

# Employing GPUs to accelerate exact 3D geometric computation



Salles V. G. Magalhães<sup>1</sup>, W. Randolph Franklin<sup>2</sup>, Marcelo Menezes<sup>1</sup> <sup>1</sup>Universidade Federal de Viçosa, Brazil <sup>2</sup>Rensselaer Polytechnic Institute, USA

# The challenge

- Roundoff errors: challenge in geometric computation.
- They can be avoided with exact rational numbers.
- Big datasets:
  - Greater chance of having errors.
  - Computation with rationals: slower than native floats.
- People want exactness and performance.



- 2D orientation
- 2. Can be computed with a determinant
- 3. Errors due to floating-point arithmetic. Source of the image: [2]

# 1 - Uniform grid indexing

Steps of the algorithm

- 3D grid is created with a ragged array.
- Red and blue triangles inserted into the cells they intersect.
- For each cell c: bounding-box intersection tests are performed with the pairs of red-blue triangles in c.
- Bounding-box tests performed using two passes:
  - First: count the intersections.
  - Second: insert the intersecting pairs into an array.
- Each GPU thread processes some pairs.
  - Challenge: determine the pair each GPU thread will process (irregular distribution of triangles among grid cells).



### 2D example of a 2x2 uniform

- Interval arithmetic (IA) + arithmetic filtering can accelerate exact computation.
- Each coordinate/value: represented with exact part (rationals) and an interval approximation (floats).
- Computation is done with the approximation.
  - E.g.: [3,5] [1,2] = [3-2,5-1] = [1.0,4.0]
    - the approximation [0.9,4.1] is ok (contains [1,4])
    - the approximation [1.1,4.1] is **not ok** (does not contain [1,4])
- Interval arithmetic + IEEE-754 (rounding modes): computation can be done ensuring the interval will always CONTAIN be exact result (containment property).

Interval Arithmetic (IA)

- Containment property  $\rightarrow$  sign of the exact result can often be inferred from the intervals: • Is a\*b - c = [1.0, 4.0] positive? **Certainly**  $\rightarrow$  use this result.
  - Is a\*b c = [-0.1, 4.0] positive? **Maybe**  $\rightarrow$  recompute with better approximations (double, rationals, etc).
- Geometric predicates: typically computed with sign of a determinant (suitable for IA).

# IA on GPUs

- IA: much faster than rationals, but slower than regular floating-point.
- GPUs: excellent for **floating-point** and intervals.
- Rounding mode can be quickly switched (on a CPU  $\rightarrow$  this would empty the pipeline).
- Example of the operator + using CUDA:

 $\circ [a_{lb}, a_{ub}] + [b_{lb}, b_{ub}] = [a_{lb} + b_{lb}, a_{ub} + b_{ub}]$ rounding up to the next representable **float** 

**#define** INTERVAL\_FAILURE 2

class CudaInterval {

• **Result**: array with pairs of potentially intersecting triangles.

grid indexing red and blue segments.

### 2 - Triangle-triangle intersection

- For each pair of potentially intersecting triangles, intersection tests are performed.
- Uses orientation predicates implemented with IA.
- Orientation = sign of determinant: IA returns positive, negative, 0 or unknown (failure).
- Each GPU thread processes a pair of potentially intersecting triangles.
- Result is two arrays:
  - Intersections: certainly intersecting pairs of triangles.
  - Failures: Interval failures (rarely happens) when orientation cannot be inferred using the intervals.



Intersection of a segment and a triangle can be computed with 5 3D orientations.

Intersection of a segment and a triangle  $\rightarrow$  intersection of two triangles.

### 3 - Post-processing

- The (typically few) failures (uncertainties) are re-evaluated on the **CPU** with GMP rationals.
- Duplicated pairs of intersecting triangles are removed (using a GPU sort+unique) implementation).

### **Results and conclusions**

• Intel Xeon E5-2660 CPU at 2 GHz (3.2 GHz Turbo Boost), 256 GB of RAM, RTX 8000 GPU (48GB

```
public:
 5
         __device__ __host__
         CudaInterval(const double 1, const double u)
              : lb(l), ub(u) {}
         __device__
10
         CudaInterval operator+(const CudaInterval& v) const {
11
             return CudaInterval(__dadd_rd(this->lb, v.lb),
12
13
                  __dadd_ru(this—>ub, v.ub));
14
15
                                 rounding up to the next
16
         __device__
                                   representable float
17
         int sign() const {
             if (this \rightarrow lb > 0) // lb > 0 implies ub > 0
18
19
                  return 1;
20
             if (this\rightarrowub < 0) // ub < 0 implies lb < 0)
                  return −1;
21
22
             if (this \rightarrow lb == 0 \&\& this \rightarrow ub == 0)
23
                  return 0;
24
             // If none of the above conditions is satisfied ,
25
26
             // the sign of the exact result cannot be inferred
             // from the interval, Thus, a flag is returned
27
28
             // to indicate an interval failure.
29
30
             return INTERVAL_FAILURE;
31
32
33
    private:
         // Stores the interval's lower and upper bounds
34
35
         double lb, ub;
36
    };
```

### of RAM + 4608 CUDA cores).

- Datasets provided by IMR2024 and tetrahedralized with Gmsh:
  - Blue Crab:  $25 \times 10^6$  triangles  $\rightarrow 45 \times 10^6$  triangles in the ragged array
  - Edgar Allan (poet):  $33 \times 10^6$  triangles  $\rightarrow 64 \times 10^6$  triangles in the ragged array
- Uniform grid: 100<sup>3</sup> cells, 87% are empty
- Baseline: sequential CPU implementation
- Steps:
  - **Pre-processing:** access index, perform bounding-box tests and distribute work among threads (GPU version)
  - Intersection: perform intersection tests with orientation predicates
  - **Post-processing:** remove duplicates and re-evaluate interval failures with rationals

| Dataset             | BlueCrab vs EdgarPoet |                      |             |
|---------------------|-----------------------|----------------------|-------------|
| Method:             | CPU                   | GPUDouble            | GPUFloat    |
|                     | 2                     | Time (s)             |             |
| Pre-processing      | 64.86                 | 1.09                 | 1.09        |
| Intersection        | 325.52                | 11.80                | 0.33        |
| Post-processing     | 8.08                  | 0.11                 | 0.63        |
| Data transfer       | -                     | 1.75                 | 1.97        |
| Total time (s)      | 398.46                | 14.75                | 4.02        |
| #interval failures  | -                     | 0                    | $267,\!238$ |
| #bounding-box tests |                       | $14,754.9 \times 10$ | 6           |
| #intersection tests |                       | $771.5 \times 10^6$  |             |
| #intersections      |                       | $89.5 	imes 10^6$    |             |

## Intersecting red and blue triangles

- Problem: find triangles from one mesh intersecting triangles from another one.
- Applications: collision detection, boolean operations, etc.
- Goal: compute it exactly and efficiently.
- Uniform grid index employed for avoiding testing  $O(N^2)$  pairs of triangles.
- IA + rationals for exactness.
- GPU is employed for performance.



Two overlaid meshes: Blue crab and Edgar Allan (provided by IMR 2024)

- Speedup: 993x on the intersection tests, 99x on the total time.
- Double precision: fewer (0) filter failures, but slower computation.
- Approximate floats on GPUs (where they shine) can accelerate exact geometric computation.
- Future work:
  - Employ this technique for other applications.
  - Higher speedups could be achieved in applications where bigger bottlenecks could be moved into the GPU (performing more computation and fewer memory transference)

# Bibliography

1. Marcelo Menezes, Salles Magalhães, Matheus Oliveira, W. Randolph Franklin, Rodrigo Chichorro. Fast Parallel Evaluation of Exact Geometric Predicates on GPUs. Computer-Aided Design 2022; 150 2. Kettner Lutz, Mehlhorn Kurt, Pion Sylvain, Schirra Stefan, Yap Chee Keng. Classroom examples of robustness problems in geometric computations. Comput Geom 2008;40(1):61–78



### Acknowledgement







