Employing GPUs to accelerate exact 3D geometric computation

Salles V. G. Magalhães ${ }^{1}$, W. Randolph Franklin² , Marcelo Menezes ${ }^{1}$

'Universidade Federal de Viçosa, Brazil ${ }^{2}$ Rensselaer Polytechnic Institute, USA

The challenge

- Roundoff errors: challenge in geometric computation.
- They can be avoided with exact rational numbers.
- Big datasets:
- Greater chance of having errors.

Computation with rationals: slower than native floats.

- People want exactness and performance.

1. 2 D orientation
2. Can be computed with a determinan
3. Errors due to floating-point arithmetic. Source of the image: [2]

Interval Arithmetic (IA)

- Interval arithmetic (IA) + arithmetic filtering can accelerate exact computation.
- Each coordinate/value: represented with exact part (rationals) and an interval approximation (floats)
- Computation is done with the approximation
E.g.: $[3,5]-[1,2]=[3-2,5-1]=[1.0,4.0]$
- the approximation $[0.9,4.1]$ is ok (contains $[1,4]$)
- the approximation $[1.1,4.1]$ is not ok (does not contain $[1,4]$)
- Interval arithmetic + IEEE-754 (rounding modes): computation can be done ensuring the interval will always CONTAIN be exact result (containment property).
- Containment property \rightarrow sign of the exact result can often be inferred from the intervals Is a*b - $\mathrm{c}=[1.0,4.0]$ positive? Certainly \rightarrow use this result.
Is a*b - $\mathrm{c}=[-0.1,4.0]$ positive? Maybe \rightarrow recompute with better approximations (double, rationals, etc).
- Geometric predicates: typically computed with sign of a determinant (suitable for IA).

IA on GPUs

- IA: much faster than rationals, but slower than regular floating-point
- GPUs: excellent for floating-point and intervals.
- Rounding mode can be quickly switched (on a CPU \rightarrow this would empty the pipeline).
- Example of the operator + using CUDA:
- $\left[\mathrm{a}_{\mathrm{tb}}, \mathrm{a}_{\mathrm{ub}}\right]+\left[\mathrm{b}_{\mathrm{lb}}, \mathrm{b}_{\mathrm{ub}}\right]=\left[\mathrm{a}_{\mathrm{lb}}+\mathrm{b}_{\mathrm{lb}}, \overline{\left.\mathrm{a}_{\mathrm{ub}}+\mathrm{b}_{\mathrm{ub}}\right]}\right]$
rounding up to the next
representable float

```
#define INTERVAL_FAILURE 2
class CudaInterval {
public:
    device host
        CudaInterval(const double 1, const double u)
            lb(1),ub(u) {}
        device
        CudaInterval operator+(const CudaInterval& v) const
        return CudaInterval(__dadd_rd(this }->\textrm{lb}, v.lb)
            __dadd_ru(this->ub, v.ub));
```



```
    _-device_-
                rounding up to the nex
        representabl
        sign() const {
        if (this }->1b>0)// lb > 0 implies ub > 0 
            return 1;
        if (this }->\textrm{ub
            return -1;
        if (this }->\textrm{l}\textrm{l}==0&& this mub == 0
            return 0;
        // If none of the above conditions is satisfied,
        // the sign of the exact result cannot be inferred
        // the sign of the exact result cannot be infer
        // to indicate an interval failure
        return INTERVAL_FAILURE;
        }
private
    // Stores the interval's lower and upper bounds
    double lb, ub;
};
```

Intersecting red and blue triangles

- Problem: find triangles from one mesh intersecting triangles from another one.
- Applications: collision detection, boolean operations, etc
- Goal: compute it exactly and efficiently.
- Uniform grid index employed for avoiding testing $\mathrm{O}\left(\mathrm{N}^{2}\right)$ pairs of triangles.
- IA + rationals for exactness.
- GPU is employed for performance.

Two overlaid meshes: Blue crab and Edgar Allan provided by IMR 2024)

Steps of the algorithm

1 - Uniform grid indexing

- 3D grid is created with a ragged array
- Red and blue triangles inserted into the cells they intersect.
- For each cell c: bounding-box intersection tests are
performed with the pairs of red-blue triangles in c.
- Bounding-box tests performed using two passes:

First: count the intersections.
Second: insert the intersecting pairs into an array

- Each GPU thread processes some pairs.

Challenge: determine the pair each GPU thread will process (irregular distribution of triangles among grid cells).

- Result: array with pairs of potentially intersecting triangles

2D example of a 2×2 uniform grid indexing red and blue segments.

2 - Triangle-triangle intersection

- For each pair of potentially intersecting triangles, intersection tests are performed.
- Uses orientation predicates implemented with IA.
- Orientation = sign of determinant: IA returns positive, negative, 0 or unknown (failure).
- Each GPU thread processes a pair of potentially intersecting triangles.
- Result is two arrays:
- Intersections: certainly intersecting pairs of triangles. - Failures: Interval failures (rarely happens) - when orientation cannot be inferred using the intervals.

Intersection of a segment and a triangle can be computed with 5 3D orientations. Intersection of a segment and a triangle \rightarrow intersection of two triangles

3 - Post-processing

- The (typically few) failures (uncertainties) are re-evaluated on the CPU with GMP rationals.
- Duplicated pairs of intersecting triangles are removed (using a GPU sort+unique implementation).

Results and conclusions

- Intel Xeon E5-2660 CPU at 2 GHz (3.2 GHz Turbo Boost), 256 GB of RAM, RTX 8000 GPU (48GB of RAM + 4608 CUDA cores).
- Datasets provided by IMR2024 and tetrahedralized with Gmsh:
- Blue Crab: 25×10^{6} triangles $\rightarrow 45 \times 10^{6}$ triangles in the ragged array

Edgar Allan (poet): 33×10^{6} triangles $\rightarrow 64 \times 10^{6}$ triangles in the ragged array

- Uniform grid: 100^{3} cells, 87% are empty
- Baseline: sequential CPU implementation
- Steps:

Pre-processing: access index, perform bounding-box tests and distribute work among threads (GPU version)
Intersection: perform intersection tests with orientation predicates
Post-processing: remove duplicates and re-evaluate interval failures with rationals

Dataset	BlueCrab vs EdgarPoet			
Method:	CPU	GPUDouble	GPUFloat	
	Time (s)			
Pre-processing	64.86	1.09	1.09	
Intersection	325.52	11.80	0.33	
Post-processing	8.08	0.11	0.63	
Data transfer	-	1.75	1.97	
Total time (s)	398.46	14.75	4.02	
\#interval failures	-	0	267,238	
\#bounding-box tests	$14,754.9 \times 10^{6}$			
\#intersection tests	771.5×10^{6}			
\#intersections	89.5×10^{6}			

- Speedup: 993x on the intersection tests, 99x on the total time.
- Double precision: fewer (0) filter failures, but slower computation.
- Approximate floats on GPUs (where they shine) can accelerate exact geometric computation
- Future work:
- Employ this technique for other applications.
- Higher speedups could be achieved in applications where bigger bottlenecks could be moved into the GPU (performing more computation and fewer memory transference)

