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Abstract

This study presents advancements in shell model prepara-

tion, enhancing the design to simulation workflow. An ap-

proach is introduced to efficiently reduce thin CAD volumes

to sheet body equivalents while maintaining geometric and

topological integrity. Machine learning techniques, includ-

ing supervised and reinforcement learning, guide reduction

actions. Thin volume assembly reduction for shell model-

ing employs a multi-agent reinforcement learning algorithm

to establish interconnected sheet bodies with designated at-

tributes. Central to this approach is a novel supervised

learning method predicting suitable dimensional reduction

operations within a CAD tool. Developed tools enable effi-

cient management of thin volume assemblies, contributing to

accurate shell model generation with potential applications

in design to simulation workflows.

1 Introduction

In this research, we address the task of converting an
assembly predominantly composed of thin 3D volumes
into a collection of sheet bodies, suitable for meshing
with quadrilateral or triangular elements. The exemplar
problem central to our study pertains to key transporta-
tion systems. The design solid model in this context is
constituted by a series of interconnected thin 3D solid
volumes.

For efficient modeling of mechanical responses, an-
alysts typically employ shell finite elements instead of
complete 3D hexahedral or tetrahedral elements. The
challenge here is to convert the 3D set of thin volumes
into a network of connected surface manifolds, to which
a mesh of triangles or quadrilaterals can be applied.

The process primarily uses commercial CAD soft-
ware, applying copy and midsurface operations to
convert volumes into a collection of extended and in-
terconnected surfaces, forming a complete shell model.
However, crafting such complex models, exemplified
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Figure 1: Left: CAD assembly of Mac Superliner
illustrating primary structural frame. Right: Shell
model of structural frame meshed with quad elements.

Figure 2: Left: Close-up of 3D model of structural frame
in figure 1. Right: Close-up of shell model.

in Figures 1 and 2, can consume a disproportionate
amount of time relative to the entire simulation work-
flow, delaying subsequent analysis.

Figures 1 and 2 depict a side-by-side comparison
between the original design solid model (left) and the
final shell model, primed for analysis (right). In this
study, we put forth a novel multi-agent reinforcement
learning strategy aimed at developing a comprehensive
solution for thin volume reduction, significantly cutting
down the time-to-simulation.

The paper begins with a discussion on shell ele-
ments, historical approaches, and existing methods for
thin volume reduction. A heuristic approach employ-
ing geometric reasoning serves as a control, against
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which we evaluate subsequent reinforcement learning
(RL) methods. A novel supervised learning model for
thin volume reduction prediction is introduced, along-
side a graphical tool for analyst support. The paper
then presents a multi-agent RL procedure utilizing su-
pervised learning to address assembly reduction, illus-
trated with real-world examples.

2 Background

2.1 Shell Finite Element Analysis Finite element
analysis utilizing beam and shell elements is a funda-
mental technique for modeling linear elastic responses
when dealing with domains containing one or two ”thin”
dimensions [1][2]. Zienkiewicz [3] underscores the ratio-
nale for using beams and shells:

Structures with one dimension significantly
smaller than the other two define plate and
shell problems. A plate exhibits a single thin
dimension, known as its thickness, while a shell
is curved in space and features such a small
thickness direction. Structures with two small
dimensions are labeled as beams, frames, or
rods. Accurately solving linear-elastic prob-
lems with one (or more) small dimension(s) us-
ing standard three-dimensional finite element
formulations is generally inefficient due to nu-
merical ill-conditioning, impeding accurate so-
lutions of the resulting algebraic equations.

Beam and shell finite elements remain crucial for
modeling linear elastic responses in structural analysis,
particularly for systems like transportation, which en-
compass elements characterized as plates or beams with
thin dimensions. This study focuses solely on the shell
problem with one thin dimension, recognizing that rep-
resenting both beams and shells within the same model
presents a limitation. Despite this limitation, our re-
search intentionally concentrates on shells, while beams
are reserved for future exploration.

In the context of thin volume assemblies, typically
represented as intricate 3D models, the process of di-
mensional reduction is essential. This process involves
converting a 3D parent volume into one or more man-
ifold surfaces or curves. To achieve this, various meth-
ods, such as the medial axis [5][4], have been developed.
The medial axis method generates a skeleton represen-
tation by tracing equidistant points from surfaces [6].
Suresh [7] further advanced this approach, developing a
skeletal dimensional reduction procedure for extracting
shell models for finite element analysis. Additionally,
these methods have been applied to address decomposi-
tion problems for hex meshing, where the skeleton aids
in geometric reasoning and geometric decomposition [8].

Despite their theoretical appeal, medial axis meth-
ods have shown limited robustness in complex cases, of-
ten introducing non-manifold surfaces or ”wings.” This
necessitates additional steps for effective shell modeling.
Moreover, fully automatic approaches often lack the
incorporation of engineering domain knowledge, which
is crucial for meeting precise component requirements.
Analyst tools typically offer both automated and graph-
ical adjustments to optimize manifold surface creation.

Ansys SpaceClaim [9] is among a handful of, pop-
ular commercial tool, offering automated mid-surface
generation and integration with beam and shell con-
struction. Notably, the proprietary methods used for
constructing shells in Ansys SpaceClaim have not been
publicly disclosed. While it excels in preparing Ansys
solid mechanics analysis input decks, analysts often re-
sort to manual methods for inspecting, reducing, and
extending volumes, a time-consuming process prone to
errors and iterative adjustments to meet constraints and
achieve optimal results.

3 Supervised Learning: Predicting Reduce
Solutions

There has been considerable progress recently in geo-
metric processing utilizing AI methodologies, as seen
in [10]. However, to our knowledge, no existing work
specifically targets the dimensional reduction problem
for thin volumes. Our method leverages a Reinforce-
ment Learning (RL) strategy that builds on the foun-
dation of our previous Supervised Learning (SL) model,
detailed in [11] and [12]. This SL model is adept at
characterizing geometric CAD volumes, a critical as-
pect of our RL framework. Previously, we successfully
employed ensembles of decision trees (EDT) [18] for ac-
curate CAD part classification, a technique that greatly
influences our current methodology. Our current re-
search marks an innovative stride by integrating RL for
dimensional reduction in CAD models, introducing a
unique perspective to the field.

The Cubit R© Geometry and Meshing Toolkit [20],
developed at Sandia National Laboratories, offers a ro-
bust foundation for tool development. It provides an
extensive set of CAD operations accessible through a
straightforward command syntax and a comprehensive
Python API. Additionally, it leverages the capabilities
of the third-party library, ACIS [21], to facilitate geom-
etry modification procedures

We establish two fundamental models focusing on
key Cubit R© CAD operations: copy and midsurface.
In the copy operation, a thin volume is represented by
parallel surfaces separated by a uniform, small thick-
ness. This method selects a continuous set of surfaces
to serve as the reduced sheet body representation of

Copyright c© 2024 by SIAM
Unauthorized reproduction of this article is prohibited



the 3D volume. In contrast, the midsurface opera-
tion identifies the central manifold surface between two
opposing sets of surfaces. It’s worth noting that a gen-
eralized midsurface operation goes beyond the scope of
this work due to the inherent complexities involved in
creating general midsurfaces for arbitrary geometries.
Instead, we focus our midsurface application on sim-
ple thin-walled structures where the identification of the
midsurface is straightforward.

These primary actions, encompassing two copy op-
erations and one midsurface operation, are visually
depicted in Figure 3, showcasing how they transform
3D thin volumes into sheet bodies. Figure 3 also il-
lustrates the connections between neighboring volumes,
emphasizing that these neighborhood interactions influ-
ence the selection among the three solutions. Further-
more, in more complex cases like the one depicted in
Figure 4, multiple surfaces can contribute to the copy
operation.

Supervised machine learning uses a training dataset
(x1,y1), ..., (xn,yn), where x represents input features,
y represents labels, and f in y = f(x) signifies the
mapping from input features to labels.

Features (x) consist of fixed-length vectors of
scalars for both copy and midsurface operations, cat-
egorized into three groups. The initial category covers
volume characteristics like shape, size, and geometry,
as detailed in previous research [12] . Subsequent cate-
gories focus on the chosen operation (copy or midsur-
face), capturing local surface nuances. The third cat-
egory includes contextual information, such as shared
surfaces and connectivity with neighboring volumes.

Labels (y) for both copy and midsurface models
represent a suitability score. A score of 1 indicates an
ideal operation fit, while 0 represents a poor fit. Typ-
ically, the suitability score is determined automatically
by the RL procedure’s reward value, but manual assign-
ment is possible.

Our SL model, similar to previous work, employs
an ensemble of decision trees (EDT) using scikit-learn
[19], a Python-based ML tool. The SL model’s role is
to select the most suitable reduction operation given a
local volume and its surroundings.

We initiate the training data with a small set of
CAD models, and the RL algorithm plays a crucial
role in collecting ground truth data by applying it to
numerous models. Initial training data can also come
from user preferences, capturing desired outcomes for
thin volume reduction in isolated cases.

4 Reinforcement Learning

4.1 Background Reinforcement learning (RL) is a
crucial component of machine learning, commonly ap-

plied in areas like game theory and control theory [13].
Unlike supervised learning, RL doesn’t rely on labeled
data pairs, but rather on structured rules and rewards
in an environment. This empowers an agent (primary
decision maker) to explore and learn from the environ-
ment.

At its core, RL involves:

• State-Space, S, where the agent operates.

• Action set, A, for the agent’s choices.

• Decision Policy, P, governing action probabilities.

• Reward Policy, R, providing rewards for state
transitions.

The objective is for the agent to discover a policy π
that maps states to actions, with the aim of maximiz-
ing long-term rewards (e.g., rewards) [14]. This process
unfolds through repeated interactions with the environ-
ment. In some scenarios, multiple agents pursue either
shared or individual objectives within the environment,
a concept known as Multi-Agent Reinforcement Learn-
ing [15].

During each iteration, the agent selects optimal ac-
tions based on its current state and decision policy. Ini-
tially, it explores randomly, gradually learning from re-
wards and forming a policy. A common technique em-
ployed is Explore and Exploit, which involves initial ex-
ploration followed by the exploitation of learned knowl-
edge [14].

The most prevalent RL variant is Q-learning, which
seeks to sequence actions for the purpose of maximizing
rewards [16]. It can be likened to an agent navigating a
maze, progressively discovering the optimal path.

4.2 Overview In our Multi-agent RL framework, we
define the initial state space S as a network of input
volumes, with each volume assigned an agent. These
agents are responsible for generating and maintaining a
set of actions A using commands that convert volumes
into 3D manifold representations. For simpler volumes,
there are three available actions: midsurface and two
copy surface options (inner and outer planes). Agents
employ a decision policy P to select a valid reduce
action. Subsequently, the appropriate commands are
executed, and the algorithm uses a reward policy R
to evaluate the actions, assigning rewards between zero
and one.

Rewards are computed based on criteria such as the
percentage of maintained connections. For example,
if an action causes a volume to lose one of its three
neighbors when converted to a sheet body, the agent
receives a reward of 0.67. Penalties are applied if
small curves or narrow surfaces are generated when
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(a) First Copy Surface operation (b) Second Copy Surface operation (c) Midsurface operation

Figure 3: Three primary CAD operations used for reducing a thin volume to a sheet body. Blue curve represents
a reduced form of the pink surface

(a) Initial thin volume (b) Reduction solution with 7
surfaces

(c) Reduction solution with 3
surfaces

Figure 4: Example of thin volume with multiple surfaces needed to represent its reduction

connecting to neighbor reductions, as small geometries
make for less favorable meshing conditions. This process
of action-selection and reward-receiving continues until
average rewards exceed a user-defined threshold or a
maximum iteration count is reached.

Agents enhance action selection by maintaining a
history of past rewards for each action. This his-
tory informs their choice, favoring more recent rewards
through a linearly weighted average mechanism. Agents
also incorporate a randomaction parameter, allowing
them to explore action space by choosing actions ran-
domly instead of relying solely on the highest-scored ac-
tion. This approach prevents agents from getting stuck
in local minima.

Our RL approach is depicted by the flowchart in
Figure 5 and is elaborated in the subsequent procedure.

4.3 RL Algorithm

4.3.1 Assumptions: Our RL approach assumes that
neighbor volumes are exactly touching and aligned, thus
no gaps or overlaps. This ensures that imprint and
merge operations are clean and reliable between vol-
umes. Defeaturing may also be required to remove
features like engravings, rounds, chamfers, holes, etc.,
which wouldn’t be appropriately represented in a re-
duced volume. These assumptions create a conducive
framework for the RL process to generate effective re-

ductions.

4.3.2 Input: The input parameters for the RL pro-
cess include a set of thin CAD volumes, stopping crite-
ria to determine when to terminate the RL iterations,
the maximum number of iterations allowed, the learn-
ing interval at which training data is saved, and flags
for predicting a single iteration or initializing rewards
randomly.

• thin volumes: Set of thin CAD volumes adhering
to the assumptions mentioned above.

• stopping criteria: RL iterations terminate when
the average reward exceeds the specified stop-
ping criteria.

• max iters: Maximum number of RL iterations.

• learning interval : Interval of RL iterations at
which training data will be saved.

• predict : Boolean flag to execute one iteration of RL
and stop.

• init random: Boolean flag to initialize rewards with
random numbers.

4.3.3 Output: The output of the RL process is a
journal file that contains the sequence of commands
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Figure 5: Illustration of the RL Workflow

required to construct the reduced model based on the
learned actions and rewards.

• commands: Journal file containing ordered com-
mands for building the reduced model.

4.3.4 Method: This method outlines the procedure
for applying reinforcement learning to the reduction of
thin volumes and the generation of sheet bodies. By
establishing individual agents for each volume and em-
ploying a graph structure to track their connections, we
create a framework for efficient learning. The RL pro-
cess iteratively selects actions, performs operations in
the CAD framework, assigns rewards based on the out-
come, and updates the training data. The decision pol-
icy allows for exploration and exploitation, ensuring a
balance between discovering new actions and leveraging
learned knowledge.

1. Agent Setup: Each volume in S has an agent,
managing rewards, action choices, and neighbor

interactions. A graph structure records connections
through imprint and merge actions, temporarily
connecting 3D thin volumes at merged surfaces to
outline anticipated sheet body links. Upon noting
connections, the imprint and merge actions are
reversed to return the model to its original state.

2. Build All Actions: We gather potential actions
into action set A for thin volume reduction, encom-
passing reduce thin copy or midsurface com-
mands (detailed in Section 4.4). Initial screening
excludes actions with known infeasible or subopti-
mal outcomes.

3. Initialize Rewards: Agents start by assigning
initial rewards to their actions, ranging from zero
to one. A value of zero indicates expected infeasi-
bility, while one represents the most favorable ac-
tion. These rewards can be predicted using our
supervised learning model (Section 3), or random
values can be utilized for exploration during the
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learning process. Leveraging the previously trained
SL model can expedite learning by benefiting from
encountered configurations. Ideally, the SL model
correctly predicts the configuration if it has been
adequately trained. In contrast, employing random
initialization disregards prior knowledge and starts
with a clean slate.

4. Predict Rewards: Rewards can be predicted us-
ing our supervised learning EDT model, where
computed features for the reduction operation
(copy or midsurface) aid reward prediction. Ini-
tial predictions might be less precise for actions
with scarce training data or distinct geometry and
neighbors. As the RL process advances and gath-
ers more training data, predictions are projected to
enhance.

5. Choose Action: During every RL iteration,
agents opt for an action a from their set of known
reduction actions, guided by the decision policy P
explained in Section 5.1. This policy integrates ex-
ploration and exploitation, using randomness to ex-
plore actions and SL predictions to leverage knowl-
edge from prior iterations.

6. Perform Actions: The chosen actions are exe-
cuted via the CAD kernel. Initially, reduction oper-
ations are carried out, succeeded by extending, im-
printing, and merging to make the reduced model
contiguous.

7. Assign Rewards: Agents allocate rewards to
their chosen actions using the reward policy R
described in Section 6. These rewards are cataloged
in the agents’ histories.

8. Objective Met? The RL process continues until
at least one of the following stopping criteria is met:

(a) tc > max iters, where tc is the current itera-
tion and max iters is a user defined maximum
number of iterations.

(b) Rtc ≥ stopping criteria, where Rtc =
󰁓

ra
Na

represents the average agent reward ra at
iteration tc for Na agents.

(c) User aborts the process: At any iteration tc <
max iters, the user can choose to cancel the
learning procedure if they deem the learning
to be sufficient.

If any of the stopping criteria are met, the process
proceeds to step 9. Otherwise, tc is incremented by
1 and the process returns to step 5.

Learning Interval: We update the
training data at intervals defined by tc

mod (learning interval) = 0. When this holds, we
proceed to step 9 for the update and then return
to step 5. Typically, a learning interval of 5 is
effective.

9. Update Training Data: Rewards ra assigned
to actions by agents are used as ground truth for
our supervised learning model. For completed RL,
rewards from the iteration with the highest reward
tbest expand the SL model. During ongoing RL, the
SL model updates every learning interval using
rewards from iteration tc. This refresh of training
data and new learning model effectively updates
decision policy P.

10. Build Journal File: Finally, the agent history is
used to extract an ordered list of CAD commands,
which are then compiled into a journal file based
on the iteration tbest.

4.4 Building Action Command Solutions To
navigate the design space, our RL approach uses CAD-
specific commands as implemented in the Cubit R© Ge-
ometry and Meshing Toolkit [20] to construct reduced
sheet representations from 3D volumes. These actions
are categorized into two types:

1. Reduce Actions: These encompass CAD com-
mands designed to produce a sheet body represen-
tation from a single volume, disregarding consider-
ations for neighboring connections. The following
are examples of CAD-specific operations that exe-
cute reduction actions:

(a) reduce volume <ids> thin copy

surface <ids> loft factor <value>...

thickness <value>... [delete]

[preview]

(b) reduce volume <ids> thin midsurface

surface <ids> loft factor <value>

thickness <value> [delete] [preview]

(c) merge volume volume <ids>

In this context, we introduce new CAD operators
that extend the traditional geometric operations of
copy or midsurface. These new operators main-
tain parent-child relationships, ensuring that the
parent 3D volume isn’t deleted, and thus both the
sheet body representation and the original volume
persist within the environment. This preservation
enables visualization and compatibility checks. Ad-
ditionally, the operators incorporate a loft factor
that specifies the relative position with the original
volume and thickness of the shell for simulation.
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These values are extracted during the reduction op-
eration and retained within the geometric model.
Furthermore, the operators also manage material
associations, which are essential for use in simula-
tion tools.

The merge operation is included here to combine
separate sheet bodies derived from the same parent
solid volume. This ensures that if multiple sheet
bodies are needed to represent the 3D volume,
they will be merged into a single, continuous, and
connected manifold representation for the entire
volume.

2. Connect Actions: These are CAD commands
that modify the resulting sheet bodies using the
tweak functionality to fill gaps, and include im-
print and merge operations to connect neighbor-
ing sheet bodies from neighboring 3D thin solid
volumes. The following are examples of connect
actions:

(a) tweak curve <id list> target surface

<id list> [preview]

(b) tweak curve <id list> target curve

<id list> [preview]

(c) tweak curve <id> <id> corner

[preview]

(d) imprint volume volume <ids>

(e) merge volume volume <ids>

We found these to be a minimal set of operations
to maintain most connectivity situations between
neighboring sheet bodies, however additional oper-
ations may be explored to improve robustness and
expand application for future work.

The process of generating CAD commands for re-
ducing thin 3D volumes to sheet bodies follows a struc-
tured algorithm. Initially, pairs of opposing surfaces
on the thin volume are identified, and the distances
between them are computed. After eliminating non-
overlapping or dissimilar pairs, continuous solutions are
sought for complex cases. The algorithm then crafts
commands for both continuous surface sets and individ-
ual surface pairs, using calculated distances to define
thickness. Additionally, merge commands are gener-
ated for multi-surface copy commands, ensuring a uni-
fied manifold of surfaces. This systematic approach ef-
fectively translates the 3D volume into its reduced sheet
body representation.

Conversely, the procedure for generating connection
actions involves connecting sheet bodies from neighbor-
ing thin volumes. The algorithm encompasses multiple

steps, including creating various tweak commands to
address different connection scenarios. These include
curve to surface and curve to curve tweaks for specific
angles and distances, as well as corner tweaks for si-
multaneous surface extensions. Imprint/merge com-
mands are produced when sheet bodies are in close prox-
imity. This sequence is repeated for each surface in the
sheet body sets, enabling the formation of robust con-
nections. The procedure concludes by removing solu-
tions that aren’t relevant to the specified nearby entity.

5 RL Decision Policy

The decision policy (P) prescribes how the agents will
select from their known valid actions and is represented
as step 3 in figure 5.

5.1 Algorithm for Choosing Actions

5.1.1 Input:

• agent: Agent represents a single 3D thin volume

• iteration: Current RL iteration

• init random: Whether to initialize with random
rewards or from SL predictions

• random probability: Probability for selection of
random reward. (default 0.2)

• learning interval: SL model is updated at RL
iterations evenly divisible by learning interval

5.1.2 Output: A CAD command(s) or action reduc-
ing a 3D volume to one or more sheet bodies.

5.1.3 Method: The agent selects an action from its
list of valid actions (CAD commands) based on one of
the following criteria

1. Initialization/Reinitialization from SL: if (t =
0 and init random = false) or iteration mod
learning interval = 0, then select the action from
the last iteration. This presumes that the training
model has been updated after the last iteration.

2. Initialization from random: if t =
0, init random = true and t mod
learning interval ∕= 0 , select a random ac-
tion. If total number of actions for this agent is 2,
select the other action

3. Random exploration: If a random number, ρ
(0 < ρ < 1) ≤ random probability and max action
reward, ra < 1.0, select a random action.

4. Weighted action: If ρ > random probability
then select the reward from the agent’s recent re-
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ward history based on a decaying weighted average,
such that more recent iterations will be given pref-
erence.

6 RL Reward Policy

The reward policy (R) is based on the following rules:

1. Connectedness (rc): An initial rc is computed
based on the number of successful connections to
the reduced sheet body solution. If the reduced
sheet body representation maintains all the ex-
pected connections to adjacent volumes, as its par-
ent 3D volume did, rc is set to 1.0. For example,
if a parent volume is originally connected to three
neighboring volumes and its reduced sheet body
representation accurately preserves these connec-
tions, rc is 1.0. If only a subset of the expected
connections are maintained, rc is adjusted accord-
ingly. For instance, if 2 out of 3 connections are
preserved, rc is set to 0.666.

2. If the reduced sheet body representation maintains
all the expected connections to adjacent volumes,
as its parent 3D volume did, rc is set to 1.0.

3. Small Curves Penalty (pc): In addition to the
connectedness reward, a penalty is applied if the
reduction action introduces small curves. The
penalty factor, pc is set to 0.9 for each additional
small curve generated. Small curves are defined
as curves with a length smaller than the parent 3D
volume thickness. The penalty ensures that actions
leading to a reduced model with fewer small curves
are favored.

4. Narrow Surfaces Penalty (ps): Similarly, a
penalty factor, ps, of 0.9 is applied if the reduction
action generates narrow surfaces. Narrow surfaces
are surfaces with a width smaller than the thick-
ness. The penalty encourages actions that result in
reduced models with wider surfaces.

5. Midsurface vs Copy Penalty (pm): An addi-
tional penalty factor, pm, of 0.9 is introduced if a
copy surface operation is used instead of a mid-
surface operation when both options are available.
This penalty allows us to prioritize the use of mid-
surface operations if preferred by the user or if
it produces more favorable reductions. If the pre-
ferred midsurface operation is used or if no mid-
surface operation is available, pm is set to 1.0.

The final reward, ra, assigned by the agent for its
action is calculated as ra = rc × pNSC

c × pNNS
s × pm,

where NSC represents the number of small curves gen-
erated and NNS represents the number of narrow sur-

faces generated. This reward policy ensures that actions
leading to reduced models with better connectedness,
fewer small curves, wider surfaces, and preferred reduc-
tion methods are favored and receive higher rewards.

7 Implementation

The implementation encompasses command-line and
GUI options, along with accessibility via a Python
interface. Users can operate in two distinct modes:

1. Learn Mode: This mode initiates an RL loop
and executes a specified number of iterations. RL
serves as a mechanism to construct an SL model,
with RL iteration-produced rewards serving as la-
bels. Learning continues until predefined stopping
criteria are met, and a Journal file records the ex-
ecuted commands.

2. Predict Mode: In this mode, the SL model is
exclusively executed, ensuring a result is always
generated. However, the effectiveness and accuracy
of the outcome are significantly improved when
prior learning has been applied to a similar model.
The Journal file is generated solely based on SL
predictions.

In practice, for a model consisting of approximately
100 volumes, Learn Mode can produce ample training
data for the SL model in just a few hours, while Predict
Mode typically runs in less than a minute on a similar
model. Although these tools greatly enhance efficiency,
users might encounter connection issues in complex
assemblies. Fortunately, the Journal file pinpoints
areas of connection failure, enabling users to swiftly
detect and resolve issues. Furthermore, interactive tools
are available to visualize and promptly address any
unresolved issues.

8 Heuristic Approach

Alongside the development of our reinforcement learn-
ing (RL) approach for thin volume reduction, we crafted
a traditional methodology using heuristic geometric rea-
soning methods that do not employ machine learn-
ing. This alternative method aims to identify individ-
ual reduction solutions interconnected to neighboring
volumes within the assembly. It achieves this by estab-
lishing a graph-like representation of the assembly for
efficient traversal. Subsequently, it endeavors to find
the longest connected path of reductions while mini-
mizing the creation of sliver surfaces. The algorithm’s
key steps include:

1. Initialize all possible copy reductions for each thin
volume.
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2. Perform imprint and merge operations to create
a non-manifold, contiguous model of the thin vol-
umes.

3. Reassemble reduction solutions for each volume,
considering surfaces split during imprint and
merge.

4. Identify mandatory reductions where volumes
share common surfaces with other reductions.

5. Check for infeasible reductions (see figure 32) and
terminate if present.

6. Traverse from mandatory reductions, finding the
longest connected path of reductions.

7. Prioritize reductions that align with common
curves at connections to avoid thin surface creation.

8. Repeat steps 6 and 7 for remaining reductions until
all thin volumes are reduced.

9. Identify and extend curves in reductions to main-
tain connections with adjacent reductions.

10. Imprint and merge all reductions to connect
sheet bodies.

This alternative approach complements RL, offering
fresh insights and solutions, aiding in RL policy iden-
tification. It played a vital role in our analysis to as-
sess RL’s advantages over traditional geometric meth-
ods without RL.

9 Examples

The reinforcement learning methods are showcased
through a series of practical examples, utilizing CAD as-
sembly models primarily sourced from GrabCAD [17],
a widely-used online CAD parts repository. Each ex-
ample consists of assemblies comprised of multiple in-
tricate parts, with names corresponding to those found
on GrabCAD for easy reference shown in figures 6 to
10.

Following the defeaturing process, the reinforce-
ment learning algorithm is applied, with execution times
varying based on problem complexity, ranging from
minutes for simpler cases to hours for more intricate
ones. A learning interval of 5 is employed in these ex-
amples, updating the supervised learning model every
5 iterations and reinitializing actions with the newly
learned ones.

Table 1 summarizes reinforcement learning out-
comes for each test case, accompanied by sheet body
model images for reference. Figures 11 to 30 display
the defeatured version of the CAD model used as input
to the RL method, followed by the resulting sheet body

representation produced. Close up versions of the CAD
model and sheet body models are also provided.

Figure 11:
quarter-cannister CAD
Model with 13 volumes

Figure 12:
quarter-cannister result
sheet bodies

Figure 13: Close Up
quarter-cannister 3D
volumes

Figure 14: Close Up
quarter-cannister sheet
bodies

9.1 Test Cases Table 1 presents results for the 5 il-
lustrated examples (Figures 6 to 10). The table includes
key measures that offer insights into the performance
and characteristics of the reinforcement learning and
heuristic methods.

• Volumes: The number of volumes in the initial de-
featured assembly used for RL, reflecting assembly
complexity.

• Surfaces: The number of surfaces in the initial de-
featured assembly used for RL, representing surface
intricacy.

• Total Connections: The count of connections
between solid volumes determined by geometric
proximity, akin to graph edges with volumes as
nodes.

• Max Reward: Indicates the highest reward
achieved in RL iterations. A value of 1.0 represents
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Figure 6:
quarter-cannister

Figure 7:
cnc-tube-cutter-1

Figure 8:
mack-superliner-3

Figure 9:
BAU VUC

Figure 10:
gaz-33086-1

Table 1: Test Results. See section 9.1 for full description of data.

quarter-cannister cnc-tube-cutter-1 mac-superliner-3 BAU VUC gaz-33086-1

Volumes 13 33 30 80 7
Surfaces 99 298 357 916 128
Total Connections 15 62 55 171 11
Max. Reward 1.00 0.970 0.943 0.704 0.686
Conns. Succeeded 15 62 53 124 6
Conns. Failed 0 0 2 47 5
RL Sheet Bodies 17 41 90 183 25
Heuristic Sheet Bodies 13 33 30 failed 7
RL Merged Curves 42 141 248 408 44
Heuristic Merge Curves 42 138 157 failed 34

perfect performance, while 0.0 indicates no criteria
were met.

• Connections Succeeded: The number of suc-
cessful connections established after reduction,
showing the effectiveness of the reduction process.

• Connections Failed: The count of unresolved
connections after reduction, highlighting potential
design or connectivity issues.

• RL Sheet Bodies: Represents the number of
sheet bodies resulting from the RL method’s iter-
ation with the highest reward, evaluating its effec-
tiveness in generating sheet bodies.

• Heuristic Sheet Bodies: Quantifies the sheet
bodies created using the heuristic method on the
same defeatured parts, enabling a comparative
evaluation against the RL method.

• RL Merged Curves: Signifies the count of curves
merged within the sheet body model using the
RL method to establish connections, reflecting the
method’s efficiency in forming connections.

• Heuristic Merge Curves: Quantifies the merged
curves in the resulting sheet body model from the

heuristic method, providing insights into the RL
method’s performance compared to the heuristic
approach.

In our exploration of reinforcement learning (RL)
for thin volume reduction, we began with the quarter-
cannister example, achieving a maximum reward of 1.0,
although in practical cases, such high rewards are chal-
lenging and require preparatory defeaturing work. No-
tably, the presence of features like fillets and chamfers
can hinder connections, suggesting the need for feature
removal actions in RL. Complex T-configurations posed
challenges, advocating for their division into multiple
volumes as part of RL actions. While reduction was
generally successful, connection failures often occurred,
necessitating additional operations like tweaking and
extending. Identifying various cases for extension and
tweaking is vital, prompting further research in this di-
rection. Overall, our observations underscore RL’s po-
tential in enhancing thin volume reduction, with room
for improvement through defeaturing and handling com-
plex configurations.

In comparing the heuristic approach with RL, the
number of merged curves is a key metric. RL consis-
tently merges more curves than the heuristic method,
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Figure 15: Defeatured:
cnc-tube-cutter-1

Figure 16: Result Sheet
Bodies:
cnc-tube-cutter-1

Figure 17: Close Up CAD Model: cnc-tube-cutter-1

Figure 18: Close Up Sheet Bodies: cnc-tube-cutter-1

indicating better performance. In the BAU VUC test,
the heuristic method failed due to an infeasible condi-
tion illustrated figures 31 and 32. On the other hand,
RL handles such conditions, alerts the user, and pro-
vides results for feasible connections. On untrained
models, when it is successful, the heuristic method is
more efficient than RL. However, after training, their
performance is similar.

The current heuristic method is limited to the
copy operation and excludes midsurface, simplifying
its implementation. While this is an implementation
constraint, it can be expanded for further exploration.
Modifying the heuristic’s logic, however demands code
changes by a developer. In contrast, with RL, users
can refine the logic by adding training data. If the RL

Figure 19: Defeatured:
mack-superliner-3

Figure 20: Result Sheet
Bodies:
mack-superliner-3

Figure 21: Close Up
CAD Model:
mack-superliner-3

Figure 22: Close Up
Sheet Bodies:
mack-superliner-3

model falls short, it can be updated with new use cases
and rewards. Such adaptability isn’t feasible with the
heuristic approach.

A distinct advantage of RL is its ability to produce a
detailed log of individual commands for each operation.
This not only allows users to review and adjust the
process but also makes the resulting command logs
from RL better suited for archiving and sharing. Such
transparency enables others to verify and reuse the
procedures. In contrast, the heuristic method only
provides a single output without user feedback, making
RL more suitable for larger, more complex models.

Table 2 displays the results from RL-generated
journal files for each test case, detailing key command
operations like reduce, merge, imprint, and tweak.
The table emphasizes the command frequency in each
sequence, shedding light on the automation level RL
offers versus manual methods. It underscores the
complexity of procedures analysts use for shell model
preparation and highlights the potential time savings,
reducing what could be days or weeks of manual effort.

Our method efficiently converts thin volume assem-
blies into interconnected sheets but faces issues with
configurations involving three or more stacked volumes,
as depicted in Figures 31 and 32. Table 1 highlights
these frequent infeasibility issues. Potential solutions
could include modifying surface loft properties or em-
ploying beams as fasteners to connect coplanar surfaces
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Table 2: Counts of Cubit R© commands generated by the proposed RL method for each test case. Indicates the
relative complexity of procedures generated with RL.

quarter-cannster cnc-tube-cutter-1 mac-superlinr-3 BAU VUC gaz-33086-1

Reduce 13 33 30 80 7
Merge 19 65 69 244 17
Imprint 15 62 55 171 11
Tweak 5 13 19 30 3
Total 52 173 173 525 38

Figure 23: Defeatured:
BAU VUC

Figure 24: Result Sheet
Bodies: BAU VUC

Figure 25: Close Up CAD
Model: BAU VUC

Figure 26: Close Up Sheet
Bodies: BAU VUC

separated by a thickness. Continued research aims to
enhance our approach for such intricate assemblies.

Figure 31: Example of infeasible condition

Figure 32: Preview of sheets at infeasible condition

Figure 27: Defeatured:
gaz-33086-1

Figure 28: Result Sheet
Bodies: gaz-33086-1

Figure 29: Close Up CAD
Model: gaz-33086-1

Figure 30: Close Up Sheet
Bodies: gaz-33086-1

10 Conclusion

In this paper, we have explored the application of re-
inforcement learning (RL) techniques for thin volume
reduction in complex CAD models, revealing their po-
tential to automate and optimize the transformation
of 3D solid volumes into sheet bodies while preserv-
ing model integrity. Through extensive experiments,
we have demonstrated RL’s effectiveness in generating
reduction solutions across various test cases with mini-
mal manual intervention, thanks to its adaptive learning
capabilities. We’ve also identified key challenges, em-
phasizing the importance of integrating defeaturing and
addressing complex configurations within RL. A com-
parison with traditional heuristic methods highlighted
RL’s superiority in establishing connections, as well as
its ability to handle undefined conditions and provide
user notifications. This research sets the stage for ad-
vancements in thin volume reduction, offering signifi-
cant time savings in CAD modeling and enhancing pro-
ductivity across industries.
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