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ABSTRACT

In this note we propose a continuous criterion for the local integrability of 2D frame fields. Integrable frame fields form
the gradients of a parametrization that is de facto valid for quadrilateral meshing. This is a first step towards integrable
3D frame fields which enable the robust generation of hexahedral meshes. We represent frames using orthogonally
decomposable (Odeco) tensors, which encode the frame lengths and directions of a frame as the eigenvalues and
eigenvectors of a fourth-order symmetric tensor in a way that is invariant to the frame symmetries. The integrability
criterion is expressed solely in terms of the tensor coefficients and their spatial derivatives by studying the eigenvalue
perturbation problem for Odeco tensors. We propose a simple projected gradient method to enforce this criterion on
arbitrary geometries, and show that the algorithm converges to nearly-integrable frame fields.
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1. INTRODUCTION AND RELATED
WORK

Meshes composed of quadrilaterals and hexahedra are
known to offer superior computational performance,
yet generating them on arbitrary geometries remains a
challenge. A popular approach to quad/hex meshing is
to first generate a frame field, i.e., assign to each point
of the geometric domain a set of 2 or 3 orthogonal
directions (a frame) representing the local orientation
of the mesh elements. This frame field serves as a
guide for computing a (u, v)/(u, v, w)-parametrization,
which can then be used to build a quad/hex mesh. A
desirable property of the frame field is integrability,
i.e., that locally the 2/3 branches are the gradients of
the parametrization’s scalar fields.

Among notable works, we can cite [1], who
first compute a unitary (non-scaled) frame field,
then, despite being non-integrable, compute a
parametrization of which the gradient is as closely
aligned to the frame field as possible. Representing
this parametrization requires transitions across cuts,

hence the mixed-integer formulation. In a similar
vein, [2] reduce the input frame field to a vector field on
a branched covering, and use a Hodge decomposition
to make this vector field integrable. Parametrizations
obtained from existing frame field-driven methods
require a quantization step to extract a quad mesh.
Finding a valid quantization is in itself a complex
combinatorial problem addressed notably in [3]; this
problem even has no solution in some pathological
cases. Another type of approach is to work with
spatially fixed singularities. When no integrable
isotropic frame field matching the singularities exists,
it is possible to compute an integrable anisotropic
frame field, as in [4].

If we turn to the 3D case, most unitary frame
fields cannot be integrated to a parametrization
anyhow, as the singularity structure does not match
any hexahedral configuration [5]. Computing a
topologically valid singularity graph a priori is almost
impossible and is mostly done by hand. This
consideration raises the need for a one step integrable
frame field solver, which motivates our work.



In this note, we propose a continuous criterion
for integrability of a 2D frame field. Frames
are represented using the well-known orthogonally
decomposable (Odeco) tensor, and the criterion is
expressed solely in terms of the tensor coefficients
and their spatial derivatives. We also propose a
robust method for enforcing this criterion on arbitrary
geometries, and show empirically that the algorithm
converges to integrable 2D frame fields.

2. TENSOR FORMULATION

We lay out the mathematical object proposed by [6]
that allows to encode scaled orthogonal frames in a
way that is invariant to symmetries. Then we show
how we express the 2D integrability condition in terms
of the tensor coefficients, which is the main novelty
presented in this note.

2.1 Odeco tensors

Let n be the frame dimension (2 or 3) and consider
the frame defined by orthogonal unit vectors û1, . . . ûn

and corresponding lengths λ1, . . . , λn. We define the
fourth-order symmetric tensor

T =

n
∑

i=1

λiû
⊗4

i . (1)

Such a tensor is said to be orthogonally decomposable
(Odeco) when the vectors are mutually orthogonal.
One can notice that this tensor is indeed invariant to
permutations and inversions of the branches. It has n4

components of which N =
(

n+4−1

4

)

are independent (5
in two dimensions, 15 in three dimensions). A common
way to represent the tensor compactly is to first define
the tensor polynomial

pT (x1, . . . , xn) = Tijklxixjxkxl

(in the sequel, all summations are implicit over
repeated indices), then decompose this polynomial in
the basis of circular (2D) or spherical (3D) harmonics
Y1, . . . , YN :

pT (x) =
∑

j

qjYj(x). (2)

As shown by [6], Odeco tensors form an algebraic
variety F defined by a set of homogeneous quadratic
equations,

qᵀAi q = 0, (3)

where q ∈ R
N encodes the tensor as in (2), and Ai is

a set of symmetric matrices (there are 3 equations in
2D, and 27 in 3D).

An arbitrary tensor can be projected on the Odeco
variety using the algebraic projector of [6]. However,

for our purposes this projector is computationally
prohibitive. We thus propose an approximate
"geometric" projection which is much faster to
compute. First the tensor is decomposed into its
second-order eigentensors Di ∈ R

n×n:

T =

m
∑

i=1

λ̃iD
⊗2

i , (4)

with m =
(

n+2−1

2

)

(3 in 2D, 6 in 3D). This
decomposition can be reduced to a standard matrix
eigendecomposition problem by writing the 2nd- and
4th order tensors in Mandel notation. If T is near-
Odeco, the n greatest eigenvalues λ̃i are dominant.
The frame directions are then found by truncating the
m−n smallest eigenvalues and computing the (matrix)
eigendecomposition

D :=
n
∑

i=1

λ̃iDi =
n
∑

i=1

λiû
⊗2

i . (5)

If we require an isotropic frame (branches of equal
lengths), we simply take the average of the computed
lengths. Note that this approach recovers the frame
exactly if T is exactly Odeco. Otherwise, it serves as a
cheap and good enough projection for our algorithms.

2.2 Integrability condition

Let ui = λiûi denote the scaled frame branches. An
orthogonal frame field is integrable if all pairs of frame
branches have zero Lie bracket, i.e.,

[ui,uj ] = ∇uj
ui −∇ui

uj = 0, i 6= j.

This equation involves the spatial derivatives of
the frame branches, which can be expressed with
the derivatives of the tensor coefficients. Written
compactly,

∇u =
∂u

∂Tijkl

∇Tijkl. (6)

It remains to find ∂u/∂Tijkl , i.e., how the frame
directions vary with the tensor coefficients. Once
can notice from the definition (1) that the frame
lengths λi and directions ûi are in fact eigenvalues
and eigenvectors of the tensor, since

T
... û

⊗3

i = λiûi, (7)

where the left-hand side denotes a triple contraction.
From this observation, we follow an approach
analoguous to the well-known matrix eigenvalue
perturbation problem: given an arbitrary tensor
perturbation δT, we express the variation of the
eigendecomposition δλi, δûi in terms of δT, keeping



only first-order terms. This procedure gives the
formula for every branch u,

∂ui

∂Tj1j2j3j4

=
(

ûiûj1 +M−1

ij1
−M−1

ik ûj1 ûk

)

ûj2 ûj3 ûj4 ,

(8)
where Mij = δij − 3ûiûj .

We now turn specifically to the 2D case. Consider
a frame with scaled branches u and v. For
more convenient notations we use the polynomial
coefficients qj instead of the tensor coefficients
Tj1j2j3j4 (these are a linear combination of one
another). The Lie bracket can be written compactly
as

[u,v]
i
=

(

∂ui

∂qj
vk −

∂vi
∂qj

uk

)

∂qj
∂xk

. (9)

It can be shown, by plugging (8) into the equations,
and using symbolic computations, that the expression
in brackets can be expressed entirely as a linear
combination of the tensor coefficients qj . This
observation brings us to our key theoretical result: we
can express the Lie bracket of a 2D frame field using
only the tensor field and its derivatives:

[u,v]
i
= Cijkl ql

∂qj
∂xk

. (10)

3. INTEGRABLE FRAMES SOLVER

We formulate the search for an integrable frame field
over a geometric domain Ω as the minimization of an
integrability energy :

min
q

H(q) =
1

2

∫

Ω

‖[u,v]‖2dΩ (11)

Discretization The frame field is discretized over
a triangle mesh. Values are stored at nodes and the
field is represented using standard P1 finite elements.

Optimization method To minimize the
integrability energy H(q), we chose a very simple
solver to demonstrate the validity of our formulation.
We perform a gradient descent in which, after each
gradient step, every frame is projected back onto the
Odeco variety. To prevent the gradient step from
moving too far away from the variety, the step ∆q is
projected onto the tangent space of the variety at q.
This is easily done since we know that the normal
space at q is generated by the vectors {Aiq}, where
Ai are the matrices describing the variety as in (3).
Finally, the frame field is uniformly normalized to
preserve the total norm; this prevents the solver
from shrinking the frames to reduce the integrability
energy. As a summary, the following steps are
repeated until convergence:

1. Compute gradient step: ∆q := −∇H(q),

2. Project step on tangent space: ∆q := PTqF [∆q],

3. Update: q := q +∆q,

4. Project tensors on Odeco variety: q := PF [q],

5. Normalize uniformly: q := αq.

Initial condition The solution to (11) is obviously
not unique, just like parametrizations are not unique.
Among integrable frame fields, we wish to compute
one that is smooth. This can be achieved by adding
a Dirichlet energy term to the objective, which acts
as a regularizer. However, this would prevent the
solver from converging to an exactly integrable frame
field. We found that simply choosing a smooth frame
field (e.g. one obtained with a classical MBO scheme
as in [6]) as initial solution provides results that are
smooth enough since the solver does not diverge too
far from the initial solution.

Boundary condition At the boundary of the
geometric domain, a special projector is applied in
step 4 such that the orientation of the frame remains
fixed (according to the boundary normal) and only the
frame scales can be changed.

4. RESULTS

To validate our approach we have run the algorithm
on two simple geometric models, shown on Fig. 1.

The annulus possesses no singularities but has known
analytical integrable solutions, where the frames are
aligned with êr and êθ, the radial branch increases
linearly with the radius, and the tangential branch is
any axisymmetric function f(r):

(u,v) = (ar er, f(r) eθ). (12)

The results show that the algorithm converges to
this type of solution, both in the isotropic and non-
isotropic cases. Looking at the evolution of the
integrability energy on Fig. 2 indicates that the
iterations have converged. There is good reason to
believe that the residual energy is due only to the
discretization, as we have observed that the residual
converges to zero as we refined the mesh.

The piano model possesses the two most important
types of singularities: a +1/4 index singularity on the
left, and a −1/4 index on the right. The isotropic
case has converged but as the residual energy is large
we suspect a local minimum; this will need further
investigation. The non-isotropic case goes in the right
direction but has not fully converged despite the high
number of iterations performed; this shows that the
convergence rate of the solver needs to be improved.



Initial frames Final frames (isotropic) Final frames (non-iso.)

Figure 1: Results of our algorithm on the annulus model (top) and a model with two singularities of index ±1/4,
called piano (bottom). The algorithm is run with both isotropic and non-isotropic projections.
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Figure 2: Convergence statistics with evolution of
integrability energy H(q) and Dirichlet energy E(q).

5. CONCLUSION AND FUTURE WORK

In this note, we have deduced the equations expressing
the Lie bracket of a 2D frame field. These equations
depend only on the tensor representation of the frame
field and not on any explicit representation. We have
implemented a simple solver for imposing integrability
on an input frame field. This solver converges towards
nearly-integrable solutions, which demonstrates the
viability of our approach.

Convergence of our solver leaves much to be desired.
We aim to vastly improve the convergence rate by
turning to second-order optimization methods, such
as Newton or BFGS. We will also investigate whether
states such as the isotropic piano model are indeed
local minima and if so, how we can escape them.

The next step will be to generalize the approach to
3D frame fields. This can either be done by finding
a 3D generalization of the Lie bracket (which we
have already found not to be linear), or by designing
a method using explicit branches anyway in the
expression of (9).
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