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ABSTRACT

Highly deforming domains are a recurring problem in fluid mechanics. In free surface flows, for instance, boundaries
are in constant motion. The Particle Finite Element Method, or PFEM, tackles this problem by considering the
mesh to be an inherent part of the solution. This Lagrange-based strategy solves the Navier-Stokes equations on a
finite element mesh that is constantly adapted to exactly represent the fluid domain. Due to the strong dependence
on mesh quality in PFEM, many solvers suffer from poorly shaped elements within the domain. In this work, we
propose an approach to adapt the mesh with theoretical guarantees of quality. The approach is based on Delaunay
refinement strategies, allowing to efficiently adapt the mesh while maintaining high quality elements. This addresses
well-known problems in PFEM of volume variation errors due to undesired element removal and addition. We first
present PFEM in general, followed by the mesh adaptation algorithm, and finally some simulation results.
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1. INTRODUCTION

In many computational engineering problems, the do-
main of interest undergoes strong deformations. This
may be due to the relative motion of different parts
of the domain or the domain boundaries themselves
evolving through time. In such situations, having a
suitable fixed mesh can be a challenge. Consider, for
example, a seemingly simple fluid mechanics problem
of a container partially filled with water. When this
container is shaken, the dynamics of the water be-
come relatively complex: interactions with the con-
tainer walls, mixing of the water with the surrounding
air, droplets splashing,... To accurately and efficiently
model this, classical Eulerian approaches can become
quite expensive.

In such situations, Lagrangian approaches are better
suited since the geometry variations are inherent to
the model. In most Lagrangian methods, the fluid do-
main is represented by a set of particles that follow
the motion of the fluid. These particles contain all

the information: velocity, pressure, temperature, etc.
The Particle Finite Element Method, or PFEM [1],
is such Lagrangian mesh-based method. This method
circumvents issues of mesh distortions just like other
particle methods, and relies on an accurate resolution
of the conservation equations through the finite ele-
ment method. The flexibility and accuracy offered by
this method make it a good choice for situations where
the domain deforms severely.

When PFEM is applied to fluids, the Navier-Stokes
equations are solved on a finite element mesh. This
mesh is obtained by triangulation of the particles.
A velocity field is obtained throughout the domain,
which is then used to displace the particles.

The quality of the mesh plays a crucial role in PFEM
for the overall accuracy of the solution. Indeed, be-
cause the domain can deform, its geometry becomes an
unknown of the problem. The mesh therefore needs to
be highly accurate in representing this domain. Unde-
sirable effects of volume creation and destruction arise
if no attention is paid to the quality of the mesh.



Figure 1: A snapshot of a fluid simulation in PFEM. The
geometry is solution dependent.

In this work, we present an approach to triangulate the
particles in PFEM using a robust algorithm that con-
strains the overall quality of the mesh. Indeed, while
most PFEM solvers already adapt the mesh through
particles insertion and removal, the current techniques
are not based on mesh quality criteria [2]. Our algo-
rithm efficiently guarantees the updated mesh respects
a given element quality and size throughout the do-
main.

The approach is based on the Delaunay refinement
algorithm proposed by Chew [3]. The philosophy con-
sists of enforcing the mesh to be Delaunay at all times,
and refining it based on a user-defined size field. This
greatly improves the quality of the method, as it re-
moves the arbitrariness in the detection of the domain.
Moreover, the use of a size field is very useful since it
allows greater accuracy in regions of interest. Using
this method, obtaining accurate and smooth simula-
tions of free surface flows is possible with remarkably
few elements.

In the following sections of this research note, the
generalities of the particle finite element method are
briefly presented first. The central part of this work,
the mesh adaptation algorithm, is presented in section
3. Finally, some simulation results are shown, along
with future prospects.

2. THE PARTICLE FINITE ELEMENT
METHOD

The fluid equations are first briefly described, followed
by the development of the PFEM algorithm and a
short note on boundary conditions.

2.1 Fluid equations

Although PFEM has been extended to other fields of
study[2], we focus here on a fluid domain. The equa-
tions of motion are the Navier-Stokes equations, and
we consider an incompressible fluid:

ρ
Du

Dt
= −∇p+ µ∇2

u+ ρg (1)

∇ · u = 0 (2)

u represents the velocity of the fluid, ρ its density, p
the pressure, µ the dynamic viscosity, and g is grav-
ity. A significant advantage of using a Lagrangian
approach for fluids is the absence of the convective
term in the momentum conservation equation (1),
thereby leaving aside the non-linearities in the equa-
tion. The boundary conditions are slip-wall condi-
tions along solid walls, and free surfaces elsewhere.
Equations (1) and (2) are then solved using a clas-
sical first-order finite element formulation. Finally,
to address the well-known Ladyzhenskaya-Babuska-
Brezzi (LBB) condition, a Pressure-Stabilizing Petrov-
Galerkin (PSPG) approach is used to stabilize the
method[4]. The general PFEM algorithm is described
in the next section.

2.2 PFEM steps

Recall that PFEM is a particle method. Hence, the
fluid is initially represented by a set of points, or par-
ticles. In these particles, the velocity field of the fluid
is stored. Note that no mass is attached to the par-
ticles. Additionally, a geometry of the solid walls is
necessary to describe the outer boundaries.

At the beginning of each time step, these particles are
triangulated to obtain a mesh. At this point, the shape
of the fluid is not yet known, since there is no unique
definition of the shape of a set of points. Therefore, it
is necessary to use an ”oracle” function that answers
whether or not a point x lies inside the fluid domain.
The oracle function commonly used in PFEM is the α-
shape of a set of points[5]. In short, the α-shape uses a
quality and size measure based on the circumradius of
the elements in the triangulation to determine whether
or not it belongs to the fluid. Too large or too poorly
shaped triangles will not belong to the fluid, as de-
picted in figure 2. Hence, the quality of the elements
in the mesh plays a key role in determining the shape
of the domain.
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Figure 2: The α-shape of a set of points uses a size
and a quality measure to determine whether or not an
element belongs to the domain.

Once the fluid domain has been clearly defined, the
boundaries can also be characterized. Along solid



walls, a free slip condition is imposed. If the boundary
is not along a wall, then it is necessarily a free surface.
A few additional comments on the application of the
boundary conditions are made in section 2.3.

After detection of the boundaries, the conservation
equations (1) and (2) can be solved on the fluid do-
main. The solution vector {Ut

i, p
t

i} is obtained for each
particle. The positions of the particles can then be up-
dated through the velocity vector:

X
t+1

i = X
t

i +U
t

i∆t, i = 1, ..., n.

To avoid mesh distortion, the particles are triangu-
lated again at the next time step. However, this yields
the possibility for the α-shape algorithm to remove el-
ements that are, in fact, part of the fluid domain. If
nothing is done, volume variations will arise, as pre-
sented in [6]. This is the essential motivation for de-
veloping the mesh adaptation algorithm presented in
section 3. The main steps of the particle finite element
method, without mesh adaptation, are summarized in
figure 3.
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Figure 3: Main steps of the PFEM algorithm.

2.3 Briefly on boundary conditions

The slip-wall boundary condition can be imposed
weakly within the finite element formulation for edges
along a solid boundary. If a particle crosses a solid
boundary from one time step to another due to the
explicit nature of the position update, it is projected
back onto the wall. Its velocity component normal to
the wall is set to zero, recovering the slip wall bound-
ary condition. Once a particle has been tagged a wall
boundary particle, it stays on this boundary for the
remainder of the simulation.

For the free surface boundary condition, two different
situations should be considered. First, atmospheric
pressure is imposed for boundaries between the fluid
and the outer atmosphere. The second case concerns

a cavity within the fluid, for example, a bubble of air
surrounded by water. In later work, we will show that
imposing incompressibility for every closed cavity is
possible, such that volume of each cavity is preserved.

3. THE MESH ADAPTATION
ALGORITHM

The α-shape algorithm is a clever geometrical ap-
proach to defining the shape of a set of points. The
need for an ”oracle” function that defines the shape of
the domain has already been outlined previously. It is
important to remember that the previous mesh is dis-
carded at the beginning of each time step. Only the
nodes, or particles, of the previous mesh are kept. The
shape of the fluid domain at the next time step will
be defined through the application of the α-shape on a
new triangulation of the particles. Hence, we recover
the correct shape of the domain at the beginning of
each time step by adapting the triangulation.

First, a size field is defined to allow heterogeneities in
the size of the mesh. For instance, a higher resolution
may be desired near the free surface to accurately sim-
ulate the strong deformations and topological changes.
A KD-tree structure is used to compute the distance
to the free surface to derive this size field.

Next, Chew’s algorithm for mesh generation is em-
ployed [3]. Chew’s algorithm ensures that all triangles
within the triangulation are well-sized and well-shaped
and that internal and external boundaries are main-
tained. Shewchuck has since demonstrated that using
this algorithm, no angles smaller than 26.5° will be
generated, confirming the well-shapedness of the mesh
resulting from this algorithm[7]. The user-defined size
field dictates the size of the elements.

The essence of the approach consists of inserting nodes
in the triangulation at the circumcenter of poorly
shaped or poorly sized triangles. Mesh Delaunayness
is ensured at all times through edge swaps whenever
the triangulation is modified, i.e., whenever a node is
inserted. If a circumcenter falls outside the meshing
domain, then the bounding edge that crosses the line-
of-sight of the triangle to its circumcenter is split. The
algorithm is iterative and stops unconditionally.

The PFEM algorithm is adapted to incorporate the
mesh adaptation step; see figure 4. Naturally, only the
elements colored as part of the fluid domain should be
improved. Hence, the α-shape must be used to define
the shape of the fluid domain. This allows determining
the bounding edges of the fluid. Chew’s algorithm is
then used to improve the quality of the fluid elements
and respect the size field while constraining the bound-
ary edges, both on solid walls and on the free surface.
Next, the solution of the previous time step is pro-
jected onto the newly inserted particles. Finally, the



boundary conditions can be applied, and the Navier-
Stokes equations are solved on the newly generated
mesh.

Using the mesh adaptation algorithm in PFEM greatly
improves the quality of the mesh. This step turns out
to be crucial, as it removes uncertainties linked to the
α-shape’s decision of the shape of the fluid. A few
preliminary simulation results are shown next.
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Figure 4: The updated version of the PFEM algorithm,
with mesh adaptation.

4. SIMULATION RESULTS

Two preliminary simulation results are presented. Fig-
ure 5 is a drop of water falling into a container filled
with water. Near the free surface, the mesh is refined
to accurately capture the attachement of the drop with
the rest of the domain. Effects of surface tension are
not considered in this simulation. Figure 6 is a sim-

Figure 5: Simulation of a drop of liquid falling in a con-
tainer.

ulation of a water column collapsing in a solid con-
tainer. The color code refers to the velocity norm.
This benchmark simulation, more commonly known
as a dam break, highlights again the interest in us-
ing a Lagrangian method. Indeed, these simulations
show that it is possible to obtain smooth results with
a limited amount of nodes.

Figure 6: Simulation of a water column collapsing inside
a container.

5. CONCLUSION

In this research note, we have presented a novel ap-
proach for mesh adaptation in the particle finite ele-
ment method. As a Lagrangian method, PFEM simu-
lates fluid domains that undergo strong deformations.
PFEM relies on the generation of a new mesh at each
time step, and the quality of the elements within the
triangulation plays a vital role in defining the domain.
Indeed, a geometrical function, known as the α-shape
of a triangulation, is used to determine the region
considered as fluid within the triangulation. To con-
trol this function, our mesh adaptation algorithm en-
sures that the mesh quality remains optimal within the
simulation domain and that it respects a pre-defined
size field. Regions of interest can thereby be refined.
The algorithm has been described, and the capabil-
ities were shown in a few preliminary simulation re-
sults. The strong dependence of PFEM on mesh qual-
ity deems mesh adaptation a crucial part of the sim-
ulation. It removes many uncertainties in the method
that are known to cause errors in volume conservation
and inaccurate results overall. We have shown that,
with a relatively small number of degrees of freedom,
using a well-designed distribution of the particles, ob-
taining a smooth representation of the free surface is
possible.

In future works, the goal will be to obtain quantitative
results in terms of efficiency, accuracy and consistency
of the method. After validation in 2D, the extension
to 3D will be studied. Due to the lack of proof in
3D regarding optimality of the mesh, we will focus on
local adaptations of the mesh, both geometrically and
topologically. Special attention will need to be put on
handling slivers.
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