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Abstract
Polycube-maps are highly valuable in computer graph-
ics, particularly concerning hexahedral meshes. Currently,
the validity of polycube is determined based on Steinitz
and Eppstein’s approach, which only addresses 3-connected
graphs. However, extending the features of polycubes to
encompass 4- and 6-connected graphs holds significant prac-
tical importance. We strengthen the validity structure of the
polycube-map, providing a polycube validity theorem based
on the Gauss-Bonnet theorem, offering both global and lo-
cal conditions. Our theorem allows for 4- and 6-connected
cases, expanding the existing solvable space of 3- and 5-
singularity polycube-map to include 3-, 5-, and 6-singularity
scenarios. Our theorem effectively addresses models that,
while not meeting the existing valid polycube criteria, are
indeed valid polycube polyhedra in practice. Additionally,
within the label optimization framework, we introduce the
Immune Genetic Algorithm (I-GA algorithm) tailored to our
theorem, enabling the robust generation of polycube-map.
We evaluate our method using thingi10k and ABC datasets.
Results demonstrate that our validity theorem expands the
solvable space of polycubes while achieving higher quality
all-hexahedral meshing for models with a singularity level of
six. Furthermore, we discuss the limitations associated with
our proposed method.

1 Introduction.
The polycube-map plays a crucial role in the field
of computer graphics, as it serves multiple purposes
such as texture mapping [1, 2, 3], All-hexahedral mesh
generation [4, 5, 6], and trivariate spline fitting [7,
8]. The polycube has a highly regular topology and
a distinct global parameter domain. It represents
a specialized geometry wherein each surface element
aligns with one of the principal axes (±xyz). Moreover,
the chart of the polycube can be identified through
clusters of adjacent elements sharing identical labels.
The valid polycube topology, or structure, specifies the
feasible solution space of polycube-maps. Therefore, it
is meaningful to study the valid polycube topology and
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how to obtain a high-quality polycube-map under the
validity constraint.

The typical definition of the validity of polycube
is based on the Steinitz Theorem [9, 10] and the
Eppstein Theorem [11]. Steinitz’s theorem asserts that
a graph is the skeleton graph of a convex polyhedron
if and only if it is 3-connected planar. Eppstein, on
the other hand, proposed a specific analogue theorem
for non-convex polyhedra, known as simple orthogonal
polyhedra, which satisfy three conditions: 1) sphere
topology, 2) singly connected faces, and 3) precisely
three mutually orthogonal axis-parallel edges meet at
each vertex.

A 3-connected vertex is a vertex where precisely
three axis-parallel edges meet. Similarly, 4-connected
and 6-connected denote vertices where four and six-axis-
parallel edges meet, respectively. Due to the similar-
ity between the graph properties established by Steinitz
and Eppstein and the shapes of polycube polyhedron,
scholars traditionally defined a valid polycube topol-
ogy as 3-connected graphs, with the additional require-
ment that neighbouring charts cannot be assigned op-
posing labels. However, this validity definition has lim-
itations, as illustrated in fig. 1 . There exist instances of
polycube polyhedron that do not adhere to this defini-
tion of polycube validity topology. Despite [12] expan-
sion of the polycube definition, which considered mul-
tiple genus and non-singly connected graph properties
based on Eppstein’s work, the restriction to 3-connected
graphs remains in place.

As mentioned in the [13], extending polycube fea-
tures to 4- and 6-connected graphs holds significant
practical importance, especially for CAD designs, where
three or more sharp features frequently converge simul-
taneously. Such layouts cannot be captured within
traditional polycube structures, inevitably leading to
a lack of feature preservation and, very likely, severe
and unnecessary geometric distortion. Thus far, achiev-
ing comprehensive graph characteristics for generating
polycubes has proven elusive. This remains an open
problem not only for mesh generation practitioners but
also for the broader community.

We propose a more encompassing validity topol-

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



(a) Tra & Our (b) Input (b) Tra (b) Our (c) Our (d) Input (d) Tra (d) Our

(e) Tra & Our (f) Tra & Our (g) Tra & Our (h) Our (i) Our (j) Our

Figure 1: Comparison between the traditional polycube solvable space and our approach: (a) Traditional methods
can solve the 3-connected polycube, as shown in (a). A 3-connected vertex has precisely three axis-parallel
edges meeting at it. Similarly, 4-connected and 6-connected vertices involve four and six-axis-parallel edges
meeting, respectively. (b). For the red-marked 4-connected vertices in (b)-input, traditional polycube mapping
methods can only decompose them into 3-connected components, while our method can directly solve 4-connected
vertices. (c)Traditional methods cannot handle 6-connected vertices, as exemplified by the red-marked vertex in
(c). Nevertheless, our validity construction is capable of addressing models of this nature. (d) In cases where
adjacent chart regions are labelled with opposing labels, traditional methods are deemed invalid polycube, which
needs label repairs. In contrast, our validity construction allows for such cases, resulting in improved polycube
mapping. (e) ~ (j) enumerate various corner scenarios. Traditional methods can only handle cases (e) ~(g) (3-
connected), while our validity construction can handle cases (e) ~(j) (3-, 4-, and 6-connected).

ogy for polycube polyhedron. Our defined Validity-
Enhanced topology inherently considers the properties
of polycube polyhedron, allowing for 4- and 6-connected
graph scenarios and permitting adjacent charts to have
opposing principal axes within the confines of our pro-
vided conditions.

With the definition of the valid polycube topology
in place, it can be employed to guide the generation of
corresponding polycube structures for either surface or
volumetric meshes. There are primarily two methods
for generating polycubes: deformation-based and label
optimization-based approaches. The former utilizes
dedicated deformation energies that iteratively modify
the object, causing surface normal to rotate until they
align with the global coordinate axes. The latter
method assigns a label to each surface element within
the input (tetrahedral) mesh, representing one of the six
global axes (±X, ±Y, ±Z).

However, it’s worth noting that not every labelling
allows for a corresponding polycube. To address this
issue, various correction procedures have been sug-
gested, which can be applied either as a post-processing
step or integrated seamlessly with the labelling process
The work [14] employs a rotation-driven approach and
position-driven deformation to achieve planarity and
alignment with the six global axes. Additionally, the
authors of [15] and [2] achieve this by designing defor-

mation energies that gradually deform the object. This
process causes surface normals to rotate until they align
precisely with the global coordinate axes. However,
it’s important to note that enforcing strict constraints
against flips could potentially restrict the available de-
formation space. In some cases, this restriction may
make it difficult to find a suitable mapping that complies
with the specified boundary-alignment constraints un-
less further mesh refinement capabilities are introduced.
The work by [16] integrates multi-label graph-cut opti-
mization into a local search algorithm to guarantee the
validity of polycube constructions. However, their al-
gorithm may incur higher time complexity due to its
reliance on local and greedy search strategies.

Our approach leverages label optimization, en-
hanced by a heuristic algorithm for efficiency and ro-
bustness. Recent work by [17] utilized a genetic algo-
rithm(GA) for label refinement, benefiting from its nat-
ural selection and crossover processes to swiftly address
local label inaccuracies. We enhanced the GA by in-
tegrating a sorting mechanism inspired by the immune
algorithm. This improved version, referred to as the Im-
mune Genetic Algorithm (I-GA), exhibits an increased
capability to consider both the global and local proper-
ties of solutions.

Our primary contributions are as follows:
1) We provide a more comprehensive set of valid
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topology conditions for the polycube-map, referred to
as the ”Validity-Enhanced topology.”

2) Leveraging the validity judgments derived from
the forenamed theorems, we expand the solvable space
of polycube in practical model solving by allowing for
4- and 6-connected graphs and neighbouring charts to
be assigned opposite labels.

3) The I-GA algorithm is introduced to enhance the
overall and local properties of solutions, improving the
efficiency of solution space exploration.

2 Related Work.
Generating high-quality hexahedral meshes is a core
problem in the field of mesh generation. A robust ap-
proach is to employ polycube mapping [18] for hexahe-
dral mesh generation. This method establishes a low-
distortion mapping between the original mesh and a reg-
ular polycube mesh, allowing for the transformation of
regular polycube hexahedra onto the original mesh.

Deformation-Based Methods. Polycube defor-
mation, based on object tetrahedralization, aims to min-
imize an energy term penalizing misaligned surface nor-
mals with base axes. Early methods by [14] lacked
effective penalization of distortions, degeneracies, and
flipped elements. In [19], a l1-norm energy and a varia-
tional method were introduced for polycube mesh gen-
eration. Despite its effectiveness, this method has a
non-linear system that’s sensitive to mesh orientation,
necessitating extra energy for global orientation opti-
mization and a post-processing step to handle topolog-
ical degeneracies. In the quest for superior volumetric
deformation, Fu introduced the ’normal-driven volumet-
ric deformation and mesh segmentation’ algorithm [15],
which incorporates a deformation energy integrating the
AMIPS term [20]. This energy tends towards infinity
when degenerate or inverted elements are present. Sim-
ilar flip-preventing energies have been proposed in re-
cent studies [21, 22], showing potential in this context.
Nonetheless, it’s important to note that [23] highlighted
the non-local nature of degenerate conditions, making
it a challenge to compute a globally valid structure.

Label optimization-based polycube. Many dif-
ferent labeling approaches have been explored in the
field of polycube generation. These methods range from
purely local strategies, where each surface element is
assigned the axis closest to its normal [14], to context-
aware techniques, such as employing a modified cen-
troidal Voronoi tessellation in the normal space [24], and
incremental procedures [25]. The common objective is
to deform the input mesh volumetrically, aligning each
surface element with its assigned label. In the process
of label optimization, local conditions exist for verify-
ing whether a labeling’s graph corresponds to that of

an orthogonal polyhedron [11]. Still, these conditions
are neither universally applicable nor entirely sufficient.
The suitability of the graph formed by the labeling does
not guarantee the suitability of the labeling itself, as
noted by [25]. Sufficient conditions tend to be of a
global nature, as exemplified by [23], who describes a
complex post-processing procedure to adapt labeling for
polycube suitability. Interactive tools for user-assisted
polycube construction or modification have also been
developed [6, 7, 26].

Polycube validity topology. The validity of
polycube topology is fundamentally anchored in Epp-
stein’s definition of simple orthogonal polyhedra [11].
The authors of PolyCut [16] have laid down pivotal
topological conditions for ensuring the validity of poly-
cubes. However, it’s worth noting that this method does
not guarantee convergence to a valid polycube struc-
ture. In instances of invalid polycube structures, the
[23] method strategically introduces additional corners,
guided by normal constraints, to establish a topologi-
cally sound global structure, thereby rectifying it into
a valid form. [15] contend that the validity of poly-
cube structures can be determined through a straight-
forward mesh segmentation algorithm. Nevertheless,
their definition primarily hinges on chart connectivity,
offering criteria that are sufficient rather than neces-
sary for polycubes. Furthermore, [12] extended the the-
orems of Steinitz and Eppstein to encompass a broader
category of polyhedral complexes, encompassing non-
simply connected faces with any genus. They also in-
troduced a necessary condition for the skeleton graph
of polycube polyhedra. However, their adherence to 3-
connected structures persists, and they address topo-
logical adjustments for 4-connected vertex polycubes
by programming them as 3-connected. Therefore, the
quest for necessary conditions for polycubes remains of
paramount importance. In [23], the authors emphasized
the coexistence of both local and global conditions with
respect to structural validity. This coexistence poten-
tially renders it challenging to completely eradicate in-
valid cases.

Approaching from a differential geometry stand-
point, we present the essential and comprehensive cri-
terion for a valid polycube structure. This is achieved
through an in-depth examination of the global and lo-
cal connectivity of singularities within polycube quad
meshes. Our validity topology is rooted in the Discrete
Gauss-Bonnet theorem, applied to both global and lo-
cal contexts. This framework accommodates both 4-
and 6-connectivity and even allows adjacent charts to
bear opposing labels.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



3 Validity Topology
In the previous section, we outlined the definitions of
polycube validity in existing research [23, 16, 15, 27, 25].
We now summarize the most ideal validity proxies
identified in these studies as follows:

1. The connectivity of each corner of the polycube is
3-connected.

2. The labels of each adjacent chart must not be
opposite, such as +Y and -Y.

3. The number of adjacent charts for each chart
should be a minimum of four, and the count of
neighbouring charts must be an even number.

We conducted research on polycube polyhedra to
establish a more rigorous set of validity conditions. The
polycube polyhedron, as defined by [12], requires each
vertex to have precisely three axis-parallel edges that are
mutually perpendicular. However, to encompass a wider
range of polycube polyhedra, including those permitting
4- and 6-connectivity, we have formulated the following
definitions.

Definition 3.1. Polycube Polyhedron: A polycube
polyhedron is a three-dimensional polyhedron (not nec-
essarily convex) in which every edge at each vertex is
parallel to one of the main axes. It allows for situations
with 3-, 4-, and 6-connected vertices. In the case of 3-
and 4-connected vertices, edges can be either perpendic-
ular or parallel to each other. In the case of 6-connected
vertices, six edges are along the ±xyz axes.

To investigate the properties of all corners of a
polycube polyhedron, we will discuss corners in the
context of a quad mesh. This is because there is a close
connection between quadrilateral meshes and polycubes
[28]. Moreover, Lei et al.’s recent research on the Abel-
Jacobi conditions for the singularities of quad-meshes
establishes the theoretical equivalence between quad-
meshes and meromorphic quartic differentials. In their
work [29], it is pointed out that the configuration of
singular vertices in the quad-mesh directly corresponds
to the arrangement of poles and zeros (divisor) in
the meromorphic differential. Historically, there was
a common belief that generating cross fields over the
surface domain implied equivalence with quad-meshes.
However, Lei et al. [30], focusing on singular points,
debunked this notion by introducing theorems that
precisely delineate singularity configurations for both
cross fields and quad-meshes. These collective studies
underscore the significance of singular point analysis in
quad-mesh construction.

A regular quad mesh generated on a polycube
polyhedron is referred to as a “polycube quad mesh,”
where each quadrilateral represents a standard unit
square. Our observations of the polycube quad mesh
reveal that each singularity is situated at the corners of
the polycube polyhedron, as illustrated in fig. 2.

The polycube quad mesh exhibits singularities ex-
clusively at its corners, comprising 3-, 5-, and 6-
singularities. To effectively utilize the information
about singular points in the study of polycube poly-
hedron, we apply the concept of singular points from
the polycube quad mesh to the corresponding polycube
polyhedron. We classify the corners based on singular-
ity properties and provide the following definition.

Definition 3.2. Vi Point in the Polycube Polyhedron:
The corners of the polycube polyhedron can be catego-
rized as V3, V5, and V6 points, corresponding to 3-, 5-,
and 6-singularities in the polycube quad mesh, respec-
tively. Among these, both the V3 point and V5 point are
3-connected vertices. The V6 point encompasses 3-, 4-,
and 6-connected vertices.

(a) (b) (c) (d)

Figure 2: The relationship between vertex connectivity
and Vi. (a) Represents a polycube polyhedron, (b) De-
picts the corresponding polycube quad mesh. Among
these, the green-marked vertex in (b) belongs to V3, in-
dicating 3-connected. Additionally, the yellow-marked
vertices in both (b) and (c) belong to V5, signifying 3-
connected vertices. Moreover, the vertices highlighted
in red in (b), (c), and (d) are designated as V6. In
(b), the red vertex displays a 4-connected structure,
while in (c), the corresponding red vertex exhibits 6-
connectedness. Moving on to (d), the red-marked ver-
tex, also identified as V6 (with six quadrilaterals in its
vicinity), demonstrates 3-connectedness.

In the case of a polycube polyhedron, every edge
on each chart is horizontally or vertically aligned. In
the context of a 2D plane or local tangent plane, each
edge is parallel to the x or y-axis, forming an orthogonal
polygon. Therefore, for each vertex within each chart,
we have the following definition:

Definition 3.3. Ti Point in the Chart: The corners
in the chart can be classified as Ti points, where i ∈
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{1, 2, 3, 4}. This classification is related to the angle θ
formed by the two edges at the corner within the chart.
The relationship between i and θ in Ti is given by:
θ = i · π2 .

The angle θ describes, within a specific chart, the
angle formed by the two adjacent edges connecting at
the corner as they traverse within that chart. The
same corner may be defined as a different Ti type in
different charts, as illustrated in fig. 3. Moreover, it
can be observed that the chart essentially allows the
existence of T1 to T4 points. We permit the occurrence
of T2 points because, in the case of a 4-connected
V6 singularity, it forms an angle of π within a chart,
corresponding to a T2 point. Additionally, we allow
for the presence of T4 points, as shown in fig. 2 (d)(V
model). During the polycube mapping, they can be
mapped as T4 points when two edges overlap in the
parameter domain.

(a) (b) (c) (d) (e)

Figure 3: The relationship between vertex connectivity,
Vi, and Ti. (a) The green-marked vertex is 3-connected,
belonging to V3. Additionally, it is a T1 point in
any given chart. (b) The yellow-marked point is 3-
connected, belonging to V5. It is a T1 point in both
the yellow and red charts but a T3 point in the blue
chart. (c) The red point is 4-connected, belonging to
V6. In the blue chart, it is a T1 point, but in the yellow
and red charts, it is a T2 point. (d) The red-marked
point is 6-connected, belonging to V6. It is a T1 point
in any given chart. (e) The red point is 3-connected,
belonging to V6. In the red chart, it is a T4 point, and
in the green chart, it is a T1 point.

Definition 3.4. Boundary Loop in the Chart: The
edges of the polycube polyhedron connect to form indi-
vidual closed loops. A closed loop on a chart is defined
as the Boundary Loop of that chart.
Outer Boundary Loop :The outer boundary loop repre-
sents the outermost edge of the entire chart, separating
it from the external environment.
Inner Boundary Loop :The inner boundary loop is
situated within the chart and specifically demarcates the
hole from the main body of the chart.
Hole :A hole is a void or empty space within the chart
that is not considered part of the main body of the chart,
and it is connected to other charts.

Figure 4: Outer/inner boundary loop. For the orange
chart, the green loop is the outer boundary loop, and
the black loop is the inner boundary loop. The region
enclosed by the black loop with respect to this chart is
considered a hole.

For a given chart, the corresponding Outer and
Inner Boundary Loops can be observed in fig. 4.

3.1 Polycube Validity Topology Condition For
a polycube polyhedron that satisfies the validity condi-
tions, it possesses V3, V5, and V6 singularities. Glob-
ally, it must satisfy the following quantity relationship,
which we refer to as the polycube validity condition:

Polycube validity topology condition 1:
(3.1)
n(V3)−n(V5)−2 ·n(V6) = 8−8g; V3 ≥ 8, and V3 ̸= 9

Where n(Vi) represents the total count of singular-
ities Vi in the polycube and g is the genus.

Proof. Let M be a compact, smooth, and bounded sur-
face with Gaussian curvature K and Euler characteris-
tic χ. According to the Gauss-Bonnet theorem, it holds
that:

(3.2)
∫
M

KdA+

∫
∂M

kgds = 2πχ(M)

Where dA represents the element of area of the
surface, kg is the geodesic curvature on the boundary,
and ds is the line element along the boundary of M .
For a compact surface (a 2-dimensional manifold), only
vertices, edges, and faces are involved, so the Euler-
Poincaré formula becomes:

(3.3) χ(M) = 2− 2g = V − E + F

where V , E, and F are the numbers of vertices,
edges, and faces in the polycube quad mesh, respec-
tively.

At singularities Vi, the Gaussian curvature is

(3.4) K(Vi) = (4− i) · π
2

When considering a polycube polyhedron generated
by a polycube-map, we can treat it as a closed dis-
crete mesh. Therefore, the boundary term on the left-
hand side of the equation

∫
∂M

kg, ds = 0. Moreover,
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since Vi only has 3-, 4-, and 6-singularities, we have∫
M

K, dA =
∑

i=3,5,6 n(Vi) ·K(Vi). Furthermore, com-
bining eq. (3.2), eq. (3.4) and eq. (3.3), we obtain:

(3.5)
∑

i=3,5,6

n(Vi) ·K(Vi) = 2π · (2− 2g)

Substituting eq. (3.4) into eq. (3.5), we have n(V3)−
n(V5)− 2 · n(V6) = 8− 8g

Condition 1 is a necessary condition for polycube
validity, but it is far from being sufficiently strong. As
shown in fig. 5 (a), after generating a quadrilateral
mesh for the Triangular Prism, there are 8 V3 points (6
green points and 2 black points). These points satisfy
Condition 1 but do not form a valid polycube map.
Therefore, we further propose the following validity
conditions:

(a) Triangular prism (b) Hollow pentagon prism

Figure 5: There exist cases where the validity condition
1~3 is satisfied but which are not polycubes

Polycube validity topology condition 2:
Every singularity must reside on a boundary loop

and cannot exist in isolation.
Proof: Validity condition 2 is primarily based on

geometric observations and induction.
For polycube quadrilaterals, each chart’s interior

consists of structured full quadrilateral meshes with no
singularities inside and the singularities are distributed
at the corners. As Definition 1, each corner is either
a V3, V5, or V6 singularity. Thus, there is a bijective
mapping relationship between singularities and corners.
We observe that for a polycube polyhedron, its singular-
ities must be distributed in a closed loop. This condition
does not allow singularities to exist in isolation within
any chart, as exemplified by the triangular prism in the
above figure.

However, situations may still arise that satisfy only
conditions 1 2 but do not form a polycube polyhe-
dron. As illustrated in fig. 5 (b), where n(V3) = 10,
n(V5) = 10, and g = 1, it satisfies eq. (3.1). Addition-
ally, each singular point lies on the boundary loop. Nev-
ertheless, it does not constitute a valid polycube map.
This discrepancy arises because the Gauss–Bonnet the-
orem considers properties from a global perspective. As

explained in [23], polycube validity necessitates consid-
ering both global and local properties.

In the realm of differential manifolds, each local re-
gion serves as a tangent space equipped with charts and
transition functions. Notably, charts labeled with coor-
dinates can also be interpreted as those in differential
geometry, providing comprehensive coverage of the en-
tire polycube. Consequently, our approach involves a
detailed analysis of each individual chart to capture the
local characteristics of the polycube.

The validity condition requires that a polycube,
in each of its chart’s inner and outer bounding loops,
must satisfy a specific quantitative relation between its
Ti points. This condition is referred to as Validity
Condition 3 and can be described as follows：

Polycube validity topology condition 3: For a
given chart, any of its boundary loops must satisfy the
following condition:

(3.6) n(T1)− 0 · n(T2)− n(T3)− 2 · n(T4) = 4 · δ

Where n(Ti) represents the count of points belong-
ing to Ti in a boundary loop. When the loop is an
inner boundary loop, δ = −1, and when it’s an outer
boundary loop, δ = 1.

Proof. We first consider all boundaries together. For a
chart with a boundary count of b and genus 0, its Euler
characteristic can be expressed as χ = 2−2g−b = 2−b.
Therefore, for a compact, smooth, two-dimensional
surface with a boundary, the Gauss-Bonnet theorem can
be stated as follows:

(3.7)
∫
M

K dA+

∫
∂M

kg ds = 2π(2− b)

For each chart, since it is a flat surface, the Gaussian
curvature K at all points is 0. The boundary ∂M of
chart being piecewise smooth, we interpret the integral∫
∂M

kg ds as the sum of the corresponding integrals
along the smooth portions of the boundary, plus the
sum of the angles by which the smooth portions turn at
the corners Ti of the boundary. In this case, we have:

(3.8) kg(Ti) = (2− i) · π
2

Therefore, we can derive:

(3.9)
4∑

i=1

n(Ti) · kg(Ti) = 2π(2− b)

Substituting eq. (3.8), we can obtain:

(3.10) n(T1)− 0 · n(T2)− n(T3)− 2 · n(T4) = 8− 4b
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It is important to note why we do not directly use
eq. (3.10) as the polycube validity condition. The reason
is that it is a necessary but not a sufficient condition
for a polycube polyhedron. In other words, there exist
cases that satisfy eq. (3.10) but do not form a valid
polycube polyhedron. For example, consider the shape
of a pentagon with a bolt-like structure, as shown in
fig. 5 (b). If we set the points on its outer boundary
as T1 points and the points on the inner boundary as
T3 points, then T1 = T3 = 5, which satisfies eq. (3.10).
However, it is evident that it cannot constitute a valid
polycube polyhedron. Therefore, we further expand
eq. (3.10) and consider each boundary separately.

Let’s consider a chart with 1 outer boundary and k
inner boundaries, and we proceed with the induction as
follows:

• When k = 0, we have b = 1. This leads to the
equation n(T1)− 0 · n(T2)− n(T3)− 2 · n(T4) = 4.
(Equation 1)

• For k = 1, with b = 2, we have n(T1)− 0 · n(T2)−
n(T3)− 2 · n(T4) = 0. (Equation 2)
Subtracting Equation 1 from Equation 2, we obtain
that the inner boundary i satisfies: n(T1) − 0 ·
n(T2)− n(T3)− 2 · n(T4) = −4.

• Assuming that for k = i, every inner boundary loop
satisfies n(T1)− 0 · n(T2)− n(T3)− 2 · n(T4) = −4
(Equation 3);
Then, for k = i + 1, by applying eq. (3.7) to
Equation 3, we find that the i+1th inner boundary
loop satisfies: T1 − 0 · T2 − T3 − 2 · T4 = −4.

Based on the four conditions provided above, we
present the necessity theorem for the topological condi-
tions of polycube validity as follows:

Theorem 3.1. A valid polycube polyhedron must sat-
isfy the following conditions:

1) For any genus of a polycube polyhedron, the global
singularities must satisfy n(V3) − n(V5) − 2 · n(V6) =
8−8g;V3 ≥ 8, andV3 ̸= 9, where g represents the genus,
and n(Vi) represents the number of singularities with
valence i.

2) Every singularity must be on a closed boundary
loop and cannot exist in isolation.

3) For a given chart, any of its boundary loops must
satisfy: n(T1)− 0 · n(T2)− n(T3)− 2 · n(T4) = 4 · δ.

Based on the above theorems, for any segmentation
result, we can quickly determine whether its segmenta-
tion meets the polycube conditions. For regions that do

not meet the polycube conditions, we can further utilize
the validity formula in label optimization algorithms to
correct erroneous labels, as described in the referenced
material section 4.

We find that our validity conditions for polycubes
can encompass existing conditions outlined in previous
research papers such as [12, 15, 16, 19, 25]. However,
our conditions, especially Conditions 1 and 3, offer a
more precise and formalized approach to evaluating
polycube validity compared to the intuitive judgment
methods discussed in other studies. Incorporating
these conditions into computer algorithms allows for
more accurate assessments than manual comparisons.
Moreover, our conditions consider both global and local
aspects of mesh validity, helping to prevent instances
where local validity might lead to global invalidity
[23, 25].

(a) (b) (c)

(d) (e) (f)

Figure 6: The solvable space of polycube. The conven-
tional method can only solve cases (a) ~ (c), while we
are able to solve all situations listed above from (a)~ (f).

3.2 Solvable Space Through our theorem, we are
able to make our validity criteria more inclusive. Fur-
thermore, we present in tabular form the range of poly-
cube solution spaces for both our approach and existing
methods.

Table 1: Polycube feasible space

connectivity singularity chart angle
Our 3, 4, 6 V3,V5,V6 T1,T2,T3,T4

Traditional 3 V3,V5 T1,T3

As shown in table 1, based on the validity char-
acterization criteria we provided, we allow for both 4-
connected and 6-connected cases, whereas traditional
methods restrict solutions to the 3-connected case. Re-
garding singularities, we expand the solvable space to
allow for 6 singular points, in contrast to the tradi-
tional approach that only permits 3- and 5-singularity
solutions. Concerning the turning angles of charts, our
validity criteria encompass not only the solutions for
T1 and T3 but also consider cases where angles can be
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mapped to polycube, such as T2 and T4. Finally, our cri-
teria allow for situations where adjacent faces have op-
posite orientations (e.g., the letter“V”pattern), which
would be considered invalid in traditional approaches.

(a) input (b) Tra (c) Our

Figure 7: V model. We can get a better polycube-map
by allowing adjacent charts to assign opposite labels

In summary, we achieve a solvable space space
through precise mathematical definitions. These defi-
nitions are utilized as energy terms in our label opti-
mization algorithm, as described in section 4.

4 Labelling Optimization.
In the label optimization process, we initially need an
initial labeling for refinement. Subsequently, we use
these initial labels as input to obtain the optimal so-
lution through the immune genetic algorithm (I-GA).
Within the I-GA algorithm, we incorporate the pro-
posed validity topology condition to design the valid-
ity energy, which serves as a component of the fitness
function.

4.1 Initial Solution In order to obtain a suitable
initial labeling, we followed the methods from the
previous studies [16] and [25]. We use the graph-cut
multi-label optimization method presented by [16].

Additionally, we also need to compute turning
points on boundary edges. Turning points represent
non-monotonic points along the boundary edges. Simi-
lar to [16], we employ the graph-cut algorithm to inte-
grate each edge for calculating turning points.

For the initial labeling, it is typically an invalid
polycube topology, meaning that this labeling result
cannot be mapped to polycube hexahedra. We need
to utilize the I-GA algorithm for label optimization.

4.2 Obtaining Information for Ti and Vi For
the initial labeling or the label set li obtained at
each iteration of the I-GA optimization process, we
need to acquire information regarding Ti and Vi to
calculate our validity energy Ev based on them. To
do so, we specifically utilize the following approach for
computation.

We outline how our validity criteria are practically
implemented in engineering applications. Using the
aforementioned energy measures, we can obtain an
initial solution for the labeling algorithm. we initially

obtain the chart set through a breadth-first search
algorithm, followed by the recursive derivation of the
corner set.

Concerning corners, we further distinguish between
their Ti and Vi attributes, specifying four possible cases
for corners: 3, 5, 6 singular points, and error-vertices.
In the case of corners with three neighboring faces
marked, they may be classified as V3,V5, or V6 points.
We determine whether they are V3 or V5 points by
computing the cross product of the unit normals of
the neighboring triangles in a counterclockwise (CCW)
direction. The right-hand rule is applied to make this
determination. All V3 points are labeled as T1 points
across all charts. For V5 points, there are three possible
angles in each of the three charts, and we select the
largest angle θ as the T3 point, while the remaining
corners are labeled as T1 points. If the cross product of
adjacent principal axes results in zero and the maximum
angle θ in the neighborhood is greater than 3

2π, the
corner is classified as a V6 point. Otherwise, it is
identified as an error-vertex and requires label repair.
In cases where corners have six neighboring labels, they
are categorized as V6 points.

In scenarios where corners have four neighboring
labels, we calculate the cross products of adjacent label
principal axes in CCW order. If these cross-product
results are consistent, the corner is designated as an
error vertex; otherwise, it is classified as a V6 point.
Given that V6 points have four possible Ti points, we
select two of them with angles close to π as T2 points,
while the remaining two are labeled as T1 points.

4.3 I-GA Algorithm We employ an enhanced ge-
netic algorithm inspired by the previous genetic algo-
rithm proposed in [25]. In contrast to [25], which relies
solely on probability distributions for modeling, our I-
GA algorithm incorporates the sorting mechanism from
the immune algorithm. This addition enables us to bet-
ter consider both the global and local properties of so-
lutions. Consequently, it helps in reducing excessive
computations and potential waste of computational re-
sources.

The I-GA algorithm incorporates random selection
and crossover of candidate solutions to simultaneously
explore multiple search directions. This strategy aims
to reduce sensitivity to local minima. Furthermore, the
polycube validity topology conditions (presented in sec-
tion 3) and the fitness function we define establish stan-
dards and criteria for the search process.We compute
the fitness of the I-GA algorithm as follows:

Firstly, To strike a balance between mapping dis-
tortion and singularity counts, we employed the fidelity
(EF ) and compactness (EC) energy from [16] to mini-
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Algorithm 1 I-GA Algorithm
Require: Polycube C
Require: Maximum number of iterations t
Require: M,N ∈ N,M ≥ N
X ←− First partition result using the [16] method
B ←− ∅
for i = 1 to t do
F ←− Use equation (4.11) to compute the popula-
tion fitness with respect to X.
F ←− Sort(F )
M ←− Selection of the first M individuals
if B is ∅ then
X ←− The set of first N individuals of M

else
M ←− mutation(M)
N ←− Crossing using sets consisting of M and
N

end if
end for
x⋆ ←− One of the best individuals in N fitness.
return x⋆

mize normal and boundary energies, respectively. Sec-
ondly, we employ the energy derived from the singu-
lar values of the Jacobian of the mapping, as discussed
in [25], to represent the per-triangle distortion energy
(EW ). Finally, we devised the computation of validity
energy (Ev) based on our Validity topological condition,
which is expressed as eq. (4.11).

By combining the above metrics, we define a fitness
function that can be embedded in our I-GA algorithms
framework:
(4.12)
fitness(l) = ω1Ev(l) + ω2EW (l) + ω3EF (l) + ω4EC(l)

Where, l represents the set of labels assigned to the
mesh, signifying the result of the polycube map. The
constants ω1, ω2, ω3, and ω4 are coefficients. This func-
tion effectively distinguishes between candidate solu-
tions and promotes search directions, minimizing pa-
rameterization distortion, as assessed by our metrics.

After the initial labeling by section 4.1, we employ
the following steps for the search:

1）Archiving: We use an archiving system to keep
track of the best solutions obtained so far.

2）Crossover: The crossover operator takes two solu-
tions, l1 and l2, as input and generates a new individual
that incorporates mutations from both parents.

3）Generations: According to our fitness(l), N
candidate solutions are selected from the archive at
the beginning of each generation. According to our
stochastic model, the top-ranked solutions are selected
multiple times.

4）Mutation: Two individuals are randomly selected
for mutation.

5）Selection: New solutions with sufficient scores
are added to the archive, while unsuitable ones are
discarded, terminating the generation.

This enhanced genetic algorithm not only consid-
ers multiple search directions but also evaluates global
and local properties more accurately through the sort-
ing mechanism inspired by the immune algorithm. The
corresponding pseudocode is shown in algorithm 1. By
incorporating the sorting mechanism from the immune
algorithm, our genetic algorithm can effectively handle
multiple search directions and reduce the risk of falling
into local minima. The introduction of validity condi-
tions ensures that the solutions obtained are reasonable
and feasible. The key to this algorithm lies in the de-
sign of the fitness(l), which comprehensively considers
multiple aspects of solutions, including validity and op-
timization criteria.

Our genetic algorithm is an adaptive process that
adjusts search directions based on the results of each
generation, enabling more effective exploration of the
solution space. Additionally, we implement an archiving
system to retain the best solutions obtained so far. This
approach helps us escape local optima, increasing the
likelihood of finding the global optimum. By retaining
highly evaluated solutions and introducing a certain
level of randomness in each generation, our algorithm
maintains diversity during the search process, enabling
a more thorough exploration of the solution space.

In the crossover operation, we combine two so-
lutions, generating a new individual. This operation
retains the advantages of parental solutions while in-
troducing a certain degree of variation, expanding the
breadth of the search space. The introduction of the
crossover operation accelerates the convergence speed
of the algorithm, allowing for faster discovery of high-
quality solutions.

(4.11)

Ev =

 1000, if n(V3) < 8 or n(V3) = 9

|n(V3)− n(V5)− 2 · n(V6)− 8 + 8g|+
∑

i∈boundary loop
|(n(T i

1)− n(T i
3)− 2 · n(T i

4)− 4 · δi)|, otherwise
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In each generation of the algorithm, a certain num-
ber of candidate solutions are selected from the archive
based on the fitness(l). This selection process consid-
ers both the quality of solutions and introduces a level of
randomness, enhancing the diversity of the algorithm.
The selected individuals then undergo random muta-
tions, introducing even more diversity. Finally, new
solutions with sufficiently high scores are added to the
archive, while unsuitable solutions are discarded, lead-
ing to the termination of the generation.

5 Results.
To evaluate the performance of our proposed polycube
method, we conducted extensive quantitative and quali-
tative experiments. Our experimental data mainly orig-
inated from the Thingi10k dataset, along with data
from the commonly used ABC dataset in state-of-the-
art methods. We selected data with topological struc-
tures similar to those shown in fig. 1, specifically from
(b) to (d), which contain 6 singularities. We ensured
that this dataset covered various levels of complexity,
diversity, and genus numbers.

The experimental data were categorized into two
types: artistic and industrial, to reflect different usage
scenarios. We compared our algorithm against other
state-of-the-art approaches. Our algorithm takes trian-
gular meshes as input, and by comparing polycube maps

Figure 9: The vertices indicated by arrows in the figure
represent 4-connected graphs with degree of 6. (a)
and (b) depict a comparison of the initial mesh labels
between [CFS*22][25] and our method, while (c) and
(d) show a comparison of the generated polycube map,
with the details magnified in the black boxes. Due to
the expanded solvable space enabled by our approach,
structures similar to the one highlighted in (d) can
emerge, resulting in improved polycube results. In the
generated all-hex mesh, our average weighted Jacobian
is 0.873, surpassing the 0.775 achieved by the method
in [CFS*22][25].

Figure 8: The vertices indicated by arrows from (a) to (d) contain 4-connected graphs with degree of 6. (a) and
(c) were generated using the method from [CFS*22][25], while (b) and (d) represent our results. The first row
shows the initial triangular mesh with labels, followed by the polycube maps and the all-hex meshes. It can be
observed that the method from [CFS*22][25] struggles to handle this structure and tends to treat such points as
singular points with a degree of 5. This leads to errors in the labels on the initial triangular mesh and worse
corresponding polycube map, ultimately resulting in significant distortions in the generated all-hex mesh.
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and the final hexahedral mesh results, we demonstrated
the superiority of our proposed method.

5.1 Polycube Labeling The generation of polycube
maps typically involves labeling the initial triangular
mesh with seamless textures of six different colors, cor-
responding to the six principal axis directions. This
process partitions the surface and establishes a topolog-
ical structure that conforms to the polycube conditions.
For meshes that are polyhedra and meet the criteria
for polycubes but do not adhere to the traditional def-
inition, as shown in fig. 1, scholars typically resort to
forcibly altering the principal axis assignments of the
non-compliant local triangles to make them conform to
the criteria. However, such forced corrections inevitably
introduce mapping distortions, resulting in suboptimal
quality in the generated all-hex meshes.

It can be observed that vertices similar to the one
indicated by the arrow in fig. 8 (a) cannot be mapped
to 6-singularities by other state-of-the-art methods.
This is because traditional validity definitions enforce
a requirement of 3-connectivity, making it impossible
for traditional methods to solve this, or forcing them to
handle such vertices as singularities with degrees of 3
or 5 through label optimization, resulting in significant
distortion. Due to the expansion of the solvable space
by our method, we can handle such situations, as shown
by the arrow in fig. 8 (b), and our approach yields the
optimal results.

Fig. 9 presents the initial triangular mesh with la-
bels for the famous ’monk’ mesh, a typical representa-
tive of complex artworks, along with the polycube maps.
We conducted a comparative analysis with the methods
proposed in [25]. In our polycube maps, we allow struc-
tures similar to those shown in fig. 1 (b) to emerge,
thereby expanding the solvable space of the polycube
method. Notably, for the structure depicted in fig. 1
(b), the method in [16] encounters difficulties during
generation and experiences issues during the deforma-
tion stages. The mesh-containing structure in fig. 1 (c)
poses significant challenges for the [16] approach, and
although the fig. 1 (d) structure can be generated suc-
cessfully, it exhibits noticeable label inaccuracies. In
contrast, the method in [25] encounters label inaccura-
cies in all three cases, adversely affecting the quality of
the resulting all-hex meshes.

5.2 All-hexahedra Mesh Generation In light of
the considerable potential that polycubes offer within
the realm of hexahedral mesh generation tasks, we

0The additional quantitative evaluation results can be found
in Table 2, provided in the supplementary materials.

Figure 10: A comparison on complex industrial compo-
nents. The area pointed to by the arrow represents a
4-connected graph with a degree of 6. In the figure, the
closer the color is to blue, the higher the weighted Jaco-
bian value, indicating superior hexahedral mesh quality.
Our method yields the best results.

proceeded to undertake a thorough evaluation to assess
the effectiveness of our approach in this context.

In fig. 10 (c), the results of our algorithm applied
to industrial parts are displayed. In contrast, the other
two methods, (a)[16] and (b)[25], cannot handle sin-
gular points with a degree of 6. Both methods treat
these points as degree-5 vertices, resulting in signifi-
cant distortion within the black-bordered region. Our
method achieves excellent results in handling the struc-
ture within the black-bordered area, avoiding distortion
and yielding a weighted Jacobian value close to 1.

Figure 11: The arrow points to a 3-connected vertex
with a degree of 6. In the figure, closer to blue indicates
higher weighted Jacobian values. * represents the result
after iterative optimization
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Figure 12: Gallery of our all-hex meshes and polycube maps.

Furthermore, fig. 11 shows a comparison on art-
works where our approach consistently delivers top-
quality results. with [16] and [25] used as the reference
group. * denotes the result of the method after com-
plex post-processing steps. Although it achieves higher
weighted Jacobian values at certain Curved surface, it
deviates from the surface of the input triangular mesh.
The hexahedral mesh generated after this step has a sur-
face that differs from the original triangular mesh. Un-
der the condition of the fewest hexahedra and without
post-processing, our method achieved the best results.

Fig.12 provides additional polycube-maps and all-
hex meshing results, along with the names of the
meshes. In this figure, we have highlighted degree-6 3-
connected, 4-connected, and 6-connected graphs using
yellow boxes.

6 Conclusion and Future Work.
We have introduced a validity-enhanced approach to
expanding the solvable space of polycube maps. The
four validity topology conditions we propose support
the mapping of 3, 5, and 6 singularities. When inte-
grated into the label optimization algorithm of the I-
GA method, it can detect and rectify invalid label re-
gions. Our method effectively handles models with 3-,
4-, and 6-connected components and extensive exper-
iments have been conducted on various models. The
resulting polycubes exhibit meaningful complexity and
yield high-quality hex meshes across a diverse range of
input geometries. This observation aligns with the find-
ings in our own research.

Our method has a few limitations. As shown
in fig. 13, our approach cannot handle non-manifold

(a) Non-manifold (b) 7 Singularitie

Figure 13: Scenarios Beyond the Capability of Validity-
Enhanced Construction

meshes like (a). Additionally, in a broader sense,
polycube maps may also encompass vertex singularities
with a valence of 7. While such models are rare, our
validity topology does not account for this scenario,
which we will address in our future work.
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