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Abstract

Surface quadrilateral mesh generation plays a fundamental
role in CAD/CAE fields. It is crucial to control the density
of the meshing structures in practice.

In this work, a novel method for controlling the density
of quad meshes is proposed based on the Optimal Trans-
port (OT) theory. This method has a rigorous mathemati-
cal foundation and efficient and robust computational algo-
rithms. It provides the designers with the flexibility to con-
trol the meshing density by prescribing arbitrary probability
density functions on the surface. This work demonstrates
the efficiency and efficacy of the method using topological
disk models, in principle, the method can be generalized to
surfaces with arbitrary topologies.

1 Introduction

Quad meshes, which represent surfaces using quadrilat-
eral elements, are widely used in computer graphics, ge-
ometric modeling, and engineering applications due to
their alignment with surface features and suitability for
tasks such as texture mapping, finite element analysis,
and simulation. A key challenge in these applications is
efficiently controlling mesh density to balance compu-
tational cost and detail preservation. Specifically, too
many elements in low-detail regions increase computa-
tional costs, while insufficient density in high-curvature
regions leads to loss of detail and accuracy. This task be-
comes even more critical when the density must be ad-
justed in a user-defined, localized manner—a capability
that is not adequately addressed by existing methods.

In this work, we address this gap by introducing
a novel framework that enables user-controlled quad
mesh density adjustments in specific regions, while
maintaining structural integrity and alignment with
geometric features. Our approach is based on OT
theory and offers a robust mechanism for tailoring mesh
density to application-specific needs. The outline of our
algorithm is as follows: we use 2D mesh conformally
mapped from 3D facial surfaces as our input. As we
make sure that the triangle mesh stays Delaunay at all
times, we adjust a height vector to change the dual of
our mesh, which is a power diagram, representing the
desired Brenier’s potential. The algorithm goes back
and shrinks the step length once it encounters empty
power cells or non-convex faces (oriented in different
directions) and stops when the dual face’s area is close
enough to our target area. Finally, we can adopt
Zheng’s [32] method to generate the quad-mesh from

our triangle mesh with new density.
This work’s primary contribution lies in enabling

precise, user-defined control over quad mesh density in
localized areas, addressing a pressing need in applica-
tions that require a balance between computational ef-
ficiency and geometric fidelity.

As shown in Fig 1, the old man’s facial surface is
conformally mapped onto a planar rectangular domain
using the surface Ricci flow method [12, 11] (upper-left),
then we tessellate the rectangle by regular grids on the
plane and pull it back to the 3D surface to produce
a quad-mesh of the surface (lower left). In order to
increase the mesh density around the nose, we apply
the OT map. The upper row shows the intermediate
results during the OT process, the nose area gets larger
and larger. The corresponding quad-meshes are shown
in the lower row, the quad-meshes surrounding the nose
are getting denser and denser.

Our method can change the density of the parame-
terization to an arbitrary user-defined distribution. Tra-
ditional remeshing techniques often rely on heuristic
rules [22, 24] that can lead to uneven density distribu-
tions or distorted elements. In contrast, our OT-based
framework provides a mathematically rigorous way to
transport one distribution to another while minimizing
the cost of transformation. The primary contribution
of this work is the introduction of an OT-based method
for selective density modification in quad-meshes, al-
lowing users to concentrate or reduce mesh density in
targeted areas. This capability offers greater flexibility
for tasks that require adaptive mesh refinement, such
as surface parametrization, finite element analysis, and
high-quality rendering. The OT framework also ensures
that mesh transformations are smooth and well-aligned
with the original geometry, avoiding common pitfalls
such as element distortion or irregular mesh transitions.

Our framework aligns well with the geometric fea-
tures of the surface, minimizing distortion during trans-
formations. Future extensions of this work will focus on
integrating curvature-aware strategies, where mesh den-
sity dynamically increases in high-curvature regions and
decreases in flatter areas. This enhancement will further
improve the adaptability and efficiency of the method,
making it particularly useful for applications such as
adaptive simulation, surface parametrization, and digi-
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Figure 1: Quad mesh density control by OT map.

tal fabrication. The proposed OT-based approach offers
a powerful tool for precise mesh refinement while al-
lowing density control at a specific area defined by the
user and contributes to advance state-of-the-art mesh
generation and optimization techniques. The outline of
this paper is that we introduce the necessary theoretical
background in section 3 and the algorithm in section 4,
and we display some image results in section 5.

2 Related Work

Mapping 3D Riemannian geometry to a 2D plane,
known as parameterization, is crucial in many fields,
including computer graphics, medicine, and the trans-
portation industry. Various techniques have been pro-
posed, including cut-based flattening, projection-based
methods, and conformal mapping. When the surface is
very irregular and complex, conformal mapping is of-
ten the default method to ensure the existence of such
a mapping. Another advantage is its preservation of
angles, allowing local shapes to be preserved. The left
figure on figure 2 demonstrates that all 90-degree angles
are preserved on the conformal parameterization.

However, in order to preserve angles, conformal
mapping often distorts areas. As we can see in figure
3, on the left is the face surface model in 3D, and
in the middle is its conformal mapping to a rectangle

Figure 2: Conformal mapping (left) preserves angles.

in 2D. The nose is shrunk to a smaller area. In
many situations, this is undesirable. For instance, a
uniform data distribution on the 2D mapping does not
correspond to a uniform data distribution. Hence, the
need for an area-transforming map is obvious.

OT can help achieve this goal. It can preserve and
also change area arbitrarily [31]. The right image of
figure 2 and 3 shows an area-distorting and an area-
preserving mapping. The nose is of the right size and
it retains a uniform distribution in the case of area-
preserving map.

An area-preserving mapping can be achieved
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Figure 3: left : Alex face in 3D; middle: parameteri-
zation of face in 2D disk through conformal mapping;
right : area-preserving mapping.

through the composition of OT and conformal map-
ping. Conformal mapping is often performed through
the Ricci flow [16, 15]. OT on the 2D disk can be done
using the semi-discrete OT algorithm by Gu [13].

In the recent works of Lei et al. (2021) [32], a novel
framework for generating quadrilateral meshes on sur-
faces with complicated topologies has been introduced
based on the Abel-Jacobi theory in algebraic geometry
and surface Ricci flow theory. These works give a solid
theoretical approach to handling surfaces with realistic
topologies. The current work aims to locally adjust the
density for the quad-meshes obtained by their method.
Therefore, our current proposed method is flexible and
general to surfaces with various topologies in reality
[32, 3, 4].

Recent works [21, 20, 5] published in the graph-
ics community propose to generate quadrilateral meshes
with minimal distortions based on conformal parameter-
izations and moving frames. Technically, these meth-
ods are very promising and achieved impressive results.
However, all of these works lack theoretic rigor. As
stated in the works of Lei et al. the singularities of a
quadrilateral mesh must satisfy the Abel-Jacobi condi-
tion, and this condition is missing from these works.
Furthermore, in the recent work of Lei [19], it is proven
that cross fields are not equivalent to quad-meshes,
there are special cross fields with singularities that can-
not be converted to quad-meshes.

The works in [2, 25] give thorough surveys for
surface quad-mesh and volume hex-mesh generation
mainly in the graphics field, but skipped the recent
works in computational mechanics fields, therefore these
surveys didn’t include the most recent advancements in
the structured mesh generation field.

There are more recent works on surface map-
pings [8, 26, 10] which optimize different criteria, such
as injectivity, scale-optimality. However, the proposed
work requires the full controllability of area distortion,
therefore, OT map is the best candidate, due to its the-
oretic rigor [14]

For mesh density controlling tasks, several heuris-

tic approaches aim to adapt quad-mesh density by ad-
justing mesh elements according to geometric features
or computational requirements. Advancing front algo-
rithms, such as Q-Morph [23], are widely used to prop-
agate a front through the mesh and generate quads
based on local topology and curvature. Q-Morph uti-
lizes an indirect triangulation method to determine el-
ement sizes and alignments, helping to maintain mesh
quality while achieving the desired density in critical re-
gions. Similarly, Laplacian smoothing and vertex-based
operations (e.g., edge-swap and splitting) are common
strategies for improving mesh regularity by dynamically
redistributing vertices. These methods aim to increase
density in high-curvature regions and reduce it in flatter
areas, but they often rely on trial-and-error rules with
limited theoretical guarantees [6].

OT has found numerous applications in computer
graphics and geometric modeling due to its ability to
measure distances between distributions and facilitate
transformations. Previous works have extensively ap-
plied OT in texture mapping [7], shape registration [27],
and surface correspondence [9]. Zhao et al. [31] utilized
OT in the preservation of surface area, and Su et al. [28]
extended it to the preservation of volume. An et al. [1]
focused on adaptive sampling on the parameter domain
to fit to the geometric complexity of the input surface in
order to produce high quality, local adaptive triangular
meshes. However, OT’s potential for mesh modifica-
tion, particularly in controlling partial mesh densities,
remains relatively underexplored.

Our approach builds upon these efforts by lever-
aging OT for targeted density manipulation in quad
meshes by introducing an OT-based framework that
modifies partial density in meshes. This approach lever-
ages the Brenier map to ensure optimal transforma-
tion, providing significant improvements in flexibility
and precision over existing methods.

3 Theoretical Foundation

This section provides a concise overview of the theoret-
ical foundations of Optimal Transport. OT is a math-
ematical framework for determining the most efficient
way to transport mass from one probability distribu-
tion to another, minimizing a specified cost function.
For a comprehensive exploration of OT and its princi-
ples, refer to the detailed discussion in [18].

3.1 Optimal Transport Monge first raised the opti-
mal mass transport problem, which asks for the optimal
way to move a pile of mass from one place to another
that results in the minimum transport cost. OT the-
ory essentially studies the problem of transforming one
distribution to another in the most economical way.
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Let X and Y be two metric spaces with probability
measures µ and ν respectively, and assume X and Y
have equal total measure:

∫

X

dµ =

∫

Y

dν

Then we want a transport map T : X → Y that is
measure preserving : for any measurable set B ⊂ Y , we
have:

µ(T−1(B)) = ν(B)

and we call ν the push-forward of µ by T and denote
ν = T#µ.

Let the transport cost for moving x ∈ X to y ∈ Y be
c(x, y), c(x, y) : X × Y → R. Then the total transport
cost is

C(T ) =

∫

X

c(x, T (x))dµ(x)

in most cases, c(x, y) is either the L1 cost |x− y| or the
L2 cost |x− y|2. OT theory therefore studies measure-
preserving maps with the minimum total transport cost.

3.1.1 Monge and Kantorovich’s Approach

Monge’s Optimal Mass transport is in the most fun-
damental form: given c, µ, ν, find Wc(µ, ν) among all
measure preserving transport map T , where

Wc(µ, ν) = min
T
{

∫

X

c(x, T (x))dµ(x) : T#µ = ν}

There are some problems with Monge’s approach: for
example, it could not represent splitting a single mass
into two halves. As a result, when X is a single point 0
with mass 1 and Y contains two points, each with mass
0.5, there does not exist a transport map.

Kantorovich [17] relaxed Monge’s problem in the
1940s and proved the solution’s existence and unique-
ness. He introduced a joint measure ρ(A,B) that
can represent all measure-preserving transport, called
a transport plan. ρ(A,B) can be seen as the portion of
mass in pile A that is moving to pile B, represented as a
joint distribution. We have ρ(A∗Y ) = µ(A), ρ(X×B) =
ν(B) for all A ⊆ X and B ⊆ Y . The projection to X and
Y are denoted πx and πy respectively: πxρ = µ, πyρ = ν.
The total cost thus becomes

C(ρ) =

∫

X×Y

c(x, y)dρ(x, y)

and therefore Monge-Kantorovich problem aims to find
an OT plan ρ among all transport plans that minimize
the cost C(ρ):

Wc(µ, ν) = min
ρ
{

∫

X×Y

c(x, y)dρ(x, y) :

πxρ = µ, πyρ = ν}

(3.1)

where Wc(µ, ν) denotes the minimum cost C(ρ) among
all transport plans.
Since equation 3.1 is a linear program, it has a dual
formulation, known as Kantorovich dual problem:

Wc(µ, ν) = max
ϕ,ψ
{

∫

X

φ(x)dµ(x) +

∫

Y

ψ(y)dν(y) :

φ(x) + ψ(y) ≤ c(x, y)}

We give a brief proof:

Proof. Let Π(X,Y ) denote the space of all trans-
port plans: Π(X,Y ) = {γ ∈ ρ(X,Y ) : (πx)#γ =
µ, (πy)#γ = ν}, where πx, πy are the marginal distri-
bution of X and Y respectively, then we have:

sup
ϕ,ψ

∫

X

φdµ+

∫

Y

ψdν −

∫

X×Y

(φ(x) + ψ(y))dγ = 0

for all γ ∈ Π(X,Y ) and equals infinity otherwise. Under
certain conditions, we can write:

inf
γ

∫

X×Y

cdγ + sup
ϕ,ψ

∫

X

φdµ+

∫

Y

ψdν

−

∫

X×Y

(φ(x) + ψ(y))dγ

as

sup
ϕ,ψ

∫

X

φdµ+

∫

Y

ψdν + inf
γ

∫

X×Y

cdγ

−

∫

X×Y

(φ(x) + ψ(y))dγ

which is

sup
ϕ,ψ

∫

X

φdµ+

∫

Y

ψdν + inf
γ

∫

X×Y

(c− φ(x)− ψ(y))dγ

so we can write the original program as

max
ϕ,ψ
{

∫

X

φ(x)dµ(x) +

∫

Y

ψ(y)dν(y)}

with constraint: φ(x) + ψ(y) ≤ c(x, y).

Equivalently, ψ can be replaced by the c-transform

of φ: φc(y) = infx∈X(c(x, y)− φ(x)):

Wc(µ, ν) = max
ϕ

{
∫

X

φ(x)dµ(x) +

∫

Y

φc(y)dν(y)

}

we call φ theKantorovich potential. If the transport cost
is L2: c(x, y) = 1

2 |x − y|
2, then there’s a relationship

between the c-transform and the classical Legendre
transformation of φ:

1

2
|y|2 − φc =

(

1

2
|x|2 − φ

)∗
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3.1.2 Brenier’s Approach By the end of 1980’s,
Brenier showed that

Theorem 3.1. Suppose X and Y are the Euclidean

space R
n, and the transportation cost is the quadratic

Euclidean distance c(x, y) = |x− y|2. If µ is absolutely

continuous and µ and ν have finite second order mo-

ments, then there exists a convex function u : X → R,

its gradient map ∇u gives the solution to the Monge’s

problem, where u is called Brenier’s potential. Further-

more, the optimal mass transportation map is unique.

This theorem converts Monge’s problem to solving the
pde:

det

(

∂2u

∂xi∂xj
(x)

)

=
µ(x)

ν ◦ ∇u(x)

u is called Brenier potential. When c(x, y) = 1
2 |x− y|

2,
Brenier’s potential u and Kantorovich’s potential φ are
related:

u(x) =
x2

2
− φ(x)

3.2 Convex Geometry and Discrete OT OT in
the discrete case maps one discrete distribution to
another. With L2 transport cost, it has an intrinsic
connection with convex geometry theories, especially
Alexandrov’s theory. Specifically, finding an OT map in
the discrete case is equivalent to constructing a convex
polytope with user-defined face volume and normal
vectors. Alexandrov’s theory is a generalization of
Minkowski’s theory.

Theorem 3.2. (Minkowski) Suppose {n1, ..., nk} are
unit vectors which span R

n and ν1, ..., νk > 0 so that
∑k
i=1 νini = 0. There exists a compact convex polytope

P ⊂ R
n with exactly k codimension-1 faces F1, ..., Fk

so that ni is the outward normal vector to Fi and the

volume of Fi is νi. Furthermore, such P is unique up to

parallel translation.

Minkowski’s proof is variational. The unbounded con-
vex polytope was considered and solved by A.D. Alexan-
drov and his student A. Pogorelov.

Theorem 3.3. (Alexandrov) Suppose Ω is a com-

pact convex polytope with non-empty interior in R
n,

{n1, ..., nk} ⊂ R
n+1 are distinct k unit vectors, the

(n + 1)th coordinates are negative, and ν1, ..., νk > 0

so that
∑k
i=1 νi = vol(Ω). Then there exists convex

polytope P ⊂ R
n+1 with exact k codimension-1 faces

F1, ..., Fk so that ni is the normal vector to Fi and the

intersection between Ω and the projection of Fi is with

volume νi. Furthermore, such P is unique up to vertical

translation.

By viewing the normal vectors as the target of the trans-
port map, and volumes as the target measure, we can
see that constructing such a polytope is indeed equiv-
alent to finding an OT map. Alexandrov’s proof was
based on algebraic topology and was non-constructive.
Gu et al.[30] gave a variational proof for the generalized
Alexandrov’s theorem in terms of convex functions.

Given p1, ..., pk ∈ R
n and h = (h1, ..., hk) ∈ R

k, a
piecewise linear function uh(x) is defined as

uh(x) = max
i
{⟨x, pi⟩+ hi};

Then dual function u∗(y) has domain Conv(p1, ...pk)
and

u∗(y) = min

{

−
k

∑

i=1

tihi|ti ≥ 0

k
∑

i=1

ti = 1,

k
∑

i=1

tipi = y

}

Therefore, if pi /∈ Conv(p1, ..., pi−1, pi+1, ..., pk), then
u∗(pi) = −hi.

The graph of u is a convex polytope in R
n+1, and

its projection on R
n induces a cell decomposition where

each cell is a closed convex polytope

Wi(h) = {x ∈ R
n|∇uh(x) = pi}

It’s well known that some cells defined this way may be
unbounded or empty. The volume wi(h) of each cell,
given a probability measure µ on Ω, is

wi(h) = µ(Wi(h) ∩ Ω) =

∫

Wi(h)∩Ω

dµ

Theorem 3.4. (Gu-Luo-Sun-Yau) Let Ω be a com-

pact convex domain in R
n, {y1, ..., yk} be a set of dis-

tinct points in R
n and µ a probability measure on Ω.

Then for any ν1, ..., νk > 0 with
∑k
i=1 νi = µ(Ω), there

exists h = (h1, ..., hk) ∈ R
k, unique up to adding a con-

stant (c, ..., c), so that wi(h) = νi, for all i. The vectors

h are exactly the minimum points of the convex function

(3.2) E(h) =

∫ h

0

k
∑

i=1

wi(η)dηi −
k

∑

i=1

hiνi

on the open convex set

H = {h ∈ R
k|wi(h) > 0, ∀i}

Furthermore, ∇uh minimize the quadratic cost

∫

Ω

|x− T (x)|2dµ(x)

among all transport maps T#µ = ν, where ν is the Dirac

mass
∑k
i=1 νiδyi
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3.3 Power diagram Before getting to the algorithm
itself, we recall power diagrams. Convex subdivisions
of a piecewise linear convex function uh(x) are exactly
the same as a power diagram. Suppose {y1, ..., yk} are k
points in R

n, and {m1, ...,mk} are k real numbers. Then
power distance given a point yi and a power weight mi

is
pow(x, yi) = |x− yi|

2 −mi

and a power diagram is the cell decomposition of Rn

R
n =

k
⋃

i=1

Wi(m)

where each cell is a convex polytope

Wi(m) = {x ∈ R
n|pow(x, yi) ≤ pow(x, yj), ∀j}

The weighted Delaunay triangulation is the Poincaré
dual of power diagram, and when the power weights
are all 0, then the power diagram becomes Delaunay
decomposition. Note that if pow(x, yi) ≤ pow(x, yj),
then

|x− yi|
2 −mi ≤ |x, yj |

2 −mj

x2 − 2xyi + y2i −mi ≤ x
2 − 2xyj + y2j −mj

⟨x, yi⟩ −
1

2
(y2i −mi) ≥ ⟨x, yj⟩ −

1

2
(y2j −mj)

setting hi = −
1
2 (y

2
i −mi), we have the piecewise linear

convex function uh(x) = max
i
{⟨x, yi⟩+ hi}

3.4 Convex optimization Now, we have all the
tools to explain the gradient and the Hessian of the
energy defined in equation 3.2. By definition

∇E(h) = (w1(h)− ν1, w2(h)− ν2, ..., wk(h)− νk)
T

The Hessian of energy E(h) is given by

∂2E(h)

∂hi∂hj
=
∂(wi(h))

∂hj
= −

µ(Wi(h) ∩Wj(h) ∩ Ω)

|yj − yi|

that is, suppose edge eij is in the weighted Delaunay
triangulation, connecting yi, yj , then there exists a
unique dual cell Dij in the power diagram and

∂2E(h)

∂hi∂hj
= −

µ(Dij)

|eij |

which is the volume ratio between dual cells, and the
diagonal elements of the Hessian is

∂2E(h)

∂2hi
=
∂(wi(h))

∂hi
= −

∑

j:j ̸=i

∂(wj(h))

∂hi

We prove this by first proving a lemma.

Lemma 3.1. Suppose X is a compact domain in R
n,

f : X → R is a non-negative continuous function and

τ(x, t) : {(x, t) ∈ X × R|0 ≤ t ≤ f(x)} → R is

continuous. For each t ≥ 0, let ft(x) = min{t, f(x)}.

Then W (t) =
∫

X
(
∫ ft(x)

0
τ(x, s)ds)dx satisfy

lim
t→t+

0

W (t)−W (t0)

t− t0
=

∫

x|f(x)≥t0

τ(x, t0)dx

and

lim
t→t−

0

W (t)−W (t0)

t− t0
=

∫

x|f(x)>t0

τ(x, t0)dx

it is differentiable at t0 iff
∫

x|f(x)=t0
τ(x, t0)dx = 0

Proof. Let Gt(x) =
∫ ft(x)

0
τ(x, s)ds, and M be the

upper bound for τ(x, t) on its domain. Sincemin(a, b)−
min(a, c) ≤ |b − c|, we have |ft(x) − ft0(x)| ≤ |t − t0|.
For any t ̸= t0:

∣

∣

∣

∣

Gt(x)−Gt0(x)

t− t0

∣

∣

∣

∣

=
|
∫ ft(x)

ft0 (x)
τ(x, s)ds|

|t− t0|

≤
M

|t− t0|
|ft(x)− ft0(x)| ≤M

fix t0 and x. If f(x) < t0, then for t sufficiently close

to t0, Gt(x) =
∫ ft(x)

0
τ(x, s)ds, and lim

t→t0

Gt(x)−Gt0
(x)

t−t0
=

0. If f(x) > t0, then for t sufficiently close to

t0, Gt(x) =
∫ ft0 (x)

0
τ(x, s)ds, and lim

t→t0

Gt(x)−Gt0
(x)

t−t0
=

lim
t→t0

1
t−t0

∫ ft(x)

ft0 (x)
τ(x, s)ds = τ(x, t0). If f(x) = t0,

the above calculations showed that lim
t→t+

0

Gt(x)−Gt0
(x)

t−t0
=

τ(x, t0), and lim
t→t−

0

Gt(x)−Gt0
(x)

t−t0
= 0. Then by Lebesgue

dominated theorem, we have

lim
t→t+

0

W (t)−W (t0)

t− t0
= lim
t→t+

0

∫

X

Gt(x)−Gt0(x)

t− t0
dx

=

∫

{x|f(x)≥t0}

τ(x, t0)dx

lim
t→t−

0

W (t)−W (t0)

t− t0
= lim
t→t−

0

∫

X

Gt(x)−Gt0(x)

t− t0
dx

=

∫

{x|f(x)>t0}

τ(x, t0)dx

Hence the lemma is established.

Fix a < b, then {(x, t) ∈ X × R|a ≤ f(x), a ≤
t ≤ min(f(x), b)} is called a cap domain with base
{x|f(x) ≥ a} and top {x|f(x) ≥ b} of height (b − a)
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associated with function f .
To show the elements of the Hessian matrix, let h′ =
(h1, ..., hi−1, hi + δ, hi+1..., hk). For small δ > 0, by
definition, Wi(h) ⊂ Wi(h

′) and Wj(h
′) ⊂ Wj(h). If

Wi(h) ∩ Wj(h) ∩ Ω = ∅, then for small δ, Wj(h) =

Wj(h
′). Hence

∂Wj(h)
∂hi

= 0. If Wi(h)∩Ω and Wj(h)∩Ω
share a co-dimension 1 face F , then cl(Wj(h)−Wj(h

′))
is a cap domain with base F associated with function f
defined on F . The height of the domain is δ

|yi−yj |
, and

f is piecewise linear convex, so any (n− 1) dimensional
Lebesgue measure of the form {x ∈ F |f(x) = t} is 0.
Furthermore, for δ > 0, by definition

wj(h)− wj(h
′)

δ
=

1

δ

∫

Wj(h)∩Ω−Wj(h′)∩Ω

µ(x)dx

=
1

δ

∫

F

∫ ft(x
′)

0

τ(x′, s)dsdx′

where x′ ∈ F are the Euclidean coordinates, τ(x′, s) is
µ expressed in new coordinates. Then by the previous
lemma, we have

lim
δ→0+

wj(h)− wj(h
′)

δ
=

1

|yi − yj |

∫

F

µ|F dA

where dA is the area form on F . With a negative
δ, we can see that this equation hold as well with
cl(Wj(h

′) −Wj(h)) has cap F , and we can obtain the
same formula as non-diagonal elements of the Hessian
of our energy in 3.2. If Wi(h) and Wj(h) share a face
of dimension less than n− 1, this equation holds as well
with a zero measure top or base.

4 Algorithms

The discrete OT algorithm has several important parts:
Delaunay triangulation and Dual graph calculation. We
will introduce these two algorithms first.

We first map the 3D model onto the 2D unit disk
through conformal methods such as Ricci flow [16],
the 2D parameterization Ω is a source triangle mesh
consisting of vertices Vs, edges Es, faces Fs and half-
edges Hs. It will be used as our input.

Input: A source triangle mesh Ω =
(Vs, Es, Fs, Hs), a target triangle mesh P =
(p1, p2, ..., pn), and user-defined target area for each

vertex ν = (ν1, ν2, ..., ν|Vs|), where
∑|Vs|
i=1 νi = area of P.

Output: The source mesh in target shape P and
vertices with target area ν.

Notation: for any vertex v, v.vertexfaces repre-
sents all faces that have v as one of its vertex, for any
edge e, e.edgefaces represents all faces that have e as
one of its edge, the logic is the same for all similar ex-
pression.

4.1 Delaunay triangulation The Delaunay trian-
gulation algorithm 4.1 checks if the current mesh is De-
launay by checking if all edges are local Delaunay. If not,
we will try to flip that edge by removing it and connect-
ing the other two vertices of the two faces that share this
edge. All half-edges in all faces are oriented counter-
clockwise, thus any edge that results in a clockwise-
oriented face after flipping is not flippable.

Algorithm 4.1. Delaunay triangulation

function Delaunay triangulation(Ω)
for e ∈ all non-boundary edges in Es do

3: if e is not local Delaunay then

illegal edge stack.push(e)
end if

6: end for

for e ∈ illegal edge stack do

if e is not local Delaunay then

9: stack.pop(e)
for face f1, f2 has edge e do

if f1, f2 are counter-clockwise orient
then

12: flip e
stack.push(other 4 edges of f1, f2)

end if

15: end for

end if

end for

18: if e is Delaunay ∀e ∈ Es then

return False

else

21: return True

end if

end function

4.2 Dual graph Algorithm 4.2 calculates the dual
of the mesh. Dual points are defined to be the unit
normal of each face, dual edges are edges that connect
dual points of neighboring faces, and dual faces are
then naturally defined but restricted inside the target
domain.

Algorithm 4.2. Dual calculation

function Dual calculation(Ω)
for f ∈ Fs do

3: f: ax+by-c=z
(a,b,c) = f.dualpoint

end for

6: for v ∈ Vs do

for finv.vertexFaces do

connect f.dualpoint
9: v.dualface = resulting polygon

if v.dualface > target domain then

clip v.dualface
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12: end if

end for

end for

15: end function

4.3 Semi-Discrete OT Now we can move on to the
main algorithm.

Algorithm 4.3. Semi-Discrete Optimal Transport
Map

function Semi-Discrete OT(Ω, P, ν)
Translate and scale Ω s.t. Ω ⊂ P ;

3: for each v in Ω do

v.area += v.vertexfaces.area/3
end for

6: scale v.area s.t. sum is Ω area
Initialize a height vector h0i =

1
2 |vi|

2

Call function Delaunay triangulation 4.1
9: Call function Dual Calculation 4.2

repeat

Compute gradient of energy E:

E(hn) =

∫ hn

0

k
∑

i=1

vi.dualface.area dhi −
k

∑

i=1

νih
n
i

∇E(hn) = vi.dualface.area− vi.area

12: Compute the Hessian matrix for E(hn)

∂2E(hn))

∂hi∂hj
=
∂wi(h

n)

∂hj
= −

eij .length

eij .dualedge.length

∂2E(hn))

∂2hi
=
∂wi(h

n)

∂hi
= −

∑

j:i ̸=j

∂wj(h
n)

∂hi
;

Solve Hess(hn)d = ∇E(hn)
Set initial step length λ = 1

15: hn+1 ← hn + λd;
Call Delaunay triangulation 4.1
if return is False then

18: Roll back, λ = λ/2
end if

if any power cell is empty then

21: Roll back, λ = λ/2
end if

Compute the error ϵ =
∑

v.targetarea -
v.area,

24: until ϵ ≤ some threshold
v.coordinates = v.dualface.center
Output new Ω

27: end function

4.4 Image illustration We provide some image il-
lustrations. Figure 4 shows the input of the discrete
OT algorithm. On the left we have the face mesh in

3D, and in the middle is its conformal projection onto
the 2D plane. Our target domain in this case is a rect-
angle with all edges 1.1 times bigger than our source.
The target domain can be any convex shape.

Figure 4: OT algorithm input

Figure 5 represents the Delaunay triangulation of
the mesh after edge flipping, it is the 2D mesh in 3D
with our height vector. Delaunay triangulation is done
based on orientation in 3D.

Figure 5: Delaunay triangulation

The target mesh P is a 2D rectangular region while
the source mesh Ω is the input mesh after parameter-
ization (2D). Fig. 6 illustrates the concept of domain
Ω and the probability density ν. Suppose ν(x, y) =
f(x, y)dxdy, we use the color temperature to visualize
the density function f(x, y).

Figure 7 shows the unclipped upper envelop with an
infinity vertex added. The infinity vertex is used to help
calculate dual points of the boundary faces and dual
face of the boundary vertex. While figure 8 shows the
upper envelope clipped within the target domain using
Sutherland-Hodgman algorithm. It is also equivalent to
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Figure 6: Left: The source triangle mesh Ω in the
rectangular target shape P with target area ν. Right:

Color temperature representing the density. Red reflects
a higher density and yellow corresponds to lower.

a power diagram.

Figure 7: The final Brenier potential u(x) : Ω →
R, represented as the unclipped upper envelop of the
supporting planes. Its projection on the plane induces
the planar power diagram of the sample vertices.

5 Experimental Results

All the computational algorithms are implemented us-
ing generic C++ on Windows platform using Vi-
sual Studio 2022. All the experiments are conducted
on a laptop with Intel(R) Core(TM) CPU i9-12900H
@2.9GHz with 14 cores and 32GB of memory.

The testing 3D meshes include human facial sur-
faces (the Alex and Sophie) acquired by our 3D scan-
ning system based on phase-shifting structure light with
depth resolution 0.1 mm, and facial surfaces created by
modeling tool (the oldman model). The scanned models
are preprocessed to remove geometric and topological
noises. In order to test the robustness of our method,
the surface models are not remeshed and with the orig-
inal triangulation.

The input models are conformally mapped onto

Figure 8: The clipped final Brenier potential u(x) :
Ω → R and its projection onto the planar domain Ω,
which induces a power diagram of Ω, each power cell
is mapped to the target vertex, which gives the semi-
discrete optimal transportation map.

a planar rectangle using the Ricci flow algorithm for
extremal length [16]. First, four corner vertices on
the surface boundary are manually selected. Although
Wise et al [29] proposed several methods without the
need to pick points manually. However, it is difficult
to adopt this method to structured meshes due to the
topological barriers. Second, we set the target curvature
for all vertices: zeros for interior vertices, zeros for
boundary vertices except the four corners, and π/2’s
for the corner vertices. Third, we use Ricci flow method
to conformally deform the Riemannian metric to realize
the target curvature. By discrete Ricci flow theory, the
solution exists and is unique. Then we isometrically
embed the surface onto the plane, the image is a planar
rectangle.

After we obtain the conformal mapping, we com-
pute the OT map. First, we enlarge the planar rectangle
by a factor 1.1. Second, we normalize the total surface
area to the total area of the scaled rectangle. Then for
each vertex vi, we compute the areas of the adjacent tri-
angular faces and divide them by 3 to obtain the target
measure νi associated with the vertex. We use the con-
formal mapping image φ(vi) as the target point, then
construct the target measure as

ν =

n
∑

i=1

νiδ(y − φ(vi)).

Fourth, we run the OT algorithm to compute the OT
map from the scaled rectangle the discrete measure ν.
This produces a power cell decomposition of Ω. Finally,
each vertex is mapped to the corresponding power cell
center.
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In order to quantitatively measure the quality of our
computational results, we have conducted the numerical
testings as follows: the optimal transportation map is
approximated by a piecewise linear map from the input
triangle mesh to the output mesh, we compute the ratio
between the area of the target triangle and the initial
triangle on the surface mesh, and plot the histogram of
the logarithm of the ratios. As shown in Fig. 9, it is
clear that the histogram highly is concentrated near the
0.54 point, showing that OT map preserves relative area
proportions despite a uniform scaling.

Figure 9: Histogram of log ratio of the areas of triangles
in Old man’s face mesh.

The results of the experiment are summarized in
the table 1, which shows the complexity of the surfaces
and the corresponding run time.

We evaluated our proposed method on three facial
surfaces. As shown in Fig. 4, the left frame shows
the input Alex facial surface; the right frame shows
the conformal mapping image on the planar rectangle,
it is obvious that the mapping preserves local shapes.
Fig. 5 illustrates the initial condition for solving the OT
map, the Legendre dual of the initial Brenier potential
is u ∗ (y) = 1/2∥y∥2, the projection is the canonical
Delaunay triangulation. Fig. 7 shows the final result of
the desired Brenier potential and its projected power
diagram. Fig 8 illustrates the final clipped Brenier
potential and its projected power diagram. Fig. 13
demonstrates the optimization process. The upper left
frame is the initial conformal mapping result, the upper
right and lower left show the intermediate results during
the optimization, the lower right is the final result. We
can see that the area surrounding the nose is getting
larger and larger. Fig 11 illustrates the quad-meshes
based on the intermediate results. We can see the

density of the nose region is getting denser and denser.
A clearer depiction of the old man’s facial features after
utilizing our method is provided in Figure 10.

The proposed mesh adaptation technique was eval-
uated on three facial models: Alex’s face (Figure 11),
Sophie’s face (Figure 12), and the face of an elderly man
(Figure 1). By applying scaling factors to targeted re-
gions, our approach successfully demonstrated its ability
to increase quad-mesh density in the central facial areas
while reducing it in adjacent regions. This controlled re-
distribution of density ensures better detail capture in
critical areas (such as the nose and eyes) while maintain-
ing computational efficiency by lowering density where
fewer details are needed. The results highlight the flexi-
bility of our OT-based framework in achieving adaptive
mesh refinement.

Figure 10: Old man’s middle face area zoomed in.

6 Conclusion and Future Work

In this paper, we introduced a novel approach for ad-
justing the density of quad meshes using Optimal Trans-
port. By leveraging OT’s ability to compute mass-
preserving mappings, our method ensures precise con-
trol over local density distributions while maintaining
the structural integrity of the mesh. The proposed
framework addresses limitations in traditional remesh-
ing techniques by offering a principled, metric-based
solution that adapts mesh densities according to spe-
cific criteria. Our results demonstrate that OT provides
a robust and flexible tool for selectively altering mesh
density, enabling smoother transformations and better
alignment with the intended design or modeling goals.
This contribution lays the groundwork for new advance-
ments in mesh optimization and geometric modeling by
providing a reliable framework for density manipulation.

This method can be applied to enhance the distribu-
tion of mesh density by incorporating curvature-based
criteria. Our future plan would be to develop an adap-
tive algorithm that increases mesh density in regions
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Model # Vertices # Faces OT runtime Quad-Mesh generation time
Alex 20956 41908 1.9s 1.2s
Sophie 21046 42088 2.0s 1.5s

Old Man 133604 389703 13.5s 6.8s

Table 1: Complexity of the surface and runtime of OT and quad-mesh generation

with high curvature and reduces it in flatter areas. This
extension will improve the efficiency of the mesh by con-
centrating detail only where necessary, making it par-
ticularly useful for applications like finite element anal-
ysis, surface parameterization, and high-quality render-
ing. Additionally, this method can be extended to sur-
faces with more complex topologies by employing spher-
ical OT and hyperbolic OT for genus zero surfaces and
high genus surfaces respectively. These approaches en-
able the handling of surfaces with complicated topolo-
gies and geometries, allowing for effective mesh adapta-
tion and distribution on non-Euclidean geometries.

(a) Conformal mapped Alex
face

(b) OT mapped Alex face

(c) OT mapped Alex’s face
with increased density on
the nose

(d) OT mapped Alex’s face
with further increased den-
sity and decreased density
on eyes and mouth

Figure 11: Increasing mesh density around nose.

(a) Conformal mapped So-
phie face

(b) OT mapped Sophie face

(c) OT mapped Sophie’s
face with increased density
on the nose

(d) OT mapped Sophie’s
face with further increased
density and decreased den-
sity on the forehead and
jaw.

Figure 12: Increasing mesh density around nose.

Figure 13: The corresponding OT map of Alex’s face.
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Figure 14: The corresponding OT map of Sophie’s face.

Figure 15: Alex’s nose area zoomed in.

Figure 16: Sophie’s nose area zoomed in.
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