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ABSTRACT

An arbitrary n-dimensional simplicial complex is initialised for adaptive mesh refinement by standard bisection (aka
newest vertex bisection) simply and quickly without an initial refinement splitting any original simplex into many
ones. It requires an efficient algorithm that colours the nodes of the initial triangulation (any number of colours is
admissible, fewer colours are better) as a missing link. The theorem of Binev, Dahmen, and DeVore about the ratio of
the total number of bisected and the total number of marked simplices is extended to refinements of a triangulation
initialised in that way.
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1. INTRODUCTION

Among various notations describing the standard bi-
section [1, 2, 3], we use Kossaczký’s: An embedding
parallelotope of a m-simplex S = conv(p0, . . . , pm) of
type k ∈ {0, . . . ,m} is

P := p0 +
k

�

j=1

[0, 1](pj − pj−1) + [0, 1](2pk+1 − p0 − pk)

+

n
�

j=k+2

[0, 2](pj − pj−1) £ S,

i.e. there is a sequence of faces Fk ¢ · · · ¢ Fm = P of
P with the properties:

• dimFj = j for all j = k, . . . ,m.

• The edges p0p1, . . . , pk−1pk are edges of Fk.

• For any j = k+1, . . . ,m, the vertex pj is the cen-
tre of Fj .

Note that P depends on the type and the order of the
vertices. We encode this order and the embedding by

the T-array

T =











p0 · · · pk
pk+1

...
pm











.

Let a diagonal of a parallelotope P be a line segment
between its vertices which runs through the relative
interior of P . An embedded simplex S of type k g 1
is bisected at the edge p0pk, the diagonal of Fk, into
two children S1 and S2. The children are type-(k−1)
embedded in the same parallelotope. The vertex (p0+
pk)/2 is the new vertex Nnew(S1) = Nnew(S2) of the
children. If S is type-0 embedded in the parallelotope
P = p0+

�m
j=1[0, 2](pj−pj−1), encoded by the T-array

(p0 · · · pm)T , then S can be also type-m embedded
into p0 +

�m
j=1[0, 1](pj − pj−1), i.e. P scaled at p0 by

factor 1/2, which is encoded by (p0 · · · pm). With this
scaled embedding, the bisection can continue. Any
edge E between the vertices p0, . . . , pk is a diagonal
of a unique j-dimensional face (for some unique j ∈
{1, . . . , k}) of Fk. We say that E has level 0 and type



j. Any other edge E of S is a diagonal of a unique
j-dimensional face (for some unique j ∈ {1, . . . , n}) of
a 1/2-scaled copy of P which embeds some descendant
of S. We say that E has level 1 and type j.

Adaptive Finite Element Methods follow the loop:

T0 initial
triangulation

SOLVE ESTIMATE

MARKREFINE
Tj

Tj+1

unpredictable

Figure 1: The AFEM loop

Start with some coarse conforming triangulation T0

of a polytope Ω with embeddings for each simplex
S ∈ T0. Then repeat the following: SOLVE a discrete
PDE on the coarse mesh Tj numerically. ESTIMATE
the contribution of each simplex to the error. MARK
a set of simplices Mj ¢ Tj with large estimates. RE-
FINE the mesh bisecting (by standard bisection) at
least the marked simplices Mj and as many further
simplices as necessary such that the new mesh Tj+1 is
still conforming. Then start the next loop, until the
error becomes as small as desired. For a detailed ex-
planation, see [4]. The solution and estimation step
are not discussed here, so the marking algorithm is
supposed to be unpredictable.

A sequence T0, . . . , TN of triangulations together with
a sequence M0, . . . ,MN−1 of marked simplices con-
structed in that way is called a refinement sequence.
Under certain initial conditions for T0, [4] (for 2D) and
[5] (for nD) showed the BDV theorem about the linear
conforming closure: There exists a constant CBDV(T0)
such that for all refinement sequences,

#TN −#T0 f CBDV

N−1
�

j=0

Mj .

The initialisation of an unstructured simplicial com-
plex, i.e. equipping each simplex of a conforming tri-
angulation with an embedding such that the initial
conditions are satisfied, has been an often discussed
problem since the 90s. For dimension 2, [6] have given
an efficient initialisation algorithm. For dimension n,
[1, 5] suggested initial refinements as follows: At the
beginning, every simplex is divided into (n+1)!/2 sim-
plices, which are equipped with embeddings. Unfor-
tunately, this leads to very acute angles. To avoid an
initial refinement, [7] gave an initialisation which sat-
isfies a weaker initial condition. The output of their
algorithm has conforming uniform n-fold refinements

by standard bisection, but a BDV theorem for it is
unknown. For dimension 3, [8] used a slight exten-
sion of the standard bisection, equipped an arbitrary
mesh with his extended embeddings, violating the ini-
tial conditions, and proved the BDV theorem for its
refinements. Schön also gave an example of a triangu-
lation which cannot be initialised satisfying the initial
conditions.

This work presents a simple new initialisation algo-
rithm for standard bisection of an arbitrary simplicial
complex without initial refinements. The algorithm
presupposes a colouring of the vertices of the initial
triangulation with any number c of colours and given
such a colouring, it runs in O(c#T0) time. It satisfies
the strong initial condition in a broader sense and it
satisfies the BDV theorem.

2. THE COLOUR INITIALISATION

The initialisation algorithm calls a function
find_colouring to find a certain colouring c

as described below. A (good) algorithm for that is
still missing. Let N (S) and N (T ) denote the vertices
of a simplex S and a triangulation T , respectively.
We initialise the mesh according to the colour
initialisation (Algorithm 1):

Remark 1. If we find a colouring with only n colours,
the algorithm does not add any virtual vertices and the
initialised mesh satisfies the initial conditions given in
[1] and [5]. The other extreme would be to use as many
colours as vertices, which turns out as a special case
of the algorithm in [7].

Definition 2. The output of this algorithm is the ini-
tial virtual embedded triangulation V0. It is refined by
the above loop. The set of all virtual embedded sim-
plices generated from V0 by standard bisection is the
set of admissible virtual embedded simplices V. For
V ∈ V, the generation g(V ) counts how often an ini-
tial simplex has to be bisected to become V . If an
n-dimensional face of a virtual simplex V lies in Ω, it
is called its real face R(V ). A real mesh, a conforming
refinement of T0, appears as the set of real faces of a
conforming refinement of V0. If a real face is marked,
the appendant virtual simplex has to be bisected suc-
cessively, until the real face is bisected.

Remark 3. An implementation can completely dis-
pense with the virtual vertices and simplices. They
serve only theoretical purposes here.

3. INITIAL CONDITIONS

Definition 4. According to [1, (A1) and (A2) on
p. 282] and with a similar effect as [5, (a) and (b)
on p. 232], the initial conditions (IC) are:



Algorithm 1 Colour initialisation

function find_colouring(Conforming triangula-
tion T )
return colouring c : N (T ) → {1, . . . , c} (for an ar-
bitrary c ∈ {n, n+1, . . . }), such that in each simplex
S:

• there are at most 2 vertices p ∈ N (S) with
c(p) = 1,

• for any other colour 2, . . . , c, there is at most
one vertex p ∈ N (S) with this colour.

end function

function initialise(Initial conforming triangula-
tion T0)

Let c := find_colouring(T0).
Embed Ω into a high dimensional space (e.g. into

R
c) isometrically. Add virtual vertices to each sim-

plex and extend the colouring c to them until each
simplex contains two vertices of colour 1 and one
vertex of the other colours each. The result is called
a virtual simplex . Any virtual vertex appears in only
one simplex. Place them in a way that the intersec-
tion of any two simplices is not enlarged through the
addition of the virtual vertices.

In each virtual simplex, let p0 and p1 be the two
vertices of color 1 in arbitrary order. Then every vir-
tual simplex is embedded according to the T-array











p0 p1
c
−1(2)

...
c
−1(c)











.

return embedded virtual simplices
end function

1. V0 is conforming.

2. All embeddings in V0 are of the same type.

3. If any edge E occurs in two initial embedded vir-
tual simplices U, V ∈ V0, then E has the same
level and type in U as it has in V .

Remark 5. The output of the colour initialisation sat-
isfies the IC obviously.

4. THE BDV THEOREM

The BDV theorem can be proven adapting the proof of
Binev, Dahmen, and DeVore by means of the following
stepping stones:

Proposition 6. 1. If a virtual embedded simplex is
bisected max{2c−2n, c−n+1} times successively,
any real face of it is at least once bisected.

2. Let |·| denote the n-dimensional Lebesgue mea-
sure. There are only finitely many values for the
scaled volume 2

n

c
g(V )|R(V )| and diameter 2g(V )/c

diamR(V ) among the admissible virtual simplices
V, especially a minimum d for the first value and
a maximum D for the second value.

3. If the marking of the embedded simplex V ∈ V

causes the bisection of another U ∈ V in the re-
finement step, then for any child V ′ of V and
any child U ′ of U , there is a sequence V ′ =
V0, . . . , VN = U ′ of virtual simplices in V with
the properties:

g(V1) = g(V0),

g(Vj) = g(Vj−1)− 1 for j = 2, . . . , N,

R(Vj−1) ∩R(Vj) ̸= ∅ for j = 1, . . . , N.

4. If the marking of V causes the bisection of U ,
then for a child V ′ of V it holds that

U ¢ B



Nnew(V
′), D

g(V )+1
�

j=g(U)+1

2−j/c



 .

Theorem 7. For any refinement sequence T0, . . . ,
TN with marked simplices M0, . . . , MN−1 of the real
mesh, it holds that

#TN −#T0 f CBDV(n, c, d,D)

N
�

j=1

#Mj .
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