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Abstract

Unstructured meshes are essential in the field of physics com-

putation, both for discretizing complex geometries and for

adapting to the underlying physical phenomena. Polygonal

meshes constructed from Voronoi diagrams, despite being

tougher to construct, sometimes provide several assets over

triangular meshes based on Delaunay triangulations. These

specific assets depend on the numerical method that is used.

High quality meshes are obtained from specific Voronoi dia-

grams called Centroidal Voronoi Tessellations (CVTs). The

process for building such diagrams can also be harnessed

to perform mesh adaptation. The purpose of this work is

to introduce a formulation of cell size control on Voronoi

meshes as a root finding problem relying on a new initial-

ization method for weighted Lloyd’s algorithm to speed up

the construction of a proper mesh. The method is finally

applied to the simulation of a hypersonic flow.

1 Introduction

Mesh adaptation is a highly effective tool that sig-
nificantly enhances the accuracy of numerical simula-
tions, particularly in the field of computational physics.
Adapted unstructured simplicial meshes can be con-
structed by considering a metric space derived from an
error estimator [1]. However, such methods have not
much been developed for polygonal meshes in a more
general sense in spite of the fact that this type of mesh
provides some benefits. Polygonal meshes, particularly
those constructed from Voronoi diagrams, enable better
representation of complex geometries due to their flex-
ibility and ability to conform to irregular shapes. For
the Finite Volume Method (FVM) [7], among other in-
teresting properties, polygonal cells provide a better ro-
tational invariance [15]. This helps reducing numerical
artifacts that can arise on anisotropic meshes, especially
when simulating highly compressible flows, namely the
carbuncle [13]. The carbuncle effect is a well-known
challenge in fluid dynamics, leading to non-physical os-
cillations in solutions, which can significantly impact the
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reliability of simulations. The main concept of mesh
adaptation is to optimize the computational time by
equidistributing the discretization error throughout the
computational domain. For Computational Fluid Dy-
namics (CFD) this is achieved using smaller cells in ar-
eas where the flow features are complex and in contrast,
using larger cells in areas where the flow is more reg-
ular. The flow complexity can be detected in several
ways such as looking at the magnitude of the gradient
and curl of physical fields [17]. These measures pro-
vide insights into regions where the flow exhibits signifi-
cant changes, guiding the adaptation process effectively.
This work briefly introduces the concept of Voronoi di-
agram and its duality with the Delaunay triangulation.
Then, the construction process of high quality polygo-
nal meshes from CVTs is explained. Building a CVT
relies on Lloyd’s algorithm which can also be weighted
to perform mesh adaptation given a mesh sizing field.
A new initialization procedure to increase the conver-
gence speed of this algorithm is introduced. Moreover,
the cell size control is formulated as a root finding prob-
lem which is then demonstrated by Brent’s root finding
method [4]. Such cell size control is of utmost impor-
tance in CFD. Finally, the introduced method is show-
cased on a hypersonic computation by building a mesh
sizing field adapted to flow features. The effectiveness
of the method is evaluated by analyzing pressure coef-
ficients, which provide insight into the flow dynamics
and the impact of the mesh adaptation on the accu-
racy of the results. This study aims to demonstrate
how the proposed approach can not only cut computa-
tional costs by decreasing the number of mesh cells but
also maintain the resolution of key quantities of interest,
contributing to more efficient and accurate simulations.

2 Voronoi Diagram and Polygonal Mesh

2.1 Definition and construction

Consider n unique points called “generators” (zi)
n
i=1 of

the euclidean plane R
2. The Voronoi cell Vi associated

with the generator zi is defined as:

Vi =
{

x ∈ R
2 | ∀j ∈ J1, nK \ {i} ∥x− zi∥ ≤ ∥x− zj∥

}
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(a) Voronoi diagram (b) Polygonal mesh

Figure 1: Intersection of the Voronoi diagram to form a
polygonal mesh

This means the Voronoi cell Vi is defined as the set of all
the points of R2 that are closer to zi than to all the other
generators. The set (Vi)

n
i=1 forms a plane tiling called

“Voronoi tessellation”. This mathematical concept can
be generalized to R

3 but all the work presented here
takes place within a two-dimensional framework.

Some cells from the Voronoi diagram are un-
bounded, thus need to be intersected with a boundary
to form a proper mesh (see fig. 1).

The Delaunay triangulation of a set of points is
commonly used to generate an unstructured mesh. It
has the specificity of maximizing the smallest angles of
all the constructed triangles. This results, in a sense,
in the least skewed triangular mesh based on the input
vertices, which is convenient for the numerical schemes.

Given a set of points, the meshing tool proceeds
as follows: initially, the Delaunay triangulation of those
points is generated using the Bowyer-Watson algorithm.
Subsequently, the Voronoi diagram is obtained as the
dual of the Delaunay mesh. The generators of the
Voronoi diagram are the circumcenters of the triangles
and the edges are segments of the perpendicular bisec-
tors of the edges of the triangles (see fig. 2). Finally,
the Voronoi diagram is intersected with the boundary
of the domain to make a proper polygonal mesh.

The Bowyer-Watson algorithm leverages the fact
that it is possible to construct the Delaunay triangula-
tion of n+1 points from the triangulation of the first n
points with logarithmic time complexity as the insertion
of one single point only affects the triangulation locally.
Thereby inserting the n points in an enclosing triangle
builds the triangulation with O(n log n) time complex-
ity. By sorting vertices appropriately to improve the
proximity of consecutive points, it is even possible to
perform insertion in constant time, thus achieving the
triangulation in O(n) time complexity [12].

2.2 Centroidal Voronoi Tessellation

In the general case, a generator does not coincide with

||

||

Figure 2: Delaunay-Voronoi duality (Delaunay triangu-
lation in black, Voronoi diagram in red)

the centroid of the cell it generates. However, this
particular case provides good properties for numerical
methods, especially for the FVM, because the centroids
are aligned with the perpendicular bisectors of the edges
which improves the accuracy of fluxes computations.
When all the cells in a Voronoi tessellation satisfy this
property, the tessellation is said to be centroidal. This
is known as CVT.

Given a Voronoi tessellation, one way to converge
towards a CVT is to apply Lloyd’s algorithm. This algo-
rithm iteratively moves the generators to the centroids
of the Voronoi cells they create: at iteration k + 1, the
new position z

k+1
i of the generator located at zk

i is com-
puted as:

(2.1) z
k+1
i =

∫∫

Vi

(

x

y

)

dxdy

∫∫

Vi

dxdy

This algorithm makes the initial Voronoi diagram to
converge toward a regular hexagonal tiling [8]. Such
kind of mesh offers several advantages over regular
cartesian meshes [15]. Among them, the hexagon
provide two more edges than the rectangle which allows
for a better flux approximation. Furthermore, the mass
of the polygon is more evenly distributed around its
centroid which makes it intuitively more adapted for
FVM where the computed values are supposed to be
the average values over the cells.

3 Polygonal Mesh Adaptation

3.1 Weighted Lloyd’s algorithm

Lloyd’s algorithm can be weighted by a density field φ
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to prescribe mesh inhomogeneity, thus refinement areas:

(3.2) z
k+1
i =

∫∫

Vi

φ(x, y)

(

x

y

)

dx dy

∫∫

Vi

φ(x, y) dx dy

One could want to prescribe mesh sizes, therefore it
is necessary to find an equation linking a mesh size field
µ to the density field φ.

For each Voronoi cell a local error, akin to an energy,
can be defined as:

(3.3) Ei =

∫∫

Vi

φ(x)∥x− zi∥2 dx

Let |Vi| and µi denote respectively the volume and
a characteristic size of the cell Vi. This way, |Vi| ≈ µ2

i

so:

Ei =

∫∫

Vi

φ(x)∥x− zi∥2 dx
≈ φ(zi)µi

2|Vi|
≈ φ(zi)µi

4

Let’s consider an optimal CVT. Following [5], by
assuming the error equidistribution over the mesh

∃c ∈ R ∀i Ei = c

therefore:
φ(zi) ≈

c

µi
4

Consequently, the density field φ can be prescribed as
the inverse of the fourth power of the mesh sizing field
µ that one would like to obtain from the convergence of
Lloyd’s algorithm:

(3.4) φ(x) =
1

µ(x)4

It is worth mentioning that weighted Lloyd’s algo-
rithm is insensitive to any scaling of the density field φ.
The sizing field µ therefore only prescribes inhomogene-
ity in mesh sizes. The number of cells (i.e. the number
of generators) must also be specified to fully determine
the actual size of a Voronoi cell.

3.1.1 Area and centroid computation

Area computation

The area |Vi| of a given polygon Vi is defined by

(3.5) |Vi| =
∫∫

Vi

dx dy

For a simple polygon, using Green’s theorem

|Vi| =
∮

∂Vi

x dy =
∑

e∈∂Vi

∫

e

x dy

where ∂Vi denotes the set of the edges of the polygon
Vi.

Each edge e is defined by its ends (xe
1, y

e
1) and

(xe
2, y

e
2). As each edge e is a line segment, the following

equality holds:

(3.6) (xe
2 − xe

1) dy = (ye2 − ye1) dx

Therefore, the area is given by:

|Vi| =
∑

e∈∂Vi

∫ xe
2

xe
1

ye2 − ye1
xe
2 − xe

1

x dx =
1

2

∑

e∈∂Vi

ye2 − ye1
xe
2 − xe

1

[

x2
]xe

2

xe
1

Finally, we obtain a manner of computing the area
of the polygon known as the trapezoid formula:

(3.7) |Vi| =
1

2

∑

e∈∂Vi

(xe
2 + xe

1)(y
e
2 − ye1)

Unweighted centroid computation

Considering a constant field density, the centroid
Gi of polygon Vi can be computed as:

(3.8) Gi =

∫∫

Vi

(

x

y

)

dx dy

|Vi|

In a similar way, surface integrals can be converted
into line integrals using Green’s theorem which can then
be expressed as a function of the vertices coordinates:

Gi|Vi| =
1

2

∫∫

Vi

[

∂

∂x

(

x2

0

)

+
∂

∂y

(

0
y2

)]

dx dy

=
1

2

∮

∂Vi

(

x2 dy
−y2 dx

)

=
1

2

∑

e∈∂Vi

∫

e

(

x2 ye
2−ye

1

xe
2−xe

1
dx

−y2
xe
2−xe

1

ye
2−ye

1
dy

)

=
1

6

∑

e∈∂Vi





ye
2−ye

1

xe
2−xe

1

[

x3
]xe

2

xe
1

−xe
2−xe

1

ye
2−ye

1

[

y3
]ye

2

ye
1





=
1

6

∑

e∈∂Vi

(

(xe
2
2 + xe

1x
e
2 + xe

1
2)(ye2 − ye1)

(ye2
2 + ye1y

e
2 + ye1

2)(xe
1 − xe

2)

)

Finally,

(3.9) Gi =
1

6|Vi|
∑

e∈∂Vi

(

(xe
2
2 + xe

1x
e
2 + xe

1
2)(ye2 − ye1)

(ye2
2 + ye1y

e
2 + ye1

2)(xe
1 − xe

2)

)
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trimmed region

Figure 3: Clipped cell

Vi

(a) Ear clipping triangulation
of a convex polygon

Vi

(b) Gravity center-based tri-
angulation of a polygon

Figure 4: Two manners of triangulating a polygon

Weighted centroid computation

More generally, the centroid of the polygon Vi

within a density field φ is defined as:

(3.10) Gi =

∫∫

Vi

φ(x, y)

(

x

y

)

dx dy

∫∫

Vi

φ(x, y) dx dy

Some forms of density field could allow for an
explicit computation of the centroid. However, if one
wants to be able to compute centroids in a general case
and with any order of precision, numerical integration
with quadrature rules must be performed. To do
so, a polygon can be divided into triangles based on
its gravity center as long as this polygon is a star-
convex domain with this center as a vantage point.
As Voronoi cells are convex, this property in ensured.
One exception is for the Voronoi cells that are clipped
by the boundary. However, the clipping is done by
considering the discretized boundary for which each
segment endpoint is considered as a generator. By doing
so, each cell can only be clipped in a V-shaped manner
so that the generator can still be used as a vantage point
(see fig. 3).

An ear clipping triangulation such as illustrated by
fig. 4a could lead to skewed triangles that could re-
duce the numerical performances, whereas triangulation
based on the centroid (fig. 4b) gives elements of better
quality overall. Numerical integration is thus performed
using this second option, assuming integration points
will be more evenly distributed over the polygon.

Once the triangulation is done, usual quadrature

Figure 5: Quadrature rules on a reference triangle

rules over triangles can be used, then the quadrature
rule over the polygon is given as the sum of the
quadrature formulas of each individual triangle.

In the following, two symmetric quadrature formu-
las are used: the centroid rule (1-point rule) and a 3-
point rule [16]. They are both illustrated on a reference
element in fig. 5, with a size proportional to their as-
sociated weight. If not stated otherwise, the 3-point
quadrature is used.

The integral of a given function f (for example
f(x, y) = φ(x, y)x, in the weighted centroid computa-
tion) is approximated by:

∫∫

Vi

f(x, y) dx dy =
∑

∆∈Vi

∫∫

∆

f(x, y) dx dy

≈
∑

∆∈Vi

Nq
∑

j=1

ωjf(xj , yj)

where ∆ stands for the triangles that forms the
polygon, Nq is the number of quadrature points over
each triangle and (ωj)j∈J1,NqK are the weights associated
to the quadrature points (xj , yj)j∈J1,NqK.

3.1.2 Leveraging Lloyd’s algorithm for mesh

adaptation

The theory introduced above is now showcased by a
numerical experiment on the square domain [−1, 1] ×
[−1, 1] in which one places 200 generators.

The mesh sizing field µ is chosen as µ = kd+1 with d

the euclidean distance field with respect to the center of
the geometry. and k is a parameter which corresponds
to a growth rate of the cell sizes with respect to the
distance d. The one and only purpose of adding 1 is
to avoid the division by 0 when inverting to get the
density field. Note that one could choose any constant
in place of 1. However, this is equivalent to scaling the
parameter k (see section 3.1).

Meshes shown in this section and in the follow-
ing are meshes that are obtained from convergence of
Lloyd’s algorithm, considering that the convergence is
reached when the smallest cell size lmin and the largest
cell size lmax are settled with tolerance of 1%. The con-
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small k medium k large k

Figure 6: Effect of parameter k on mesh inhomogeneity

vergence analysis will follow.
The effect of parameter k is illustrated in fig. 6. The

bigger the parameter, the farthest from homogeneity the
mesh is (k = 0 resulting in a uniform mesh). In other
words, increasing k lowers lmin and increases lmax. Here
the mesh size is defined as the square root of its area.

It should be mentioned that no clear relation can
be established between the smallest cell size lmin and
the parameter k. Now, a manner of enforcing a specific
lmin value will be detailed.

3.2 Enforcing a cell size using Brent’s method

3.2.1 Method overview

Considering a density field φ, monotonic with respect to
a parameter k. One would like to enforce the smallest
cell size lmin,target given a number of generators Ng.
The goal is thus to find the parameter k leading to
lmin = lmin,target. This is equivalent to finding the root
of the following function:

fNg
: [kmin, kmax] → R

k 7→ lmin(k)− lmin,target

with lmin(k) = min
Vi∈V(Ng,k)

√

|Vi| and [kmin, kmax] two

bounds for k to achieve lmin.
This root can be located thanks to Brent’s

method [4]. The algorithm combines the secant method,
the inverse quadratic interpolation and the bisection
method to efficiently locate the root of the function
fNg

[14]. The key idea is, at each iteration, to estimate
which one of the three methods should bring the algo-
rithm closer to the root. The secant method and the
inverse quadratic interpolation are methods that con-
verge quickly. However, a bad initialization or a non
continuous derivative can lower their orders of conver-
gence. These two methods can even diverge. In those
cases, Brent’s method uses bisection to avoid diver-
gence, ensuring the stability of the process of search-
ing k. Note that this method is very general and
could be applied the other way around: for a given
mesh sizing field µ one could consider the function
fµ : Ng 7→ lmin(Ng) − lmin,target to find the number

0 2 4 6 8 10 12

10−3

10−2

10−1

iteration

l m
in

100

101

102

103

k

lmin(k)

lmin,target

k

k = 1.4

k = 1.6× 102

k = 3.5× 101

Figure 7: Convergence of Brent’s algorithm toward a
mesh featuring lmin = lmin,target

of generators required to achieve a given cell size. To be
comprehensive, Brent’s algorithm deals with real values
so that one must round the value of Ng given by the al-
gorithm to the nearest integer to get the actual number
of generators.

3.2.2 Brent’s method convergence analysis

Figure 7 shows the behavior of Brent’s algorithm on the
square test case. In red (cross-marked) the parameter k
determined by the algorithm at each iteration. In blue
(circle-marked), the smallest cell size lmin obtained with
the parameter k. At iterations 1 and 2, the algorithm
evaluates the function fNg

at the bounds. Then the
algorithm converges quickly toward a value close from
the target, with around 5 iterations. However, 4
iterations are still necessary in order to reach the
objective with a 1% precision. This is due to both
the fact that the function fNg

is not sensitive to small
changes of k and the randomness introduced when
placing the generators at the start of the process.
As a matter of a fact, this random placing makes
Lloyd’s algorithm to converge differently so that for two
very close values of k, the smallest cell size could be
obtained by the smallest k parameter whereas for larger
differences, that is the opposite.
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Figure 8: Cell size with respect to their distance to the
center of the square

Figure 8 shows the cell sizes that are obtained with
respect to the distance (measured from the center of
the square to the centroid of the cell) as a point cloud
plot after Brent’s optimization. The theoretical cell size
is also given as a line for comparison. It can be seen
that all cells have sizes close to their theoretical value
except for the four corner cells which are clipped by the
meshing tool. Another fact that is worth mentioning is
that the value d = 0 plugged in the line equation does
not give the minimum cell size of 1× 10−2 because the
smallest cell is slightly off the origin.

3.3 Speeding up Lloyd’s algorithm with rejec-

tion sampling

3.3.1 Overview of the rejection sampling

At each iteration of Brent’s algorithm, the convergence
of Lloyd’s algorithm must be obtained so that the
process of finding the right k parameter can become
computationally heavy. In order to speed up the
convergence of Lloyd’s algorithm, it is possible to place
the Ng generators in the domain based on a probability
distribution derived from the density field φ.

Using rejection sampling, the generators of the ini-
tial mesh are already closer to their converged posi-
tion (see fig. 9b) than with a uniform initialization (see
fig. 9a).

From the density field φ, which corresponds to a
scaled probability density function, one can sample the
Voronoi generators by rejection sampling. This method
relies on the fact that for a pair of independent random
variables (U, V ) both sampled uniformly, the probability
distribution fX of a given random variable X is the one
of U under the condition {V ≤ fX(U)}. This method is
described by algorithm 3.1 on the rectangular domain
Ω = [xmin, xmax] × [ymin, ymax] for the probability

(a) Uniform initialization (b) Initialization by the rejec-
tion sampling method

Figure 9: Comparison between the two initialization
methods

density function

f : Ω −→ [0, 1]

x 7−→
√

φ(x)
∫∫

Ω

√

φ(x)

The uniform disribution over the interval [α, β] where
α, β ∈ R is denoted as U [α, β].

Algorithm 3.1. rejection sampling

Require: Bounding box [xmin, xmax]× [ymin, ymax] for
the computational domain

Require: Density field φ reaching a maximum φmax

Require: Number Ng of generators to sample
Ensure: Sampling of the computational domain ac-

cording to a given density field
function Rejection sampling

ng = 0
3: while ng < Ng do

Sample x according to U [xmin, xmax]
Sample y according to U [ymin, ymax]

6: Sample z according to U
[

0,
√
φmax

]

if
√

φ(x, y) > z then

Take (x, y) as a generator
9: Increment ng

end if

end while

12: end function

Note that the normalization of the field φ is actually
unnecessary to apply the rejection sampling algorithm.
The sampling is made from the field

√
φ, not directly

from the field φ because the sampling is made according
to the density of generators per unit area. One cell of
length µ contains 1 generator (by definition of a Voronoi
cell) so that the sampling density is defined as 1

µ2 which

is equal to
√
φ.

Rejection sampling method thus allows to sample
from a given probability density function based solely
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on uniform samplings, which is convenient from a
numerical perspective. The benefit of this initialization
by rejection sampling is presented in the following.

3.3.2 Rejection sampling evaluation

In order to measure the convergence of Lloyd’s algo-
rithm, two errors are introduced:

size error:

√

1
Ng

∑

Vi∈V

(

1− µr

µtarget

)2

shape error:

√

1
Ng

∑

Vi∈V

(

1− smin

smax

)2

where V is the set of all Voronoi cells Vi, µtarget is the
expected cell size (i.e. square root of the area) of Vi

while µr is the actual cell size of this cell. The lengths
smin and smax are the length of the smallest and the
biggest sides of the cell, respectively.

The size error measures how well the constructed
mesh respects the prescribed cell size whereas the shape
error is a measure of the quality of the elements. This
error is lowered when the cells are regular polygons.
However, this error cannot go to zero because each side
of a cell is subjected to a slightly different value of
density.

The non-uniform initialization by rejection sam-
pling increases the convergence speed of Lloyd’s algo-
rithm, which is shown by fig. 10. This preliminary step
has a negligible computational cost as long as the den-
sity probability function does not feature a highly local-
ized maximum. In this case, almost all random samples
would be rejected. On one hand fig. 10a highlights the
ability of the rejection sampling method to place gener-
ators near their final location so that the convergence of
the cell sizes is really quick (from 5 to 20 iterations ac-
cording to the plot) whereas the uniform sampling leads
to a slower and slower convergence throughout the step
so that at 100 Lloyd’s algorithm iterations, the size error
is still fairly high. On the other hand, fig. 10b provides
mixed results as for the first 20 iterations, both meth-
ods seems to give the same result in term of cell shape.
However, from 20 to 40 Lloyd’s iterations, the mesh ini-
tialized by the rejection sampling method maintains its
convergence rate before reaching a steady state while
the mesh initialized uniformly has a harder time con-
verging in shape. This phenomenon could be explained
by the fact that in that last configuration, cells are con-
stantly drifting toward the center of the square so that
their shape cannot settle correctly until the size conver-
gence is achieved.

The quadrature rule should also be chosen with
care. As illustrated by fig. 11b, the quadrature method
does not seem to have any impact on the convergence
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Figure 10: Impact of initialization on Lloyd’s algorithm
convergence
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Figure 11: Impact of quadrature method on Lloyd’s
algorithm convergence

in shape. However, considering fig. 11a, the 1-point
quadrature rule seems to exhibit both slower conver-
gence and a larger size error than the 3-point quadra-
ture rule. This is explained by the fact that the method
does not seem to achieve a linear cell size scaling, thus
the large error. However, the quadrature method com-
plexity also increases the computational cost of each in-
dividual iteration. A tradeoff is thereby to be found. As
the order does not seem to have any significant impact
on the convergence for the first 5 to 10 iterations, one
idea would be to increase the precision of the quadrature
throughout the iterations, in a similar way than [18].

To conclude this convergence analysis, two crite-
ria have been introduced to measure how well the con-
structed mesh corresponds to what one could expect

Figure 12: Triskelion and star mesh

from a computational mesh. This is to our knowledge
a new approach which gives a more meaningful analysis
of the convergence than the CVT energy traditionally
used to perform this kind of analysis [11]. This criteria
shows the clear advantage of using rejection sampling
algorithm as an initial guess for Lloyd’s algorithm.

This initialization could be coupled with a more effi-
cient algorithm than Lloyd’s (L-BFGS for example [11])
but this coupling still needs to be investigated.

In order to illustrate the versatility of the method,
a more involved geometry is shown as fig. 12.

4 Application to hypersonic flows

This adaptation method based on weighted Lloyd’s al-
gorithm can be used to adapt a mesh for the simulation
of hypersonic flows. In this case, it is relevant to use flow
features to compute the sizing field µ or, equivalently,
the density field φ.

4.1 Sizing field computation

The polygonal meshing tool has been coupled with a hy-
personic flow solver to build an adaptation loop process.
It works as follows: based on a uniform Voronoi mesh of
the computational domain, a distance-to-geometry field
is computed for each cell by solving a form of the eikonal
equation. This method features several benefits against
other simpler methods [2]. From this computation, a
near-wall adaptation can be made as a first adaptation
step. Subsequently, a first hypersonic computation can
be done on this mesh. From this computation, flow
features can be extracted to build a new density field.
This adaptation aims to improve the global numerical
solution therefore the steps of solving the flow then com-
puting a new mesh can be done several times in order
to compute the flow precisely.
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There is a boundless number of manners to adapt a
mesh to the flow. As an example [17] construct a linear
combination of the temperature, pressure, velocity and
density fields then adapt the mesh according to the
gradient of this new field. Another method that is
investigated by [17] is to adapt according to both the
gradient and curl of the velocity field.

Here the goal is to precisely compute aerodynamic
effects on the wall therefore the choice made here is to
adapt the mesh according to two quantities: the wall
distance and the gradient of the velocity field.

From the wall distance approximation d, one can
define a mesh sizing field as µd = kdd + 1 with kd a
user defined-parameter. As small cells must be used to
resolve strong gradients, one can choose another sizing
field µg = kgϕ(g) + 1 where kg is another user-defined
parameter,

g =
1

1 + ∥∇V ∥

with V the velocity field and ϕ is the affine transforma-
tion :

ϕ : [gmin, gmax] → [dmin, dmax]

g 7→ dmax − dmin

gmax − gmin

(g − gmin) + dmin

where dmin and dmax are respectively the minimum
and maximum values of field d and gmin and gmax are
respectively the minimum and maximum values of field
g defined above.

This affine transformation is used so that parame-
ters kd and kg of the same order of magnitude gives µd

and µg of the same order of magnitude.
Lloyd’s density field φ is then computed from a new

mesh sizing field µ = min(µd, µg) from the formula
derived previously: φ = 1

µ4 . In practice, it has been

witnessed that strong variations of field φ (within a
shock wave typically) leads to too steep mesh gradation.
A corrective, similar to a diffusion process, has thus
been introduced. It works by updating the field φ on
each cell by the average of the field value on the mesh
neighborhood, including the cell itself. This process can
be repeated as many times as necessary, say m times.
However, it is not required and even not beneficial to
diffuse in areas where the variations of φ are small. As
a matter of a fact, precision and so the benefit from
mesh adaptation are lost in the process. To solve this
issue, a conditional process has been introduced: if the
diffusion process induces a relative variation δ over the
cell then the diffusion process is performed. Otherwise,
the field φ is kept unchanged. The parameters used
in the following have been chosen empirically and are
m = 5 and δ = 500%.
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Figure 13: Hypersonic cylinder test case

4.2 Evaluation of the method on a hypersonic

computation

In order to measure the benefit from this mesh adapta-
tion, it is interesting to evaluate aerodynamic quantities
by introducing a physical test case. The case of a hy-
personic cylinder (see fig. 13) is interesting as the flow
creates a detached shock wave along which the gradient
adaptation feature of the introduced method is show-
cased.

To evaluate the method quantitatively, the pressure
coefficient Cp is also introduced:

Cp =
p− p∞
1
2ρ∞V 2

∞

where ρ, p and V are respectively the density, the
pressure and the velocity norm of the fluid, the “∞”
index corresponding to the upstream quantities.

This pressure coefficient is important to compute
accurately as it is indicative of near-wall aerodynamic
effects. Euler equations are solved for this test case:











∂ρ
∂t

+∇ · (ρV ) = 0
∂(ρV )

∂t
+∇ · (ρV ⊗ V ) = −∇p

∂(ρE)
∂t

+∇ · (ρEV ) = ∇(pV )

where E is the total specific energy. This set of
equations describes the flow of a non-viscous fluid. A
comprehensive specification of the test case as well as
the numerical scheme that is used are presented in
table 1.

To be able to evaluate the pressure coefficient on
the adapted meshes, one first needs to perform a mesh
convergence analysis. Pressure coefficients for four
uniform meshes are thus presented by fig. 15. The
pressure coefficients are plotted against the curvilinear
abscissa around the cylinder with the origin taken
at the stagnation point. It can be observed that
convergence is obtained with 15 000 cells as the pressure

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



Mach number M∞ 17.605
density ρ∞ 1× 10−3 kgm−3

velocity V∞ 5× 103 ms−1

perfect gas : heat capacity ratio γ 1.4
Godunov-type FVM, HLL flux

Table 1: Test case specification

coefficient curve matches the one obtained with 30 000
cells really closely. The model from Lester Lees [10]
is also given for reference. The large difference to this
model observed for high curvilinear abscissas is due to
the fact that this model is designed to be more accurate
near the stagnation point. The uniform meshes with
n = 3750 and n = 15 000 cells are represented with
their corresponding Mach fields in fig. 14a and fig. 14b
respectively.

It has been observed in fig. 15 that 3750 cells are
far from enough to obtain a decent pressure coefficient
if the mesh is uniform (kd = 0.000). As the uniform
30 000 cells mesh features a near-wall cell size of 0.04m,
one can use Brent’s algorithm introduced earlier to find
the parameter kd which prescribes this same smaller
cell size but with only n = 3750 cells. By doing so,
Brent’s algorithm finds kd = 0.035 (see mesh in fig. 14c)
which gives results much closer to the reference than the
low resolution uniform mesh (fig. 16). Gradient-based
adaptation has also been applied (see mesh in fig. 14d).
However, no noticeable improvement can be seen on the
pressure coefficient in fig. 16, probably because, as the
whole adaptation process is done with a fixed number of
cells, adapting according to gradients leads to less cells
near the wall. Using more cells, the velocity gradient-
based adaptation can be useful as shown by fig. 17b.
As a matter of a fact, it allows for a better resolution
of both the shock wave upstream and the compressional
wave downstream than the adaptation based solely on
the wall distance (fig. 17a) for a given number of cells
(n = 30 000 in this case) because the well placed small
cells reduce the numerical diffusion in these specific
areas. Figure 18 is also given to illustrate better
the capabilities of our meshing tool.

5 Conclusion

The process of constructing a Voronoi diagram from
random “generators” has been discussed. It relies on
first the construction of a Delaunay triangulation then
proceeding by duality. Voronoi diagrams are unbounded
thus need to be intersected with the geometry bound-
aries to form a proper mesh. A weighted version of
Lloyd’s algorithm is used to obtain a high quality mesh
and to perform mesh adaptation. It relies on a mesh

(a) 3750 cells, uniform

(b) 15 000 cells, uniform

(c) 3750 cells, wall distance adaptation (kd = 0.035)

(d) 3750 cells, wall distance and gradient adapta-
tion

Figure 14: Mach field for several meshes (logarithmic
colorscale)
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(b) Pressure coefficient along the curvilinear abscissa: zoom

Figure 15: Mesh convergence analysis on the pressure
coefficient
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Figure 16: Pressure coefficient for several growing
factors kd
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(a) Adaptation according to wall distance

(b) Adaptation according to wall distance and velocity
gradient

Figure 17: Qualitative comparison of the pressure field
obtained on two distinct meshes (logarithmic colorscale)

Figure 18: Mesh adaptation on a double ellipsoid
geometry

density field which can be deduced from a more handy
mesh sizing field using the equidistribution principle.
Although in some cases an explicit formula can be de-
rived for the weighted centroid, numerical integration
must be used to be able to perform mesh adaptation
from any given field. In this work, mesh adaptation has
been done according to both wall distance and veloc-
ity gradient. It has been shown that this adaptation
globally allows for a better resolution of flow features.
Most of all, this work aimed at better control over the
adaptation by introducing a root finding problem in or-
der to reliably prescribe a cell size. As the process can
become computationally heavy, some options were pro-
posed. The initialization of Lloyd’s algorithm by re-
jection sampling is a quick, simple yet efficient man-
ner of speeding the process up by highly lowering the
number of steps required for Lloyd’s algorithm conver-
gence. The quadrature precision could also be started
low then increased throughout the convergence process
of Lloyd’s algorithm to reduce the computational cost
of each individual iteration without increasing the total
number of steps of the process. Enforcing a given cell
size have several applications in CFD, especially in a
Large Eddy Simulation (LES) context. The usefulness
of mesh adaptation has been demonstrated on pressure
coefficient computations for which similar results were
obtained on both a uniform, highly refined mesh and a
much coarser, but adapted one. To increase the com-
putational efficiency of Lloyd’s algorithm, gradient de-
scent methods could be employed as an alternative to
the iterative process applied to each individual genera-
tor [3]. Furthermore, fancier error estimators could be
constructed in order to target more efficiently the ar-
eas that needs mesh refinement [9]. Finally, despite the
fact that all the work presented here has been done in a
two-dimensional framework, this can be extended to the
three-dimensional case (see [6] for 3D centroidal Voronoi
and [15] for evaluation of CFD problems on 3D Voronoi
meshes).
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