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Abstract

We propose a new meshing strategy for closed surfaces,

based on the computation of exact discrete geodesics. The

resulting meshes are discretely isogeometric to the underly-

ing surface, and their coarseness is only limited by the sur-

face topology. This makes them perfect candidates for creat-

ing polynomial finite elements or Bézier or NURBS patches

suitable for high-order numerical solvers.

1 Introduction

A major bottleneck of high-order numerical methods on
complex geometries is the construction of meshes with
sufficiently large elements, on which high-order approx-
imations of the solution can be efficiently constructed.
This bottleneck is a key reason why most finite element
tools used in engineering practice today are still based
on relatively old and inaccurate low order (typically,
second order) discretizations, even though the advan-
tages of higher order methods are well-known [1]: they
provide faster grid convergence and they increase arith-
metic intensity, making them amenable to highly paral-
lelized implementations on both CPUs and GPUs.

High-order meshing on complex geometries is still
an open problem for two main reasons. First, most
high-order meshing approaches are indirect: they re-
quire a valid straight-sided mesh first, before attempt-
ing to curve it to better match the underlying geometry.
On the one hand this intrinsically makes it impossible
to create very coarse meshes, as the straight-sided mesh
has to be sufficiently fine in the first place - typically
to avoid a self-intersecting boundary mesh before pro-
ceeding to the tetrahedralization of the volume. On the
other hand, the curving procedure also typically leads to
some invalid (self-intersecting, non-positive) high-order
elements, requiring costly untangling procedures that
have proved hard to make robust [12, 4, 11]. The sec-
ond obstacle to high-order meshing is the use of CAD
geometries. Generating large elements inevitably leads
to the necessity of cross-patch meshing (with elements
having nodes on more than one CAD patch), negating
much of the advantage of CAD-based meshing.
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However it must be noted that any CAD representa-
tion can easily be transformed into a triangulation that
has an arbitrary precision i.e. that is arbitrary close (e.g.
in term of Hausdorff distance) to the CAD model. (The
opposite is not true: parametrizing arbitrary complex
triangulations into regular patches is not easy at all by
all means [2].) And in addition, the field of engineering
analysis has extended to areas where no CAD blueprint
exists, most importantly in material and biomedical sci-
ences. The raw input geometrical data in these areas are
point clouds or voxels obtained through imaging tech-
niques such as tomography, which are converted to tri-
angulations after segmentation.

Triangulations can thus be considered as the univer-
sal input for mesh generation, which is the point of view
we adopt in this work: we assume that the geometry we
consider is given by a watertight triangulation T . Our
goal is to build an arbitrary coarse triangulation T of T
that is isogeometric to T , by exploiting the fast calcu-
lation of discrete geodesics on T [3]. The quality of the
isogeometric triangulation can be improved by geodesic
Delaunay edge flips, and refined by geodesic Delaunay
refinement if desired. The final isogeometric triangula-
tion can then be e.g. fitted to a polynomial high-order
mesh to be amenable to classical high-order finite ele-
ment solvers; or to Bézier or NURBS patches for use in
isogeometric methods [5].

The approach we are proposing today applies only
to closed surfaces, regardless of their genus.

2 Discrete Geodesic Triangulation

In differential geometry, a geodesic is a curve represent-
ing in some sense the shortest path between two points
in a surface. Assume a manifold triangulated surface T
with n vertices. The MMP algorithm [7] can be used to
compute the exact straightest distance between a ver-
tex to all other n − 1 vertices of T . While its worst
complexity is O(n2), it can in practice be lowered us-
ing smart pruning techniques [13]. See [3] for a recent
review paper on the topic of numerical geodesics.

Figure 1 shows the image of a human vertebra. The
image has been clipped to show on one of its sides the
geometric triangulation T and the other side shows the
calculation of the geodesic distance between any source
point s that lies on the surface (s being not necessarily a
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Figure 1: Discrete geodesic between two points of a
triangulation T of a human vertebra.

vertex of T ) and all other points. Knowing this distance
field d(s) it is possible to start from any point t ∈ T and
return to s along the geodesic between s and t through
smart backtracking. This calculation is very fast and is
illustrated on Figure 1 by the white curve.

We define a discrete geodesic triangulation T as
a set of Nt triangles whose edges are exact discrete
geodesics on T . This geodesic triangulation T is
compatible with the surface T , i.e., it has the same
topology as T and all its points lie exactly on T .

2.1 Validity In order to assess the validity of T ,
consider a vertex pi of T and all its ni adjacent edges
eijk , k = 1, 2, . . . , ni that are topologically ordered i.e.
two consecutive vertices jk and jk+1 form a triangle
pi, pjk , pjk+1

of T . We define the normal ni at point
pi as follows:

• if pi lies inside a triangle of T , ni is the normal to
the triangle in which pi lies;

• if pi lies on an edge of T , then ni is the average of
the normals of the triangles adjacent to this edge;

• if pi lies on a vertex of T , then ni is the average of
the normals of the triangles adjacent to that vertex.

We then define ti,jk as the tangent vector to the discrete
geodesics and gi,jk at point pi.

A way of guaranteeing that a planar triangulation
is valid is to look at each node in the triangulation
and check that the edge eijk lies geometrically between
its neighbors eijk−1

and eijk+1
. We can extend this to

geodesic triangulations by checking that the topological
order of the edges starting from a node corresponds
to their geometric order, i.e. that they are oriented
anti-clockwise (the surface normal is assumed to be the
exterior normal). If all vertices are well-oriented in the
sense just defined above, then the geodesic triangulation
forms a regular partition of the surface i.e. it exactly

(iso-geometrically) covers the surface without holes or
overlaps. This is true because, if two geometrically
successive edges adjacent to a node are the edges of
a triangle and the geodesics do not intersect, then no
geodesic intersects another.

2.2 Local Modifications Local mesh modification
operators can be adapted to the geodesic framework:

• split operators, such as edge split (adding a node
to an edge and dividing two adjacent triangles in
two) or triangle split (dividing a triangle in three);

• coarsening operators such as edge collapse or small
polygon reconnection (SPR);

• the relaxation operator, i.e. the edge flip.

The only condition to be met to authorize one of these
local mesh modifications is that the new vertices must
have counter-clockwise adjacent geodesic edges. Note
that all meshes obtained by refining or coarsening these
meshes are iso-geometric, i.e. they all represent exactly
the same geometric object – namely T .

Figure 2 shows a geodesic triangulation of the
vertebra that has been generated in four steps:

1. The STL mesh T of 168,144 triangles seen of Fig-
ure 1 is coarsened using the decimation algorithm
proposed by Schroeder et. al. [9]. The mesh T with
320 triangles that is generated has all its points on
the initial triangulation and its topology is guaran-
teed to be the same as the original fine STL. The
coarse straight sided mesh can be seen on the left
of Figure 2.

2. Every edge of the coarse mesh has been trans-
formed onto a discrete geodesic. Here, we sort every
edge of the coarse mesh in lexicographic order. We
compute every edge that starts at node pi using
one single instance of the geodesic distance com-
putation. Exact distance computation is stopped
when every edge that has its initial vertex equal to
pi is reached by the Breadth first search algorithm.
This allows to dramatically reduce the number of
calls to this rather expensive algorithm which is
also run in parallel using OpenMP.

3. The meshes shown in the middle and right part
of Figure 2 have been untangled and enhanced by
local geodesic edge flips. We flip an edge if the
minimal angle between the geodesics is maximized,
as with the classic Delaunay flip [10].

4. The geometric mesh T is finally intersected by those
geodesics and isogeometric triangles are finally gen-
erated. In Figure 2, we have used a greedy coloring
algorithm to clearly visualize the geodesic triangles.
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Figure 2: On left, a coarse mesh of the vertebra; in the middle, the discrete geodesic triangulation; on the right
the discrete geodesic triangulation that has been optimized using geodesic flips.

2.3 Refinement It is also possible to refine/adapt
the mesh using classical techniques such as the longest-
edge bisection [8] or a Delaunay refinement. Figure 3
shows an example of a mandible with a coarse mesh and
a mesh refined by the longest-edge bisection algorithm.
Note that both coarse and fine meshes are perfectly
isogeometric.

3 Examples

Figure 4 shows a variety of examples, with fine geomet-
ric triangulations ranging from a few triangles for the
truncated cube to about 4 million triangles for the brain.
Geodesic meshes are generated in just a few minutes on
a standard laptop using a maximum number of threads.

4 Conclusion and Perspectives

The geodescic triangulations introduced in this work
constitute a new kind of surface meshes, discretely
isogeometric to the underlying surface. The main
ingredient for their construction is the computation of
exact discrete geodesics.

One first use of geodesic triangulations will be to
replace geodesic edges and isogeometric triangles by
standard polynomial-based finite elements, or Bézier
or NURBS patches. For that we plan to propose an
approach that is adaptive i.e. that guarantees that the
high order polynomial mesh or Bézier/NURBS patches
will be i) valid [6, 14] and ii) at a controlled L∞ distance
from the “true geometry” i.e. the isogeometric triangles.

Figure 3: Decimated mesh (top), valid and optimized
geodesic mesh using geodesic Delaunay flips (middle)
and mesh after shortest edge bissection refinement (bot-
tom).
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Panoplosarius skull (Nt = 1,375,768) Human brain (Nt = 3,923,694) T-rex (Nt = 936,038)

Anubis statue (Nt = 73,214) Scanned mech. part (Nt = 797,670) Human pelvis (Nt = 55,958)

Truncated cube (Nt = 5,738) Cyborg head (Nt = 377,814) Lumbar spine (Nt = 494,908)

Figure 4: Various examples of geodesic meshes.
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