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Abstract

Numerical simulation of the Porous Medium Equation

(PME) is challenging due to the specific properties of its so-

lutions. Notably, the PME exhibits a distinctive feature — a

time-dependent interface emerges when the initial solution is

zero in part of the spatial domain. We propose here to lever-

age the eXtreme Mesh deformation approach (X-Mesh), ini-

tially developed for two-phase problems, to efficiently and

accurately compute solutions for the PME, tracking sharp

interfaces and their potential topology changes without the

need for remeshing or altering mesh topology.

1 Introduction

The Porous Medium Equation (PME) is a nonlinear
partial differential equation of significant interest due to
its widespread applicability in modeling various physi-
cal phenomena such as gas flow in porous medium, in-
compressible fluid dynamics and nonlinear heat transfer
[6]. We consider a domain Ω ⊂ Rd, with d the dimen-
sion of the problem (d ∈ {1, 2}) and a scalar function
u ∈ C0(Ω× [t0, T ]).

The PME is defined as:

(1.1)
∂u

∂t
= ∇ · (κum∇u) , m > 0

In this equation, u is a scalar function in space
x ∈ Rd and time t ∈ [t0, T ] and κum is homogeneous to
a diffusivity coefficient. The function u is frequently
employed to denote physical quantities such as gas
density or temperature, requiring the preservation of
non-negativity in solutions.

The case m→ 0 leads to the heat equation:

(1.2)
∂u

∂t
= ∇ · (κ∇u)

PME is parabolic everywhere u ̸= 0, and loses this prop-
erty when u = 0. It is a degenerate parabolic equation
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[6]. What sets the PME’s solutions apart from the heat
equation’s solutions are their distinctive solution behav-
iors. Unlike solutions from the heat equations, solu-
tions to the PME can exhibit an interface Γ separating
regions where the solutions is strictly positive, and re-
gions where the solution is null. Moreover, depending
on initial solution andm value, ∇u can be discontinuous
across Γ.

As equation 1.1 is not defined for u < 0, it is usually
rewritten for numerical solve purposes as:

(1.3)
∂u

∂t
= ∇ · (κ|u|m∇u) , m > 0

Equation 1.3 is called the signed PME. Solving 1.3
while ensuring non-negativity of the solution over the
whole domain Ω is equivalent to solving 1.1. Conven-
tional numerical methods, such as finite element meth-
ods (FEM), face notable challenges when applied to 1.3.
Sharp interface in the solution domain lead to spurious
oscillations breaking the non-negativity.

To overcome these challenges, we propose in this
paper the use of X-Mesh method which is specifically
designed to handle problems with sharp interfaces in
the FEM context. X-Mesh has demonstrated its
effectiveness in scenarios like the Stefan problem or
two-phase flows [3, 5], excelling at capturing intricate
interface dynamics, without the need of using enriched
elements nor modifying the mesh topology. We will
show that X-Mesh is a valuable tool for accurately
simulating the PME while addressing the limitations of
traditional FEM approaches.

2 The Porous Medium Equation

In this section we will detail important properties of
PME and state of the art methods to solve it. We
consider a domain Ω ⊂ Rd, and a known function
u0 ∈ C1(Ω) almost everywhere such as:

(2.4)


u0(x) ≥ 0 ,∀x ∈ Ω

∂u0

∂n
(x) = 0 ,∀x ∈ ∂Ω



The goal is, for fixed m > 0 and κ > 0, to find u
verifying:
(2.5)

∂u

∂t
(x, t) = ∇ · (κ|u(x, t)|m ∇u(x, t)) ,

∀(x, t) ∈ Ω× [t0, T ]

u(x, t0) = u0(x), ∀x ∈ Ω

∂u(x, t)

∂n
= 0, ∀(x, t) ∈ ∂Ω× [t0, T ]

u(x, t) ≥ 0, ∀(x, t) ∈ ∂Ω× [t0, T ]

As already mentioned, solutions of the PME can ex-
hibit an interface separating regions where the solution
is null from region where the solution is strictly positive.
Therefore, problems modeled with the PME fall into the
categorie of one-phase problems. For clarity purposes,
we are defining here Pu(t) = {x ∈ Ω such as u(x, t) > 0}
, Γu(t) = ∂Pu(t) and Qu(t) = Ω \ (Pu(t) ∪ ∂Pu(t)). Pu(t)

will be refered to as the phase, Γu(t) as the interface and
Qu(t) the empty region for a given solution u(t) on Ω.
The PME has a lot of interesting properties and we will
focus on two that a numerical simulation should be able
to ensure (see [6] for a more extensive list).

Mass conservation An important property of the
PME is that with homogeneous Neumann boundary
conditions on ∂Ω is the invariance in time of the

quantity

∫
Ω

udΩ. General proof can be found in [6]. In

the case of the PME modeling non linear heat transfer,
this correspond to internal energy conservation. In the
case of the PME modeling a gas flow in porous medium,
this corresponds to mass conservation. For convenience,
this property will be refered to as mass conservation.

Barenblatt-Pattle solution Another important re-
sult is the existence of an analytic solution for Equation
1.3. The solution of the form:

(2.6)
u(x, t) = t−α

(
(C − k|x|2t−2β)+

) 1
m

with α =
d

md+ 2
, β =

α

d
, k =

mα

2d
.

with C an arbitrary constant is solution of the PME.
This solution corresponds to an intial solution u0 be-
ing a Dirac distribution for which the total integral∫
Ω
u0 dΩ = M(C) depends on C. For this solution,

the interface localization is f(t) = (Ck )
1
2 tβ .

Solving PME with Finite Element Method When
solving 2.5 with FEM, the property of non-negativity
is broken and oscillations appear at interface Γu which
propagates in the whole empty region. An example of
such oscillations is shown Figure 1 in 1D as illustration.

Figure 1: In black: analytical solution of equation
1.3. In blue: solution obtained with the FEM. The
discretization induces oscillations propagating in the
empty region which are breaking the non-negativity
property.

To circumvent this issue, several approaches have
been proposed. A first idea is to use a numerical scheme
which ensure non-negativity of the solution. Such a
method has been proposed in [7] where a local discontin-
uous Galerkin FEM coupled with a custom made limiter
to ensure non-negativity of the solution. A demonstra-
tion is provided showing that this limiter ensure non-
negativity of the solution for the discontinuous P0 finite
elements, and provide numerical 1D results for discon-
tinuous P2 finite elements in which non-negativity is en-
sured and convergence rate of 3 is retreived.

A second type of approach is to use a time depen-
dant spatial discretization. In [4] is proposed an adap-
tative moving mesh FEM. Meshes used for solving the
PME are time dependant but all have the same topol-
ogy (same number of vertices and elements, and same
connectivity). Each mesh is generated such as its el-
ements’ sizes respect an imposed metric and different
metrics are investigated. They are showing that using
a target metric based on the Hessian of the solution at
previous time step allows to retreive a convergence rate
in O(h2) for m = 1 and m = 2 for the Barenblatt-Pattle
solution. It is important to note that with this method,
non-negativity of the solution is broken and oscillations
at the interface Γu(t) are still showing. However, the
target metric used leads to a smaller element size near
the interface decreasing significantly oscillations propa-
gation in the empty region.

In [1] is proposed a moving mesh finite element
algorithm for PDE with moving boundaries, and is
applied to the Barenblatt-Pattle solution of the PME.
In that case, only the part of the computational domain
where u > 0 is meshed and the mesh evolves in time
in order to ensure mass conservation of the solution.
This allows to obtain a second-order convergence rate
for m = 1 and a first-order convergence rate for m =
3. Moreover, this approach does not handle topology



changes of Pu(t) which can lead the mesh to overlap
itself and need to be coupled with a remeshing algorithm
for such cases, which is not shown in the paper.

The method proposed in this paper falls into the
moving meshes category. The X-Mesh method princi-
ple is to find at each time step tn the solution un and
the spatial discretization Tn such as Tn has the same
topology as Tn−1 and that Γun

is fully represented by
vertices and edges of Tn.

3 The X-Mesh approach

As previously mentioned, the goal of the X-Mesh ap-
proach is to use a time dependant spatial discretiza-
tion. In order to develop a discrete formulation of the
problem with this constraint, we introduce the arbitrary
Lagrangian Eulerian frame of reference [2]. We define
the reference domain Ω0 as Ω0 = Ω, and a mapping
X ∈ (H1(Ω0 × [t0, T ]))

d:

(3.7)
X : Ω0 × [t0, T ] → Rd

(X0, t) 7→ X(X0, t)

We define Ωt = {X(X0, t),X0 ∈ Ω0, t ∈ [t0, T ]}, w =
∂X

∂t

∣∣∣∣
X0

, F =
∂X

∂X0

∣∣∣∣
t

and J = det F. The variational

formulation obtained from 1.3 is:
(3.8)
d

dt

∫
Ω

ūudΩ = −
∫
Ω

κ|u|m∇ū.∇udΩ−
∫
Ω

uw∇ūdΩ

The spatial discretization is done by partitioning the
reference domain Ω0 into a triangular mesh T0 for
which the set of nodes is denoted N0. The spatial
discretization at t is the triangulation T (t) obtained
from applying the mapping X to T0. By construction,
the mesh topology (number of nodes and connectivities)
does not depend on time. The time integration of
equation 3.8 between two instants tn and tn+1 is done
using a θ scheme.

The X-Mesh approach is summed up in Algo-
rithm 1, were solve refers to a classical finite element
resolution with two fixed triangulations Tn and Tn+1,
localize interface refers to a selection procedure flag-
ging nodes of Tn+1 which should belong to the interface,
update interface refers to a modification of Tn+1 mov-
ing flagged nodes to an estimated interface position and
R refers to the residual evaluation.

3.1 Interface location estimation and mesh up-
date Given a solution (Un+1,Xn+1), it is possible to
split the set of nodes N into two subsets NP and NQ:

(3.9)

{
NP = {i ∈ N | U i

n+1 > 0}
NQ = N \NP

Algorithm 1: Solving scheme for [tn, tn+1]
time step. Solution (Un,Xn) at instant tn
is known, tol is a user imposed tolerance for
convergence.

k ← 0;
X0

n+1 ← X0;
U0
n+1 ← solve((Un,Xn),X

0
n+1);

NΓuh
n+1
← localize interface(U0

n+1,X
0
n+1);

while ϵ > tol do

Xk+1
n+1 ←
update interface(NΓuh

n+1
, (Un,Xn), (U

k
n+1,X

k
n+1));

Uk+1
n+1 ← solve((Un,Xn),X

k+1
n+1);

ϵ← R((Un,Xn), (U
k+1
n+1 ,X

k+1
n+1));

k ← k + 1;

(Un+1,Xn+1)← (Uk
n+1,X

k
n+1);

NP corresponds to the set of nodes which are inside the
phase at tn+1 and NQ to the set of nodes which are
outside the phase. Interface Γuh

n+1
is localized inside

triangles of Tn+1 which vertices are belonging to NP
and NQ, but the exact location is not known a priori.
We now define:
(3.10)
NΓuh

n+1
= {i ∈ NQ | i is connected to at least

one node of NP}

NΓuh
n+1

is the set of nodes which will be used to describe

Γuh
n+1

(Figure 2). It is defined only once for time step

tn+1 and will remain unchanged during the successive
updates of Tn+1 nodes localization. This step is called
localize interface in Algorithm 1. During the mesh
update procedure, nodes from NΓuh

n+1
will be moved to

Γuh
n+1

estimated location.

It is important to note that moving all nodes from
NΓuh

n+1
to Γuh

n+1
is an ill-posed nonlinear problem. The

approach adopted in this work is to compute and update
an estimated optimal position for each node of NΓuh

n+1

independantly from each other and reiterate this process
until convergence.

For p ∈ NΓuh
n+1

a node which has been flagged to

be belonging to the interface Γuh
n+1

. In order to get a

good estimation of the interface Γuh
n+1

location, we are

considering the current solution Un+1 only on the patch
of triangles T p

n+1 sharing p as a vertex. We denote N p

the set of nodes of T p
n+1 and N̄ p = N p \ NΓ

uh
n+1

the

set of nodes connected to p which does not belong to
NΓ

uh
n+1

.



Figure 2: Left: in red nodes of NP and in black nodes
of NQ. Right: In green are highligted nodes selected to
belong to NΓuh

n+1
. The blurred blue line represent the

approximate location of Γuh
n+1

.

Finally, we define Ũn+1 such as:

(3.11)

{
Ũ i
n+1 = U i

n+1, ∀i ∈ N p, i ̸= p

Ũp
n+1 = 0

With ϕp the finite element basis function associated to
node p, we have that p belongs to interface Γuh

n+1
is

equivalent to:
(3.12)

r(ϕp, Ũn+1,Xn+1, Un,Xn)

=

∫ tn+1

tn

(
d

dt

∫
Ω

ϕpũdΩ

+

∫
Ω

κ|ũ|m∇ϕp.∇ũdΩ +

∫
Ω

ũw∇ϕp dΩ

)
dt

= 0

We define now a vector v ∈ Rd and a new triangu-
lation T̃ v

n+1 obtained from the triangulation Tn+1 where
the node p is translated by v.

The problem of finding a new location for p such as
p ∈ Γuh

n+1
can then be formulated as:

(3.13)
Find v ∈ Rd such as

r(ϕp, Ũn+1, X̃
v
n+1, Un,Xn) = 0

This problem does not have a unique solution. In
order to simplify the search for a valid v, we are only
considering translations along edges connecting p to N̄ p.
Therefore, we only consider vectors v = ηpjvpj where:

(3.14)

{
vpj = Xn+1(j)−Xn+1(p), j ∈ N̄ p

ηpj ∈ [0, 1]

By doing so, solving problem 3.13 comes down to solve
#(N̄ p) sub-problems:
(3.15) With p, Ũn+1, Un, Xn, vpj fixed, and j ∈ N̄ p

find ηpj ∈ [0, 1] such as

r(ηpj) = r(ϕp, Ũn+1, X̃n+1(ηpjvpj), Un,Xn) = 0

Defining Sp = {ηpjvpj | (ηpj ,vpj) verifies 3.15} the set
of possible translations to move node p, the one inducing
the smallest mesh deformation is selected.

4 Results and conclusion

To evaluate the X-Mesh approach performances, the
method is applied to retreive the Barenblatt-Pattle
solution 2.6 for d = 2, κ = 1 and various values of m.
The quantities of interest are the interface localization
and the mass conservation. At every time step, the error
in interface localization relative to the mesh size (fr)
and the mass variation relative to the initial solution’s
mass (Mr) are computed for each obtained solution.
These results are depicted Figure 3 and show for m ≥ 1
an enhancement on interface localization by one order
of magnitude compared to a classical FEM resolution,
and that the mass conservation property is ensured up
to the solver precision.

Figure 3: Left: error on interface localization relative
to the mesh size for different values of m. The dashed
orange line represent the average interface localization
error relative to the mesh size obtained with a classical
FEM. Right: Total relative mass variation for different
values of m.

Figure 4 describes the simulation of a configuration
were interfaces are coalescing. In that case, the phase
Pu(t) changes topology during time, which the X-Mesh
approach handles automatically without any difficulties.

Figure 4: Two chronological time steps in the case of
coalescing interfaces. Colored elements belong to the
phase, white one to the empty region and gray spheres
are nodes NΓ representing the interface.

These primary results illustrate that X-Mesh ap-
proach is an interesting path to follow for one-phase
problems’ simulations.
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