
T8CODE V. 1.0 - MODULAR ADAPTIVE MESH

REFINEMENT IN THE EXASCALE ERA

Johannes Holke* Carsten Burstedde† David Knapp* Lukas Dreyer*

Sandro Elsweijer* Veli Ünlü* Johannes Markert* Ioannis Lilikakis* Niklas Böing*

Prasanna Ponnusamy* Achim Basermann*

January 2023

ABSTRACT

In this note we present version 1.0 of our software library t8code for scalable dynamic adaptive mesh refinement (AMR) officially

released in 2022 [1]. t8code is written in C/C++, open source, and readily available at www.dlr-amr.github.io/t8code. The library

provides fast and memory efficient parallel algorithms for dynamic AMR to handle tasks such as mesh adaptation, load-balancing,

ghost computation, feature search and more. t8code can manage meshes with over one trillion mesh elements [2] and scales up to

one million parallel processes [3]. It is intended to be used as mesh management back end in scientific and engineering simulation

codes paving the way towards high-performance applications of the upcoming exascale era.

Keywords: mesh management, adaptive mesh refinement, numerical simulation, high performance computing, exascale

1. INTRODUCTION

AMR has been established as a successful approach for scien-

tific and engineering simulations over the past decades [4–7].

By modifying the mesh resolution locally according to prob-

lem specific indicators, the computational power is efficiently

concentrated where needed and the overall memory usage is

reduced by orders of magnitude. However, managing adap-

tive meshes and associated data is a very challenging task,

especially for parallel codes. Implementing fast and scal-

able AMR routines generally leads to a large development

overhead motivating the need for external mesh management

libraries like t8code.

t8code is written in C/C++, open source, and version 1.0

can be obtained at www.dlr-amr.github.io/t8code [1]. It uses

efficient space-filling curves (SFC) to manage the data in

structured refinement trees. While in the past being success-

fully applied to quadrilateral and hexahedral meshes [8, 9],

t8code extends these SFC techniques in a modular fashion,

*German Aerospace Center (DLR), Institute for Software Tech-
nology, Cologne, Germany, johannes.holke@dlr.de, corresponding
author

†University of Bonn

such that arbitrary element shapes are supported. We achieve

this modularity through a novel decoupling approach that

separates high-level (mesh global) algorithms from low-level

(element local) implementations. All high-level algorithms

can then be applied to different implementations of element

shapes and refinement patterns. A mix of different element

shapes in the same mesh is also supported.

In version 1.0, t8code provides implementations of Mor-

ton type SFCs with 1 : 2d refinement for vertices (d = 0),

lines (d = 1), quadrilaterals, triangles (d = 2), hexahedra,

tetrahedra, prisms, and pyramids (d = 3). The latter having

a 1 : 10 refinement rule with tetrahedra emerging as child

elements [10]. Additionally, implementation of other refine-

ment patterns and SFCs is possible according to the specific

requirements of the application.

The purpose of this note is to provide a brief overview and

a first point of entrance for software developers working on

codes storing data on (distributed) meshes. The structure is

as follows: Sec. 2 gives a brief outline of the fundamental al-

gorithms, Sec. 3 presents the interface, Sec. 4 emphasizes the

modularity of t8code while Sec. 5 shows some performance

https://dlr-amr.github.io/t8code
https://dlr-amr.github.io/t8code

results. Finally, in Sec. 6 we draw a conclusion and give a

brief outlook.

For further information beyond this short note and also for

code examples, we refer to our Documentation and Wiki [1]

and our other technical papers on t8code [2, 3, 10–16]

2. FUNDAMENTAL CONCEPTS

t8code is based on the concept of tree-based adaptive mesh

refinement. Starting point is an unstructured input mesh,

which we call coarse mesh that describes the geometry of the

computational domain. The coarse mesh elements are refined

recursively in a structured pattern, resulting in refinement

trees of which we store only minimal information of the finest

elements (the leafs of the tree). We call this resulting fine

mesh the forest.

By enumerating the children in the refinement pattern we ob-

tain a space-filling curve logic. Via these SFCs, all elements

in a refinement tree are assigned an index and are stored in

linear order of these indices. Information such as coordinates

or element neighbors do not need to be stored explicitly, but

can be recovered from the index and the appropriate infor-

mation of the coarse elements. The less elements the input

mesh has, the more memory and runtime are saved through

the SFC logic. t8code supports distributed coarse meshes of

arbitrary size and complexity, which we tested for up to 370

million input elements [11].

The forest mesh is distributed, that is, at any time, each

parallel process only stores a unique portion of the forest

mesh, the boundaries of which are calculated from the SFC

indices; see Fig. 1.

k0 k1

p0 p1 p1 p2

k0

k1

Figure 1: Left: Quad-tree of an exemplary forest mesh

consisting of two trees (k0, k1) distributed over three parallel

processes P0 to P2. The SFC is represented by a black curve

tracing only the finest elements (leaf nodes) of each tree.

Right: Sketch of the associated triangular mesh refined up to

level three.

3. INTERFACING WITH t8code

In this section we discuss the main interface of t8code and

how an application would use it. While t8code offers various

ways to interact with meshes and data, we restrict ourselves

to the most important functionality here.

Every application is different and comes with their own re-

quirements, data, and adaptation criteria. In order to support a

wide variety of use cases, our core philosophy for t8code is

to impose as few assumptions and to offer as much freedom

as possible. We cater for this by applying the Hollywood

principle: ”Don’t call us, we’ll call you!”. Whenever an

application needs to interact with the mesh, e.g., adapting

the mesh, interpolating data, etc., we offer suitable callback

handlers.

The application developer implements custom callback func-

tions and registers them via the t8code application program-

ming interface (API). Any mesh specific details on how to

access individual elements in the forest is opaque to the ap-

plication and internally handled by t8code in an efficient

manner. Of course, any typical application using hierarchical

meshes needs to store data on the elements of a forest. This

data might correspond to some simulated state variables, e.g.,

fluid velocity and temperature in a CFD simulation. In accor-

dance to our core philosophy, the data is only loosely coupled

with t8code’s data structures. In order to properly access the

application data in the callbacks, the data simply needs to be

provided as a consecutive array with one entry per element

enumerated in SFC order. For parallel applications, access to

neighboring elements across parallel zones (ghost layer) is

provided in a similar fashion.

3.1 An example application

In the following section, we want to discuss the most im-

portant high-level operations implemented in t8code. For

this, consider a 3D numerical solver application that traces

a flow bubble moving around a rotating cylinder. The appli-

cation runs in parallel and the mesh is dynamically adapted

in (almost) every time step resolving the moving bubble with

higher resolution than the surrounding domain. These per-

petual mesh changes constantly require the flow state data

to be interpolated from one adaption step to the next. A

visualization of such a setup might look like Fig. 2.

Figure 2: Meshed region of fluid flow around a rotating

cylinder. The green blob corresponds to a bubble that is

transported within the moving fluid. The mesh is particularly

refined along the boundary of the bubble. Colors encode the

element’s distance from the bubble.

The standard way to implement such an application is to use

the following high-level t8code operations: New, Adapt,

Balance, Interpolate, Partition, Ghost, Iterate. This is also

illustrated in the flowchart in Fig. 3. Next, we give more

details about the different operations:

New: Constructs a new, uniformly refined mesh from a coarse

geometry mesh. This mesh is already distributed across the

parallel processes. This step is usually only carried out once

during the preprocessing phase.

Adapt: Decides for each element whether to refine, coarsen,

or pass according to the results of a criterion provided by a

custom adaption callback.

Balance: Establishes a 2:1 balance condition, meaning that

afterwards the refinement levels of neighboring elements are

either the same or differ by at most ±1. Note, this operation

only refines elements, never coarsens them. Applications are

free to decide whether they require the balance condition or

not.

Interpolate: Interpolates data from one forest mesh to another.

For each element that was refined, coarsened or remained the

same, an application provided callback is executed deciding

how to map the data onto the new mesh.

Partition: Re-partitions the mesh across all parallel processes,

such that each process has the same computational load (e.g.

element count). Due to the SFC logic, this operation is very

efficient and may be carried out in each time step.

Partition Data redistributes any user defined data from the

original mesh to the re-partitioned one. Input is an array with

one entry for each element of the original forest containing

the application data, output is an array with one entry for each

element of the re-partitioned forest, containing the same data

(that may previously have been on a different process).

Ghost: Computes a list of all ghost elements of the current

process. Ghosts are elements that are neighbors to elements

of the process, but do not belong to the process itself.

Ghost exchange transfers application specific data across all

ghost elements. Input is an array of application data with

one filled entry for each local element and one unfilled entry

for each ghost. On output the entries at the ghost elements

will be filled with the corresponding values from the neighbor

processes.

Iterate: Iterates through the mesh, providing face neighbor

information for each element passed as an argument to the

callback. In our example application, it is used to carry out

the advection step of the bubble.

Search may be used additionally for extra tasks, such as

searching for particles, or identifying flow features. It hier-

archically iterates through the mesh and executes a callback

function on all elements that match a given criterion. Lever-

aging the SFC tree logic, Search omits large chunks of the

mesh if they do not match the criterion. Hence, it does not

necessarily inspect each individual element and therefore

performs much faster than a linear search [2, 17].

Figure 3: Flowchart of a typical simulation code which inter-

acts with t8code. Information about the different operations

can be found in the text.

4. MODULARITY & EXTENSIBILITY

A distinct feature of t8code compared to similar AMR li-

braries is its high modularity achieved by decoupling high-

level from low-level algorithms and coming along with it the

support for arbitrary element shapes and refinement patterns.

It also allows to combine different element shapes within the

same mesh (hybrid meshes).

All high-level operations use the low-level algorithms only

as a black box. For example, Adapt iterates through

the mesh and when necessary calls the low-level algo-

rithms element children or element parent to refine or

coarsen an element. In order to implement the logic of Adapt,

however, no knowledge of the implementation details of these

low-level functions is required.

Thus, for each individual tree we can simply replace the under-

lying implementation of the low-level algorithms (e.g. from

tetrahedra to hexahedra) without affecting the high-level func-

tionality. We achieve this by encapsulating all shape-specific

element operations such as parent/child computation, face-

neighbor computation, SFC index computation and more in

an abstract C++ base class. The different element shapes and

refinement patterns are then specializations of this base class.

Hence, t8code can be easily extended - also by application

developers - to support other refinement patterns and SFCs.

Moreover, this very high degree of modularity allows us to

support an even wider range of non-standard additions. For

example, the insertion of sub-elements1to resolve hanging

Figure 4: Strong scaling on JUWELS with tetrahedral el-

ements. We plot the runtimes of Ghost and Partition with

a refinement band from levels 8 to 10 after four time steps.

Hence, the forest mesh consists of approximately 1.91 billion

tetrahedra. As observed in the plot, we achieve perfect scal-

ing for Ghost in the number G/P of ghosts per process. The

runtime of Partition is below 0.1 seconds even for the largest

run. More details can also be found in [2].

nodes [13] in quadrilateral meshes. Each quad element that

has a hanging node is subdivided into a set of several triangles

eliminating the hanging node.

Furthermore, we added support for holes2in the mesh by se-

lectively deleting elements [16]. This feature can be used to

incorporate additional geometry information into the mesh.

Similar to marking elements as getting refined or coarsened,

we can additionally mark elements as getting removed. These

elements will be eliminated completely from the SFC reduc-

ing the overall memory footprint.

Addionally, we support curved hexahedra with geometry-

informed AMR [14]. Thus, information such as element

volumes, face areas, or positions of interpolation/quadrature

points in high order meshes can be calculated exactly with re-

spect to the actual geometry. Another use case is to start with

a very coarse input mesh and geometrically refine the mesh

maxing out the performance benefits of tree-based AMR.

5. PERFORMANCE

In this section we present some of our benchmark results from

various performance studies conducted on the JUQUEEN

[18] and the JUWELS [19] supercomputers at the Jülich

Supercomputing Center.

Ghost and Partition are exceptionally fast with proper scaling

of up to 1.1 trillion mesh elements; see Tab. 1, [2]. In Fig.4 we

show a strong scaling result for a tetrahedral mesh achieving

ideal strong scaling efficiency for Ghost. Furthermore, in a

2Subelements and holes are not part of version 1.0 but will be
integrated soon.

process # elements # elem. / process Ghost Partition

49,152 1,099,511,627,776 22,369,621 2.08 s 0.73 s

98,304 1,099,511,627,776 11,184,811 1.43 s 0.33 s

Table 1: Runtimes on JUQUEEN for the ghost layer and

partitioning operations for a distributed mesh consisting of

1.1 trillion elements.

prototype code [15] implementing a high-order discontinuous

Galerkin method (DG) for advection-diffusion equations on

dynamically adaptive hexahedral meshes we obverve a 12

times speed-up compared to non-AMR meshes with only an

overall 10 to 15% runtime contribution of t8code; see Fig. 5.

Figure 5: Runtimes on JUQUEEN of the different compo-

nents of our DG prototype code coupled with t8code. Note

that all features associated with dynamical mesh adaptation

utilize only around 15% of the total runtime largely indepen-

dent of the number of processes.

6. CONCLUSION

In this note we introduce our open source AMR library

t8code. We give a brief overview of the fundamental al-

gorithms and data structures, namely our modular SFC, and

outline a general usage pattern when an application interacts

with the library. Due to its high modularity, t8code can be

easily extended for a wide range of use cases. Performance

results confirm that t8code is a solid choice for mesh man-

agement in high-performance applications in the upcoming

exascale era.

Future efforts will include an integration of our techniques

into simulation use cases with in-depth performance and ac-

curacy evaluations. Additionally, we strive to extend all pre-

sented features to all element shapes and space dimensions.

Other possible extensions that we plan to research in the near

future are mesh adaption of prism boundary layers and the

support for an-isotropic refinement.

References

[1] Holke J., Burstedde C., Knapp D., Dreyer L., Elswei-

jer S., Uenlue V., Markert J., Lilikakis I., Boeing

N. “t8code.”, 9 2022. URL https://github.com/

dlr-amr/t8code

[2] Holke J., Knapp D., Burstedde C. “An Optimized, Paral-

lel Computation of the Ghost Layer for Adaptive Hybrid

Forest Meshes.” SIAM Journal on Scientific Comput-

ing, pp. C359–C385, Jan. 2021. URL https://epubs.

siam.org/doi/abs/10.1137/20M1383033

[3] Holke J. Scalable algorithms for parallel tree-based

adaptive mesh refinement with general element types.

PhD thesis, Rheinische Friedrich-Wilhelms-Universität

Bonn, 2018

[4] Teunissen J., Keppens R. “A geometric multigrid

library for quadtree/octree AMR grids coupled

to MPI-AMRVAC.” Computer Physics Com-

munications, vol. 245, 106866, 2019. URL

https://www.sciencedirect.com/science/

article/pii/S001046551930253X

[5] Bangerth W., Hartmann R., Kanschat G. “Deal.II—A

General-Purpose Object-Oriented Finite Element Li-

brary.” ACM Trans. Math. Softw., vol. 33, no. 4,

24–es, aug 2007. URL https://doi.org/10.1145/

1268776.1268779

[6] Dörfler W. “A Convergent Adaptive Algorithm for

Poisson’s Equation.” SIAM Journal on Numerical

Analysis, vol. 33, no. 3, 1106–1124, 1996. URL

https://doi.org/10.1137/0733054

[7] Babuvška I., Rheinboldt W.C. “Error Estimates for

Adaptive Finite Element Computations.” SIAM Journal

on Numerical Analysis, vol. 15, no. 4, 736–754, 1978.

URL https://doi.org/10.1137/0715049

[8] Burstedde C., Wilcox L.C., Ghattas O. “p4est: Scalable

Algorithms for Parallel Adaptive Mesh Refinement on

Forests of Octrees.” SIAM Journal on Scientific Com-

puting, vol. 33, no. 3, 1103–1133, 2011

[9] Weinzierl T. “The Peano Software-Parallel, Automaton-

based, Dynamically Adaptive Grid Traversals.” ACM

Transactions on Mathematical Software, vol. 45, no. 2,

1–41, 2019

[10] Knapp D. A space-filling curve for pyramidal adaptive

mesh refinement. Master’s thesis, Rheinische Friedrich-

Wilhelms-Universität Bonn, 2020

[11] Burstedde C., Holke J. “Coarse Mesh Partitioning for

Tree-Based AMR.” SIAM Journal on Scientific Com-

puting, vol. Vol. 39, C364–C392, 2017

[12] Burstedde C., Holke J. “A tetrahedral space-filling curve

for nonconforming adaptive meshes.” SIAM Journal on

Scientific Computing, vol. 38, C471–C503, 2016

[13] Becker F. Removing hanging faces from tree-based

adaptive meshes for numerical simulations. Master’s

thesis, Universität zu Köln, Dezember 2021

[14] Elsweijer S. “Curved Domain Adaptive Mesh Refine-

ment with Hexahedra.” Tech. rep., Hochschule Bonn-

Rhein-Sieg, Jul. 2021. URL https://elib.dlr.de/

143537/

[15] Dreyer L. The local discontinuous galerkin method

for the advection-diffusion equation on adaptive

meshes. Master’s thesis, Rheinische Friedrich-Wilhems-

Universität Bonn, Februar 2021. URL https://elib.

dlr.de/143969/. Erstgutachter: Prof. Dr. Carsten

Burstedde, Zweitgutachter: Dr. Johannes Holke

[16] Lilikakis I. Algorithms for tree-based adaptive meshes

with incomplete trees. Master’s thesis, Universität zu

Köln, 2022. URL https://elib.dlr.de/191968/

[17] Burstedde C. “Parallel Tree Algorithms for AMR and

Non-Standard Data Access.” ACM Trans. Math. Softw.,

vol. 46, no. 4, nov 2020. URL https://doi.org/10.

1145/3401990

[18] “JUQUEEN Supercomputer.” URL https:

//hbp-hpc-platform.fz-juelich.de/?page_

id=34

[19] “JUWELS Supercomputer.” URL https:

//www.fz-juelich.de/en/ias/jsc/systems/

supercomputers/juwels

https://github.com/dlr-amr/t8code
https://github.com/dlr-amr/t8code
https://epubs.siam.org/doi/abs/10.1137/20M1383033
https://epubs.siam.org/doi/abs/10.1137/20M1383033
https://www.sciencedirect.com/science/article/pii/S001046551930253X
https://www.sciencedirect.com/science/article/pii/S001046551930253X
https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1137/0733054
https://doi.org/10.1137/0715049
https://elib.dlr.de/143537/
https://elib.dlr.de/143537/
https://elib.dlr.de/143969/
https://elib.dlr.de/143969/
https://elib.dlr.de/191968/
https://doi.org/10.1145/3401990
https://doi.org/10.1145/3401990
https://hbp-hpc-platform.fz-juelich.de/?page_id=34
https://hbp-hpc-platform.fz-juelich.de/?page_id=34
https://hbp-hpc-platform.fz-juelich.de/?page_id=34
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels

