Meshing Ugly Geometry Using Generalized Volume Fractions

Brian Shawcroft (Brigham Young University) Kendrick M. Shepherd (Brigham Young University) Scott A. Mitchell (Sandia National Laboratories)

Abstract

- Two-dimensional prototype of Sculpt developed
- Robust for ugly geometry: non-watertight, gaps, and overlaps.
- Filtration on grid size for fixed volume-fraction threshold is *non-monotonic* • Predicting output topology is expensive.
- Selecting mesh size to achieve desired topology has non-continuous answers. • Filtration on volume-fraction threshold for fixed grid size is *monotonic*
- Sculpt topology is predictable and selectable via persistent homology.
- Shrink wrapping retains the promise of predictable and selectable mesh topology for boundarypreserving meshing algorithms.

Motivation

Geometry is Beautiful

Geometry is Ugly

Traditionally, meshing algorithms need **perfect** geometry Perfecting geometry takes too long and drives scientists crazy We proposed meshing algorithms that work on **ugly** geometry Price is geometric and *topological* (new) fidelity to the input

- Some algorithms already do this, but with unknown topological accuracy We proposed principled mathematics to
- **Measure** geometric and topological fidelity **Guarantee** fidelity bounds Parameterized by scientist-elected mesh size
 - Successful operation despite geometric ugliness

Approach

Sculpt is a volume-fraction geometric-reconstruction meshing algorithm, which in principle robustly generates meshes regardless of ugly geometry. Prior to our work, it would not run on non-watertight geometry. We sought to predict and quantify fidelity and topology using persistent homology.

SAND2024-xxxx

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. pepartment of Energy's National Nuclear Security Administration under contract DF-NA000352

Results

Thesis: Inside/outside queries on non-watertight geometry, with gaps and overlaps, can be answered by generalized winding numbers (vs. ray shooting)

Status: Implemented and demonstrated in 2D Sculpt using libigl

Thesis "PH-size": Persistent homology can measure the necessary mesh size to achieve a desired topology

Status: When features are isolated or globally the same scale, grid refinement has intuitive and predictable topological effects.

Status: Disproved for general inputs. Counterexamples show non-monotonic filtration behavior by grid size. Discretization of volume fraction by grid cells, and alignment with input features, strongly effects topological behavior.

Parameters of when to refine grid have unpredictable effects on mesh topology.

SIAM International Meshing Roundtable 5-8 March 2024, Baltimore, MD

gap

closed

1/2 2/3

losed

Another example of non-monotonic filtration by grid size Volume fraction for quadrilateral mesh cells at the cusp of the grey regions oscillates between one and two connected components with mesh refinement **Thesis "PH-VC":** Persistent homology measures mesh topology as volume-fraction-threshold parameter is varied: Betti barcode. Scientist picks topology, barcode shows thresholds giving it. **Status:** Implemented and demonstrated in Sculpt2d. (Sculpt3d iterated cleanup heuristics for avoiding pinch points and small connected components affect the topology unpredictably.)

Future Work

independent of subsequent mesh size choices.

Potential Impact

Faster (human time) generation of energy and climate models with local fidelity closer to scientists' desires. Energy and climate missions seek meshes of seismic and coastal domains.

References

- May 2023

- *libigl A simple C++ geometry processing library*, https://libigl.github.io/

BYU Civil & Construction Engineering

Model derived from https://vecta.io/symbols/281/ecosystems-maps/93/usa-md-va-chesapeake-bay-line-map

Establish the desired homology and geometry by shrink-wrapping to maintain the topology

- Enables smaller mesh size than
- Error from the image acquisition and segmentation
- Uncertainty in the exact coastline over time.

Free scientist to

- Use any geometry available
- Select any mesh size regardless
- of geometric
- Resolution
- Errors and uncertainty Coastal

• Topological Effects of Grid Size and Volume Fraction Threshold in Sculpt, Brian Shawcroft et al., Research Note, SIAM IMR 2024 • *Meshing Ugly Geometry with Sculpt using Winding Numbers,* Scott A. Mitchell, MeshTrends minisymposium at USNCCM 2023 • Sculpt Version 16.10: Automatic Parallel Hexahedral Mesh Generation, Steven J. Owen et al., Sandia Report SAND2019-6412,

• Robust Inside-Outside Segmentation using Generalized Winding Numbers, Alec Jacobson et al., ACM Trans. Graph. 2013 • A Shrink Wrapping Approach to Remeshing Polygonal Surfaces, Leif P. Kobbelt et al., Comput. Graph. Forum 2001

