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ABSTRACT

Spherical harmonics of degree 4 are widely used in volumetric frame fields design due to their ability to reproduce
octahedral symmetry. In this paper we show how to use harmonics of degree 3 (octupoles) for the same purpose,
thereby reducing number of parameters and computational complexity. The key ingredients of the presented approach
are

• implicit equations for the manifold of octupoles possessing octahedral symmetry up to multiplication by −1,
• corresponding rotationally invariant measure of octupole’s deviation from the specified symmetry,
• smoothing penalty term compensating the lack of octupoles’ symmetries during a field optimization.
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1. INTRODUCTION

The most common state-of-the-art approaches for vol-
umetric frame fields design involve the use of 4th-
degree spherical harmonics as a representation of field
values (see [1, 2]). This choice is quite natural due
to the fact that such harmonics form the linear space
closed under 3D rotations and containing harmonics
possessing octahedral symmetry. Moreover, algebraic
conditions for this symmetry expressed both in terms
of implicit equations and penalty function are also
known ([3]).

The major practical disadvantage of this representa-
tion is the dimension of the space — 9, which is three
times the minimum required to parameterise frame ro-
tations. In this paper we show how to reduce the di-
mension by passing from the 4th-degree spherical har-
monics to the 3rd-degree ones also known as octupoles
(see Landau and Lifshitz [4] clarifying the connection
with the tensor formalism). In a nutshell, our sugges-
tion is to sacrifice the half of symmetries of frame rep-
resentation, but compensating for this by additional
symmetries in the smoothing penalty term.

2. SEMISYMMETRIC OCTUPOLES

As stated, we consider real-valued spherical harmonics
of degree 3 on the unit sphere — octupoles. These
polynomials form the 7D linear space with standard
orthonormal basis Y

3,−3, . . . , Y3,3 (see [5]).

Figure 1: Spherical plots of basis functions
Y
3,−3, . . . , Y3,3.

With them being odd functions, none of the octupoles
(except zero) are octahedrally-symmetric by itself, but
some of their modules are. Two of such semisymmetric

octupoles — Y
3,−2 and Y3,2 — possessing the half of oc-

tahedral symmetries (while the remaining are satisfied
up to multiplication by −1) can be seen in Figure 1.

Since the space we are working in is an eigenspace
of the Laplace operator, all possible rotations of its
functions lie in the same space and may be represented
as a linear combinations of its basis functions.



Figure 2: The reference harmonic and its rotation.

This applies in particular to semisymmetric harmon-
ics. Moreover, in coordinate form all harmonics of this
kind may be obtained from a reference one (let it be
Y
3,−2) by the formula

a = Rx(α)×Ry(β)×Rz(γ)× ã.

Here ã = (0, 1, 0, 0, 0, 0, 0)T and a are coordinates of
the reference and the rotated harmonics respectively,
and α, β and γ are Euler angles of the corresponding
rotation.

Appendix A.1 describes the construction of the rota-
tion matrices Rx, Ry and Rz.

From the geometrical point of view, all a(α, β, γ) form
the manifold of dimension 3 embedded in R7. The
next lemma claims that this manifold is simply an
intersection of quadrics (hypersurfaces of the second
order).

Lemma 1 The manifold of all semisymmetric oc-

tupoles is given by the system of equations

�
aT a = 1,

aT Mk a = 0, k = 1, . . . , 3,
(1)

where M1,M2,M3 are the symmetric matrices defined

as follows.
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M3 =





0 0 0 0 0 5 0

0 0 0 0
√
15 0 −5

0 0 0 2 0 −
√
15 0

0 0 2 0 0 0 0

0
√
15 0 0 0 0 0

5 0 −
√
15 0 0 0 0

0 −5 0 0 0 0 0





(4)

Idea of proof. The given implicit equations may be
obtained by the standard technique based on ratio-
nal parametrization of the unit circle (to eliminate
trigonometric expressions) and Gröbner basis con-
struction (see [6]). The statement can be verified by
direct calculations.

Topology of the manifold of semisymmetric octupoles
is described in Appendix A.2.

3. SEMISYMMETRY ENFORCEMENT

Now we are ready to construct the polynomial penalty
function enforcing its argument — octupole — to be
semisymmetric.

Lemma 2 Homogeneous 4th-degree polynomial
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where a = (a−3, a−2, a−1, a0, a1, a2, a3) ∈ R7 consists of

the octupole’s coordinates in basis Y
3,−3, . . . , Y3,3, de-

fines the rotationally invariant measure of octupole’s

deviation from semisymmetry.

Idea of proof. The statement follows from the method
of obtaining this polynomial. It consists of averaging
the trial non-invariant deviation measure

�d(a) =
3�

k=1

(aT Mk a)
2 (6)



over SO3 action’s orbits. The next formula can be
verified by direct calculations.

d(a) =
1

volSO3

�

R∈SO3

�d(R · a) dµ =

1

8π2

2π�

0

π�

0

2π�

0

�d(Rz(α)Rx(β)Rz(γ)a) sinβ dγ dβ dα.

4. NUMERICAL EXAMPLE

In this section we show how deviation measure (5)
works. We use the next combination of the scale and
semisymmetry controlling terms with positive weights
w1 = 5 and w2 = 2.5

p(a;w1, w2) = w1(a
T a− 1)2 + w2 d(a) (7)

as the penalty function together with a simple gradi-
ent descent method. Figure 3 shows the convergence
process of the sample initial octupole to the semisym-
metrical one.

Figure 3: Iterative semisymmetrization.

The plots below describe the distance to the near-
est semisymmetrical octupole and square root of the
penalty value. One can see distance-like behavior of
the square root of p(a;w1, w2).
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Figure 4: Distance-like behavior of
�

p(a;w1, w2).

Note that due to the invariance of (7) under 3D ro-
tations, its symmetrization effect is orientation agnos-
tic. Therefore, applying it to a field values during the

optimization process does not affect octupoles’ orien-
tations but helps to maintain their symmetries. This
topic is discussed in the next section.

5. FIELDS SMOOTHING

Since octupoles possess octahedral symmetries only up
to multiplication by −1, we need to compensate for
this by defining field smoothness in a special way. For
this purpose we propose quite an intuitive expression
of the form |x − y|2|x + y|2 as the smoothing penalty
term.

Thus, in discrete cases the final field energy (consid-
eration of boundary conditions is outside the scope of
our discussion) becomes

E =
�

a∼b

|a− b|2|a+ b|2 +
�

a

p(a,w1, w2). (8)

Here, the first terms enforce smoothness and the sec-
ond are responsible for maintenance of the field values
semisymmetry during the optimization.

The described energy function in combination with
coarse-to-fine optimization strategy shows results com-
parable to the ”classic” frame fields design approaches
([1, 2]) while using 7 instead of 9 unknowns per frame.

Two simple examples of this approach are provided in
Appendix A.3.

6. CONCLUSION

The implicit equations for the manifold of octupoles
possessing octahedral symmetry up to multiplication
by −1, and the corresponding rotationally invariant
deviation measure have been found. The smoothing
penalty for octupole fields compensating for the lack
of their symmetries has been constructed.

In comparison to existing approaches, the obtained re-
sults allow to reduce number of unknowns and compu-
tational costs of volumetric frame fields design prob-
lems.

7. APPENDIX A.1

The rotational matrices Rx, Ry and Rz for spherical
harmonics of degree 3 are defined as follows.

Rz(γ) =












cos 3γ 0 0 0 0 0 sin 3γ
0 cos 2γ 0 0 0 sin 2γ 0
0 0 cos γ 0 sin γ 0 0
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− sin 3γ 0 0 0 0 0 cos 3γ
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2
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π

2
)

See [7, 8, 9, 10] for more details.

8. APPENDIX A.2

The manifold of frame rotations has the topology
of the quotient space SO3 / S4, where S4 denotes
the group of order 24 of all octahedral symmetries.
Semisymmetric octupoles are invariant only under
even S4 transformations. Hence the corresponding
topology is SO3 /A4, where A4 denotes the corre-
sponding subgroup.

x
y

z

Figure 5: Fundamental zones for S4 and A4 symmetries.

It’s possible to describe these topologies using the Ro-
driguez representation of 3D rotations (see [11]). The
fundamental zone for S4 symmetries in this represen-
tation has the form of a truncated cube with 6 regular
octagonal faces and 8 regular triangular faces. For A4

symmetries the fundamental zone is the regular octa-
hedron. The inclusion A4 ⊂ S4 implicates the reverse
one for the fundamental zones (see figure 5, note that
the triangular faces are pairwise coplanar).

The topologies we consider are obtained by gluing the
opposite octagons and the corresponding opposite tri-
angles with 45◦ and 60◦ turn respectively. The colors
in the picture indicate how the vertices map to each
other. Note that all octahedron’s vertices are coinci-
dent and correspond to the octupole opposite to the
reference one (i.e. −Y

3,−2).

9. APPENDIX A.3

The pictures below show usual singular structures (see
[1, 2]) of frame fields optimized using energy func-
tion (8).

Figure 6: Frame fields singularities of valence 3.
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