abstract

We present a review of a priori measures of high-order mesh

quality and discuss a set of basic requirements they should

meet. We then proceed to select a set of suitable candidates

and appraised them according to criteria of sensitivity to

distortion using a quadratic triangular element subject to

motion of a mid-side node to investigate the variation of

a quality measure. Finally we investigate what the “best”

element shape is, according to the previous quality measures,

when a curved boundary is imposed.

1 The role of the elemental mappings

The elemental mappings defining high-order curvilinear
elements play a central role in quality metrics of the
elemental shape. These are depicted in Figure 1. A
high-order element is defined by the mapping, ϕR, be-
tween a reference element, Ωe

R, defined in a parametric
space of coordinates ξ = (ξ1, ξ2), and a physical ele-
ment, Ωe

P , with coordinates x = (x1, x2). Additionally,
to evaluate elemental distortion, we introduce a map-
ping ϕ between an ideal element, Ωe

P , with coordinates
y = (y1, y2) and the physical element. The mapping
from the ideal to the physical element is then given by

(1.1) ϕ = ϕ−1
I ◦ ϕP

Here the mapping ϕP will be the isoparametric map-
ping that defines the high-order shape functions of the
spectral/hp method [8]1.

The mappings ϕP , ϕI and ϕ are represented by
their respective Jacobian matrices Jp, JI and J , and
their components are given by

(1.2) [JP ]ij =
∂xi

∂ξj
; [JI ]ij =

∂yi
∂ξj

; [J ]ij =
∂yi
∂xj

In what follows, the mapping ϕ, its Jacobian matrix
J , with determinant J = detJ , and its associated
metric tensor G = JJ t with determinant detG = J2

1These are implemented in the open-source code Nektar++:
www.nektar.info.
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Figure 1: Notation used in defining the various map-
pings between the physical, reference, and ideal ele-
ments.

will permit the evaluation of changes in lengths, areas
and angles, and will used to characterize, quantify and
assess elemental distortions.

2 High-order mesh quality metrics

This section appraises several of the point-wise measures
of high-order mesh quality proposed in the literature.
These will be denoted by qi.

A common measure of quality related to element
distortion is the Jacobian of the mapping between the
ideal and physical elements [3, 15]:

(2.3) q1 = J

The next quality measure, q2, originates from the
Laplacian mesh smoothing method [11] and is defined
as

(2.4) q2 = ∥J∥F = tr(JTJ)

where ∥·∥F denotes the Frobenius norm.
An alternative quality measure q3 can be obtained

by considering the metric tensor [12, 11], namely

(2.5) q3 = ∥G∥F
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The equal volume mesh quality measure, q4, origi-
nates from the variational mesh generation method [2],
which was designed by [11]. It is expressed as

(2.6) q4 = J2

A quality measure, q5, that aims at favouring mesh
orthogonality [6] is given by

(2.7) q5 = ∥adj(J)∥F

where adj(J) denotes the adjoint of the Jacobian matrix.
Reference [5] proposed mesh quality measure, q6,

associated with harmonic maps:

(2.8) q6 = J
∥∥J−1

∥∥
F

Tinico-Ruiz and Barrera-Sánchez [16] have devised
the aspect ratio mesh quality measure, q7, given by

(2.9) q7 = ∥J∥F /J

The shape mesh quality measure, q8, minimizes
geometric distortion of isoparametric elements [13], and
is expressed using matrix norms [11] as

(2.10) q8 =
3

2
J−4/d

[∥∥JTJ
∥∥
F
− (1/3) ∥J∥2F

]
where d is the dimension of the problem given.

Knupp [11] proposed two measures of distortion
based on the Jacobian. The measure q9, a non-
dimensional version of q6, given by

(2.11) q9 = J2/3
∥∥J−1

∥∥
F

and the inverse mean ratio measure q10, a non-
dimensional version of q7, given by

(2.12) q10 = J−2/3 ∥J∥F

Freitag and Knupp [14, 4, 10] have devised quality
measures based on the condition number of the Jacobian
matrix

(2.13) q11 = ∥J∥F
∥∥J−1

∥∥
F

and the metric tensor

(2.14) q15 = ∥G∥F
∥∥G−1

∥∥
F

Branets and Carey [1] proposed a shape distortion
measure that aims to detect elemental distortions and
control element size

(2.15) q12 =
1

J

[
1

d
tr(G)

]d/2
,

an elemental dilation measure to control mesh gradation

(2.16) q13 =
1

2

(
V

|J|
+

|J|
V

)
where V is the size of the target element, and a measure
that is a linear combination of these two

(2.17) q14 = (1 − α)q12 + αq13

with 0 ≤ α ≤ 1.

2.1 Appraisal of selected quality measures. To
investigate the sensitivity of the quality measures to
element distortion. we subject a quadratic triangular
element to a symmetric deformation defined in terms of
the coordinates (x1, x2) of a mid-side node only (Figure
2).

Figure 2: Symmetric distortion represented by the
motion of a side node of coordinates (x1, x2).

We define an elemental measure of mesh quality,
Q, from its values at a set of quadrature points on the
reference element, q(ξqi ), i = 1 . . . Nq where the number
Nq of quadrature points, as

(2.18) Q =
mini {q(ξqi ); 1 . . . Nq}
maxi {q(ξqi ); 1 . . . Nq}

We use a Gauss-Lobatto-Legendre quadrature rule [8]
with Nq = 3 for a mesh with polynomial order P = 2.
Contours maps of Q are shown for all the selected
measures Q1, . . . Q14 and Q15 in Figure 3.

All the quality measures reach a maximum value
that corresponds to the straight-sided element, as ex-
pected. A number of measures exhibit very similar be-
haviour, namely the sets: {Q1, Q4}, {Q2, Q3, Q5}, and
{Q6, Q7, Q9, Q10, Q11, Q12}, thus reducing the number
of potential candidates. Measure Q1 is preferred to Q4

due to the presence of multiple local extrema in Q4.
Measure Q3 is favoured due to being steeper near the
maximum. We select Q6 from the other similar mea-
sures in this set. Quality measures Q13 and Q14 are
discarded because they are not convex and also ex-
hibit several local extrema. The final set of measures
is {Q1, Q3, Q6, Q8, Q15}. The following section will as-
sess their sensitivity to boundary displacements.
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Figure 3: Contour maps and level sets of the value of the selected quality measures Qi.

3 Mesh quality near boundaries

To determine the best shape of a curvilinear element
with a side on the boundary, we consider a quadratic
straight-sided equilateral triangle where a mid-side node
is displaced along a symmetry axis a distance δ to
incorporate boundary curvature, as depicted in Figure
4.

Figure 4: A quadratic element with a curved side on
the boundary. The displacement δ of the mid-side node
controls its curvature.

The variation of the selected quality metrics, Qi,
with the displacement of the mid-point of the boundary
side, δ/L, is shown in Figure 5. Note that the Jacobian
is zero for δ/L =

√
3/4.

All the measures decrease monotonically with in-
creasing displacement δ, but Q6 becomes singular at the
point where J = 0. The decrease of measure Q1 with
δ is the slowest, and takes negative values. The others
are always positive and differ in their rate of decrease
which is the fastest for measures Q8 and Q16.

0 0.2 0.4 0.6 0.8 1

/L

-0.2

0

0.2

0.4

0.6

0.8

1
Q

i

Figure 5: Variation of {Q1, Q3, Q6, Q8, Q15} with δ.

3.1 What is the “best” element shape? The
problem of finding the best shape of an element for
quality measure Qi is reduced to that of finding the
values of the location (x1, x2) that maximizes Qi(x1, x2)
for a given δ. We use Brent’s principal-axis method
PRAXIS optimization without derivatives implemented
in the code NLopt [7]. The stopping criteria is that the
distance between consecutive iterations of the optimal
point is smaller than 10−6. The coordinates of the
optimal locations leading to the best elemental shape
are displayed in Figure 6 in which the curves represent
the motion of the optimal point as the displacement δ
increases.

The location of the optimal point for δ = 0 is the
same for all the measures as expected, but it differs
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Figure 6: Coordinates of the mid-side node of the
modified element leading to optimal quality, i.e. the
best element shape, for the selected quality metrics.

significantly for values δ > 0. The variation along the
curves is smooth for all the measures except Q8 that
exhibits erratic behaviour as it exhibits local extrema
for larger values of δ and fails to converge to the global
maximum. As a results the curve for Q8 in Figure 6 as
been obtained using uniform sampling of the values of
Q8 to locate the global maximum.

Measures Q3 and Q15 are better behaved, but
Q15 shows slight discrepancies in the early stages of
the displacement. The behaviour for the measure Q1

is unexpected as the mid-side node moves vertically
according to the optimum location.

A final illustration of the element shapes obtained
through the optimization of the mesh quality is in-
cluded in Figure 7 which shows the “best” shapes for
the measures {Q1, Q3, Q8, Q15} with different displace-
ments δ/L = {0.1, 0.2, 0.3}. These measures differ sig-
nificantly in their sensitivity to boundary displacements.
The measures Q1 and Q8 appears to be the less sensi-
tive whilst the largest element distortion occurs for mea-
sure Q3 that seems to produce largely inflated shapes.
Measure Q15 exhibits a moderate sensitivity to displace-
ments that leads to a smoother variation of the shape
as the boundary displacement increases.

4 Conclusions and further remarks

We have carried out two test to assess a set of high-
order mesh quality measures based on their sensitivity
to elemental distortion from a straight-sided element.

The first test monitored the variation of the qual-
ity of a quadratic triangular element subject to the
motion of a side node. All the measures attained a
maximum value for the straight-sided triangle as ex-
pected, but some of them produced multiple local ex-
trema which made them unsuitable for optimization.

Figure 7: “Best” element shapes obtained for mesh
quality measures Q1, Q3, Q8 and Q16 with different
displacements δ/L = {0.1, 0.2, 0.3}.

This reduced the set of suitable candidates to the mea-
sures {Q1, Q3, Q8, Q15}.

The second test aims at obtaining the “best” shape
of an element subject to a boundary displacement ac-
cording to the set of quality measures selected in the pre-
vious step. This was achieved via an derivative-free op-
timization procedure. The analysis of this test showed
that measure Q1 exhibited unexpected behaviour but
produced reasonably shaped elements, measure Q8 de-
veloped additional local extrema that caused difficulties
to the optimizer, and measures Q3 and Q15 produced
a smooth response to boundary displacement, but mea-
sure Q3 allowed for severely distorted, possibly invalid
elements for large displacements.

The main conclusion of this analysis is that the
measure Q6 verifies all the requirements set out in the
two tests.
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