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Abstract

Classical methods by which computer-aided design (CAD)

geometries are represented for both design and analysis in-

volve meshing. This poses problems, as the meshing pro-

cess takes a significant amount of time and labor, results

in an approximate representation of the geometry of in-

terest, and typically generates models capable only of low-

order analyses. This research focuses on accurately and effi-

ciently rebuilding given CAD surfaces or meshes into single

trimmed surfaces (rather than a piecewise-linear approxima-

tion/representation), making them suitable for use in isoge-

ometric analysis.

1 Introduction

Over 60% of simulation effort performed by the automo-
tive industry is related to crash and safety simulations
[11]. These analyses range in scope from evaluations of
individual components to complete assemblies to entire
vehicles, and leverage both shell and solid elements. Un-
fortunately, the process of converting a computer-aided
design model into an analysis-ready form, a process typ-
ically called meshing, accounts for approximately 70% of
the entire time spent in the design-through-analysis pro-
cess [1, 4] and involves a significant amount of manual
labor. The requirements for automotive meshes are par-
ticularly stringent, requiring well-structured, feature-
aligned, quadrilateral/hexahedral meshes of uniform el-
ement size suitable for explicit dynamics [9]. Resulting
analyses almost exclusively employ low-order finite el-
ement methods to facilitate larger explicit time steps
[2].

In this work, we develop a method to partially
bypass this labor-intensive meshing process by recon-
structing shell components of a vehicle into trimmed
single-surface spline patches suitable for isogeometric
analysis. Trimmed spline patches have been used by
both Honda and BMW to perform isogeometric body-
in-white crash analyses [7]. However, the techniques
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to rebuild these surfaces are proprietary, and current
single-surface reconstruction methods fail on geometries
with rapidly changing normals [15]. The method pre-
sented here is simple, theory-driven, and demonstrated
to work on geometries similar to those that are problem-
atic for current methods. A schematic of the method’s
workflow is shown in Figure 1. Here, the original CAD
geometry or its representative mesh is first converted
into a feature-aware approximating triangulation, which
is then flattened using theory from conformal or differ-
ential geometry to define the parametric domain and
trimming curves of the intended spline. Subsequently,
the bijection between this flattened geometry and its
original spatial representation is then used to inform
a mapping of a B-spline back into the spatial domain.
Once the spatial surface is achieved, it is trimmed using
the boundary of the original geometry, thereby recon-
structing the intended geometry as a single trimmed
B-spline surface. Resulting spline geometries are then
used in LS-DYNA to demonstrate their suitability for
analysis.

2 Creating the Single Trimmed Surface

The following describes the method by which a CAD
model is converted into a single trimmed spline surface.

2.1 Triangulation and Flattening Many automo-
tive structural analyses require use of a well-structured
quadrilateral mesh, which can be expensive to create.
For the purposes of geometry reconstruction, however,
a triangulation can be used, which is significantly easier
to compute. The triangulation should be of sufficient
integrity to accurately approximate the geometry (e.g.,
include features) and to also be used in subsequent anal-
yses.

Using this triangulation, the surface is flattened to
the plane. In this work, the shell surface is temporarily
cut into a topological disk using Dijkstra’s algorithm [3],
after which the surface is flattened via a Tutte embed-
ding [16] and optimized by a Dirichlet-like energy us-
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Figure 1: The process by which a single trimmed surface is created from an original CAD geometry (or its mesh)
is displayed. Spatial and parametric domains are denoted by (S) and (P), respectively. The geometry of interest
for this graphic is a component of a 1996 Dodge Neon A-pillar [5], whose biquadratic reconstruction is made using
484 control points.

ing progressive parameterizations [8]. Cuts introduced
are then removed using constraints similar to those pre-
scribed in [12, 13]. Alternatively, slit maps [18] and
Ricci flow [6, 17] could be used to guarantee the validity
and topology of the embedding, after which optimiza-
tion could be performed for geometrical fidelity [8, 12].
The flattened representation should have as little dis-
tortion as possible (i.e., be close to an isometry).

Upon flattening, a bounding box is computed to
define a u- and v-coordinate system that will act as the
parametric domain of the reconstructed surface. Here,
a principal component analysis may be used to align
the bounding box with predominant feature directions
to produce a better representation.

2.2 Mapping Back into the Spatial Domain
Once the triangulation and its flattening have been
computed, points on the flattened geometry in the
parametric domain are sampled and mapped back into
the spatial domain by solving a surface fitting problem.
In this work, fitting is performed by solving a simple
least squares problem to define the control points of the
intended spline surface [10].

When the span of each B-spline basis function in-
tersects the flattened geometry, a least squares solution
can be found that is of full rank and can be easily solved.
However, when the system of equations is rank deficient,
control points may be associated with basis functions
for which there is no geometric fitting data. This rank
deficiency must be addressed to define a valid mapping.

A visual representation of this rank deficiency can
be seen in Figure 2. The grid overlaying the flattened
geometry is defined by user-chosen knot vectors in the
u- and v-directions (that subdivide the predetermined
bounding box) and defines the Bézier mesh for the
spline. Potential problems arise when the flattened ge-
ometry does not intersect a Bézier mesh cell. This is
because the spatial mapping of the control point of a
basis function whose support overlaps this cell is unin-
formed by the cell’s data. If a basis function evaluates
to zero (or near zero) for all sampled parametric coor-
dinates of the flattened mesh, the final geometry is not
well defined, the positioning of associated control points
may be spurious, and the resulting geometry will be ill-
behaved—particularly near the boundary of the original
surface.
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Figure 2: A possible Beziér mesh for fitting a 1996
Dodge Neon A-pillar component [5] is shown, as would
be defined by knot vectors in the u- and v-directions.

The use of a rank-deficient solver was attempted
in order to combat this mapping problem. However, it
was discovered that rank-deficient solvers work well on
the interior, poorly on the boundary, and very poorly
for unsampled areas outside of the geometry. Because
these purely algebraic approaches lacked control in
the regularity and quality of the surface, geometric
techniques were instead employed.

The first portion of the geometric approach to solv-
ing the least squares problem is an additional sampling
of the original geometry (i.e., refinement through inter-
polation). This provides more control points from which
a mapping from the parametric domain back into the
spatial domain can be achieved, which can help when a
highly refined B-spline is prescribed for a comparatively
coarse mesh.

The second portion of the geometric approach in-
volves sampling parametric points outside the boundary
of the flattened geometry (but contained in the bound-
ing box) and then defining a corresponding spatial coor-
dinate for each of these parametric points. Such points
will be referred to as pseudo-points. Pseudo-points are
chosen to be of sufficient density in each of the empty (or
near-empty) Bézier cells to remove the rank deficiency.
Spatial positioning of each of these pseudo-points is de-
termined by extrapolation of the spatial boundary us-
ing a spatial distance proportional to the parametric
distance of the pseudo-point from the flattened surface.
Currently, the point of extrapolation is coplanar with
the closest geometric face. Upon completion of this ex-
trapolation process, a least squares problem that is no

longer rank deficient results and leads to a much better-
behaved geometric fit.

2.3 Trimming The surface resulting from solving
the least squares problem is a curvilinear quadrilat-
eral that contains extraneous portions resulting from
the pseudo-point mapping. Consequently, the surface
must be trimmed in order to properly account for the
outer boundary and internal holes of the original geom-
etry. The boundaries of interest are selected (and must
be projected, when necessary) and used for trimming
purposes. It should be noted that rebuilt boundaries
may be chosen to only be a subset of those on the ac-
tual geometry (due to defeaturing, a poor quality mesh,
a poor quality CAD representation, etc.).

3 Results

The proposed fitting framework was developed as a
plugin to the CAD software, Rhinoceros 3D. Upon
extracting the single trimmed spline surface of the
geometry of interest, the reconstructed surface is input
to LS-DYNA for modal analysis, thereby demonstrating
its suitability for isogeometric analysis. Here, three
rebuilt automotive components are highlighted.

Dodge Neon Floorboard: Figure 3 depicts a
reconstruction of a Dodge Neon floorboard [5], which
involves significant curvature, featuring, and topological
complexity. This rendering was configured using bicubic
splines and 1,089 control points.

Dodge Neon Cabin Side Panel: The side panel
of a Dodge Neon [5] is also analyzed, as is shown in
Figure 4. Existing methods on comparable geometries
require use of multiple trimmed spline patches, forc-

Figure 3: A Dodge Neon floorboard mesh [5], rebuilt
geometry, and modal analysis are shown.
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Figure 4: A Dodge Neon cabin side panel mesh [5],
rebuilt geometry, and modal analysis are shown.

ing weak continuity between parts that should be com-
pletely conforming [15]. Such weak coupling leads to
poor analysis results [15]. Our method uses a single
trimmed spline surface, which is superior from an analy-
sis perspective. The fitting depicted in Figure 4 employs
biquadratic splines with 484 control points.

Honda B-Pillar: Previous examples involve anal-
yses on meshed and defeatured geometries (as the orig-
inal CAD representations were unavailable), but the
Honda B-Pillar of Figure 5 was provided directly by
Honda [14] as a boundary representation CAD geome-
try. It has 845 trimmed spline surfaces, which are re-
built as a valid triangulation. After surface fitting, trim-
ming operations are performed using the original spline
surface (rather than its approximating mesh). A visual
representation is given in Figure 5, where the rebuilt
bicubic surface has 3969 control points.

4 Conclusions

This work proposes a technique to rebuild CAD and
mesh geometries as single-surface trimmed splines. Re-

Figure 5: A Honda B-pillar geometry [14], rebuilt
geometry, and modal analysis are shown.

sults demonstrate that these rebuilt splines are suit-
able for analysis and have potential for both coarse and
fine spline surface reconstructions. Improvement to the
splines can be made by the user through adding addi-
tional knots in the knot vector, stipulating use of higher
degree polynomials, and/or prescribing additional sam-
pling through interpolation.

Though the fitting method described in this work
yields results suitable for analysis, future research
should involve more advanced techniques aimed to im-
prove accuracy and robustness. These techniques may
include localization of the problem, better accounting
for curvature near the boundaries, and feature preser-
vation.
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