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Abstract

Structured mesh generation has fundamental importance,

but controlling the qualities of structured meshes remains a

challenge. This work proposes a rigorous and practical algo-

rithm to generate quadrilateral meshes on topological poly-

annuli with the least number of singularities. It is shown

that each quad-mesh with 4k vertex degree induces a holo-

morphic differential. All the holomorphic differentials form

a finite-dimensional linear space. A geometric distortion en-

ergy is proposed to measure the local area distortion. One

can achieve quad-meshes as uniformly as possible by opti-

mizing the distortion energy in the linear space. Experimen-

tal results show the proposed algorithm is able to improve

the uniformity of the quad-meshes, and the method has the

potential to be generalized to handle quad-meshes with other

constraints.

1 Introduction

Structured mesh generation plays a fundamental role
in CAE fields such as CAD, FEA, CFD, and FSI.
These fields also play a critical role in medicine to help
understand the etiology of various diseases, to facilitate
prognosis, and, especially, to optimize medical devices
for improved patient outcomes. In engineering practice,
it is critical to control the quality of the generated
meshes, such as conformality and uniformity. Intuitively
speaking, the conformality criteria require each quad-
face on the mesh to be similar to a planar square,
and the uniformity criteria require that the sizes of the
quad-faces be as uniform as possible. Despite years of
intensive research, controlling the quality of structured
meshes remains a great challenge.

1.1 Optimization in Quad-mesh Space Recently,
Lei et al. [4, 18, 33] introduced a novel theoretic frame-
work for surface quad-mesh generation, which bridges
the quad-meshes with meromorphic quatic differentials
on the Riemann surface, namely a meromorphic section
of a special holomorphic line bundle, such that the sin-
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gularities of the quad-mesh are governed by the Abel-
Jacobi theorem. This work can generate quad-meshes
with high conformality. Furthermore, this framework
shows that quad-meshes satisfying special constraints
form a finite-dimensional linear space. Therefore, it is
possible to optimize the mesh quality within this space
using the standard energy minimization method. This
work focuses on the simplest situation, the quad-meshes
with the minimal number of singularities, namely the
valence of all vertices of the quad-mesh are 4k, k ≥ 1
is a positive integer. In this situation, each quad-mesh
induces a holomorphic differential (one-form).

Theorem 1.1. Suppose (S,g) is an oriented, closed
surface with an Riemannian metric g, Q is a quadri-
lateral mesh of S with genus g > 1, if all vertices have
valence 4k, k ∈ Z+, then Q induces a Riemann surface
RQ, and a holomorphic one-form ω on the RQ.

Proof. Given a quad-mesh Q on the surface, if we treat
each face as the planar unit square, then Q induces a
Riemannian metric gQ on the surface, and a conformal
structure of the surface as shown in the proofs of the
theorems 4.6 and 4.7 in [18].

According to theorem 4.7 in [18], the quad-mesh Q
induces a mermorphic quartic differential ωQ. Suppose
the singularities of Q are p1, p2, . . . , pn with valences
4k1, 4k2, . . . , 4kn respectively, where ki ≥ 2 for i =
1, 2, . . . , n. Then according to the theorem 4.11 in [18],
the divisor of ωQ is

(ωQ) =

n∑
i=1

(4ki − 4)pi.

Suppose ω0 is an arbitrary holomorphic one-form on
RQ, by Abel-Jacobi condition

(ωQ)− 4(ω0) =

n∑
i=1

4(ki − 1)pi − 4(ω0)

= 4

(
n∑

i=1

(ki − 1)pi − (ω0)

)
= 0,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



this shows there is a meromorphic 1-form ω′
Q whose

divisor is

(ω′
Q) =

n∑
i=1

(ki − 1)pi.

Since ki − 1 > 0, hence all the singularities of ω′
Q are

zeros, no poles, ω′
Q is a holomorphic one-form.

According to the Riemann-Roch theorem [5], all holo-
morphic 1-forms form a g complex dimensional linear
space on a closed genus g Riemann surfaceR, denoted as
Ω1(R). Suppose {ω1, ω2, . . . , ωg} form a basis of Ω1(R),
any holomorphic one-form ω ∈ Ω1(R) is a complex lin-
ear combination of the bases,

ω = λ1ω1 + λ2ω2 + · · ·+ λgωg.

The holomorphic 1-form ω induces a flat metric with
cone singularities, denoted as gλ. We can define an
energy to measure the distance between gλ and the
original metric g then find the optimal (λ1, λ2, . . . , λg)
to minimize the energy. For example, let T be a
triangulation of the input surface (S,g), and we define
the energy to measure the area distortions of the faces
of T ,

min
λ

∑
∆∈T

(|∆|g − |∆|gλ
)
2
,

where ∆ represents a triangular face in T and |∆|g is
the area of ∆ under the metric g.

1.2 Holomorphic Differential Basis In order to
construct a basis of the space of all holomorphic dif-
ferentials, we use the Hodge decomposition method [7].
Given a closed Riemannian surface (S,g), we first com-
pute the basis of the surface homology group H1(S,Z),
{γ1, γ2, . . . , γ2g}; then dual basis of the cohomology
group H1(S,Z), {eta1, η2, . . . , η2g}; thirdly, the basis of
harmonic differential groupH∆(S,R), {ω1, ω2, . . . , ω2g},
such that ωi is in the cohomology class of ηi, ωi ∈
[ηi]; finally, for each harmonic 1-form ωi, we com-
pute its conjugate harmonic 1-form ⋆ωi, and pair them
to form a holomorphic 1-form φi = ωi +

√
−1⋆ωi,

{φ1, φ2, . . . , φ2g} form a basis of Ω1(S).
For surfaces with boundary components, the com-

putational algorithm is more complicated. For the cur-
rent work, we focus on an oriented, genus zero surface
with multiple boundary components, namely topologi-
cal poly-annulus S with boundary

∂S = γ0 − γ1 − · · · − γn,

where γ0 is the exterior boundary component, γi, i =
1, 2, . . . , n are the interior ones. For harmonic 1-forms,
we need to compute both exact harmonic 1-forms and

non-exact harmonic 1-forms. For each interior bound-
ary component γi, we compute a harmonic function
fi : S → R with Dirichlet boundary condition, such
that the restriction of fi on γi is 1, and the restric-
tions on other γj ’s are 0. Then dfi gives us the exact
harmonic 1-forms. Suppose the basis of H1(S,R) are
{η1, η2, . . . , ηn}, such that

∫
γi
ηj = δij . For each ηi we

find a function ui : S → R, such that ∆ui = δηi with
Neumann boundary condition. Then ωi = ηi+dui is the
non-exact harmonic 1-form. The conjugate harmonic 1-
form ⋆ωi is also harmonic, conventional algorithm rep-
resent

⋆ωi =

n∑
j=1

λidfi +

n∑
k=1

µkωk.

We observe that the conjugate harmonic 1-form ⋆ωi is
exact, therefore

⋆ωi =

n∑
j=1

λidfi,

this reduces the computational complexity by half.

Theorem 1.2. Suppose (S,g) is a poly-annulus, ∂S =
γ0 − γ1 − . . . γn, where γ0 is the exterior boundary
component, γi’s are interior boundary components, i =
1, 2, . . . , n, suppose fi’s are harmonic functions with
Dirichlet boundary condition fi|γj = δij; ωi’s are
non-exact harmnoic 1-forms with Neumann boundary
condition, and

∫
γj

ωi = δij. Then the harmonic 1-form
⋆ωi conjugate to ωi is exact, therefore

⋆ωi = λ1df1 + λ2df2 + · · ·+ λndfn, λi ∈ R.

Proof. By our construction, ωi is dual to a harmonic
tangential vector field vi,

⋆ωi is dual to
⋆vi, where

⋆vi(p) = n(p)× vi(p),

where n(p) is normal to the surface at p. Along the
boundary γj , the vector field vi is parallel to the tangent
direction of γj , hence

⋆vi is orthogonal to the tangent
direction of γj , therefore∫

γj

⋆vi = 0, 1 ≤ i, j ≤ n.

Since ωi is harmonic, ⋆ωi is harmonic, therefore ⋆ωi

is closed. The above equation shows ⋆ωi is an exact
harmonic 1-form, hence can be represented as the linear
combination of dfi’s.
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1.3 Contributions This work proposes a novel
method for generating quadrilateral meshes that are as
uniform as possible on topological poly-annulus surfaces
with the least number of singularities. In detail:

• Propose a framework that formulates the problem
of controlling quad-mesh qualities as an optimiza-
tion problem in a finite-dimensional linear subspace
of the meromorphic quadratic differentials;

• Prove in theorem 1.1 that quadrilateral meshes
with 4k degree vertices, k ∈ Z+ induce harmonic
1-forms;

• Prove in theorem 1.2 that the conjugate harmonic
1-form of non-exact harmonic 1-form on a poly-
annulus must be exact, this reduces the computa-
tional complexity of Hodge star operator by half;

• Propose a quartic polynomial energy for optimiza-
tion to generate the quad-mesh as uniform as pos-
sible.

2 Previous Work

Quadrilateral mesh generation holds a significant posi-
tion in the fields of science and engineering owing to its
attractive properties, including tensor-product nature
and smooth surface approximation. There is a plethora
of literature on quad meshing. For a more compre-
hensive and thorough literature review, we recommend
readers to refer to [2]. In the following, we only review
the main methods of quadrilateral mesh generation.

Converting Triangulation Method The first
commonly used method is converting a triangle mesh
into a quad mesh. The process generally includes
steps such as edge matching, vertex insertion, and
optimization to achieve desired quad mesh properties.
The simplest way is that two neighboring triangles can
be combined into a single quadrilateral, resulting in the
formation of a quad mesh [8, 25, 28, 30]. This method
can only produce unstructured quad-meshes, and the
disadvantages of converting a triangle mesh to a quad
mesh include complexity, potential quality degradation,
loss of geometric detail, challenges with boundaries, and
irregular shapes.

Patch-based Method Another method is the
patch-based approach. This method involves dividing
data or an area into smaller segments or patches for
analysis and processing, commonly used in fields like im-
age processing, computer graphics, and machine learn-
ing to manage complex data efficiently. The cluster-
ing method used to create the skeleton involves merg-
ing neighboring triangle faces into patches, employing
techniques like normal-based and center-based methods

[1, 3]. The computation of these patches is facilitated
through the use of poly-cube maps [32, 31, 21, 9].

Parameterization Based Method Another
common method is the quad-meshing algorithm based
on parameterization. The Parameterization-Based
Approach is a methodology that relies on creating
parameterizations or mappings of geometric data to
facilitate various tasks in computer graphics, computer-
aided design, and related fields. The spectral surface
quadrangulation method [6, 10] is applied to the input
mesh. Techniques like global conformal parameteriza-
tion [7], discrete harmonic forms [29], periodic global
parameterization [23], branched covering methods [13]
and discrete surface Ricci flow [12, 26, 27], all utilize
parameterization as a foundational element for quad
mesh generation.

Frame Field Method In addition to these, one of
the most popular approaches is cross-field guided quad-
mesh generation. In this method, cross fields are used
to guide the generation of quadrilateral (quad) meshes
on complex surfaces. By aligning or orienting the quads
along the directions provided by the cross fields, it be-
comes possible to create structured quad meshes, which
are valuable in various applications like finite element
analysis, 3D modeling, and simulation. Each approach
needs to initially decide on a method for representing
a cross. Some examples are: N-RoSy representation
[22, 15], period jump technique [20] and complex value
representation [14]. Subsequently, these approaches
commonly create a continuous and smooth cross field us-
ing energy minimization techniques. Field smoothness
is typically measured using a discrete form of the Dirich-
let energy [11]. Finally, relying on the established cross
field, these methods produce quad meshes by employ-
ing either streamline tracing techniques [24] or parame-
terization methods [2]. Cross-field-based methods offer
structured quad mesh generation and improved align-
ment but can be computationally complex, algorithm-
sensitive, and may require manual intervention with
output quality dependent on the input. Lei et al. [19]
proved the sufficient and necessary conditions for the
existence of a cross field in terms of singularity configu-
rations. Furthermore, they pointed out that cross fields
are not equivalent to quad-meshes and gave an expla-
nation using fiber bundle theory.

Method Based On Abel-Jacobi Theory Chen
et al. [4] gave the sufficient and necessary conditions for
a Riemannian metric induced by a quad-mesh, includ-
ing the Gauss-Bonnet condition for the curvatures, the
holonomy condition, boundary alignment condition and
the finite streamline condition. Lei et al. [18] proved
that the holonomy condition can be formulated using
the Abel-Jacobi equation in algebraic geometry. Zheng
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et al. [33] gave a practical algorithm to optimize the sin-
gularity configurations to satisfy the Abel-Jacobi condi-
tion. These works show that the surface quad-meshes
are equivalent to meromorphic quartic differentials and
can be treated as a meromorphic global section of a spe-
cial holomorphic line bundle on the Riemann surface,
and the singularities of the quad-meshes are the charac-
teristic class of the line bundle. Therefore, the singular-
ities and their indexes are governed by the Abel-Jacobi
equations. These works laid down the theoretic founda-
tion for structured mesh generation. Furthermore, Lei
et al. [16, 17] also proposed to generalize the method
to hexahedral mesh generation based on surface folia-
tions, which are special cases of meromorphic quartic
differentials.

Our current work is mainly based on this frame-
work - the Abel-Jacobi theorem gives the conditions of
the configurations of singularities of quad-meshes. Fur-
thermore, given special constraints, the solutions to the
Abel-Jacobi equations are not unique but form a finite-
dimensional space. We propose a method to perform
optimization within the solution space to improve the
quad-mesh quality.

3 Theoretic Background

In this section, we briefly introduce the basic concepts
and theorems in conformal geometry related to the
holomorphic differential.

3.1 Riemann Surface

Definition 3.0.1. (Holomorphic Function)
Suppose a complex function f : C → C,
f(x + iy) = u + iv, satisfying the Cauchy-Riemann
equation

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

then f is called holomorphic. If f is invertible and the
inverse f−1 is also holomorphic, then f is called bi-
holomorphic.

Definition 3.0.2. (Riemann Surface) Suppose S is
a topological surface with an open covering S ⊂

⋃
α Uα,

each open set has a local coordinates system φα : Uα →
C, if Uα ∩ Uβ ̸= ∅, then the transition map

φαβ : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ), φαβ = φβ ◦ φα

is biholomorphic. Then the atlas A = {(Uα, φα)}
is called a complex structure of the surface, and the
surface S with the complex structure is called a Riemann
surface.

Definition 3.0.3. (Isothermal Coordinates)
Suppose S is a topological surface with a Riemannian

metric g, and U is a neighborhood U ⊂ S with the local
coordinates (u, v), such that the Riemannian metric
has a special form

g(u, v) = e2λ(u,v)(du2 + dv2),

then (u, v) are called the isothermal coordinates on U
and λ : U → R is called the conformal factor function.

According to classical surface differential geometry, all
oriented metric surfaces are Riemann surfaces.

Theorem 3.1. Suppose S is an oriented surface with
a Riemannian metric g, then for each point p ∈ S,
there is a neighborhood p ∈ U(p), such that U(p) has
an isothermal coordinates system. All such isothermal
coordinate systems form a complex structure. Hence, S
is a Riemann surface.

3.2 Hodge Theorem Suppose S is a surface with a
conformal structure {Uα, zα}. A real differential 0-form
is a function f : S → R; a differential 1-form has local
representation,

ω = fα(xα, yα)dxα + gα(xα, yα)dyα,

on the local chart (Uβ , zβ), it has representation fβdxβ+
gβdyβ , satisfying

(
fα gα

)(dxα

dyα

)
=
(
fβ gβ

)( ∂xβ

∂xα

∂xβ

∂yα
∂yβ

∂xα

∂yβ

∂yα

)(
dxα

dyα

)
therefore (

fα gα
)
=
(
fβ gβ

)
Dφαβ

where Dφαβ is the Jacobian matrix of the transition
map φαβ . The differential 2-form has local representa-
tion,

hα(xα, yα)dxα ∧ dyα = hβ(xβ , yβ)dxβ ∧ dyβ ,

hα = hβdetDφαβ . The exterior differential operator d
is defined as follows: for a 0-form f ,

d0fα(xα, yα) :=
∂fα
∂xα

dxα +
∂fα
∂yα

dyα,

for a 1-form ω,

d1ω =

(
∂g

∂xα
− ∂f

∂yα

)
dxα ∧ dyα.

for a 2-form,
d2hαdxα ∧ dyα = 0.

The k-th de Rham cohomology group is defined as:

Hk
dR(S,R) :=

Kerdk

Imgdk−1
.
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For a genus g closed surface, its first dimensional
cohomology group H1

dR(S,R) is 2g dimensional.
On a metric surface (S,g) with isothermal coordi-

nates, the Hodge star operator is given by

∗dxα = dyα,
∗dyα = −dxα,

∗1 =e2λdxα ∧ dyα,
∗e2λdxα ∧ dyα = 1.

The co-differential operator is defined as δ := ∗d∗. The
Laplace-Beltrami operator is defined as ∆g = dδ + δd.
For 0-forms, the operator has local representation:

∆g :=
1

e2λ

(
∂2

∂x2
α

+
∂2

∂y2α

)
.

Definition 3.1.1. (Harmonic Differential)
Suppose ω is a differential k-form on (S,g), then ω is
harmonic if and only if ∆gω = 0.

If ω is a differential 1-form, then ω is harmonic if and
only if

dω = 0, δω = 0.

Theorem 3.2. (Hodge) Each de Rham cohomology
class has a unique harmonic form.

The group of all harmonic k-forms is denoted as
Hk

∆(S,R), according to Hodge theory, the harmonic k-
form group is isomorphic to the k-dimensional de Rham
cohomology group,

Hk
∆(S,R) ∼= Hk

dR(S,R).

Suppose ω is a harmonic 1-form, then ∗ω is also a
harmonic 1-form.

3.3 Holomorphic Differential

Definition 3.2.1. (Holomorphic Differential)
Suppose φ is a complex different form, on each
local chart (Uα, zα), φ has local representation
φ = fα(zα)dzα, where fα is a holomorphic function.
On another intersecting chart (Uβ , zβ), Uα ∩ Uβ ̸= ∅,
φ = fβ(zβ)dzβ, such that

fα = fβ(zβ(zα))
dzβ
dzα

,

then φ is globally defined, and called a holomorphic
differential.

Suppose at a point p ∈ S, φ(p) = 0 (locally,
fα(p) = 0, for any local chart (Uα, zα) ), then p is
called a zero of the holomorphic 1-form φ. The local

representation of φ in the neighborhood of a zero point
p is

φ = znp
α dzα,

where zα(p) = 0. np is called the order of φ at p,
denoted as µp(φ). The total order of zeros equals the
Euler characteristic number:∑

φ(p)=0

µp(φ) = χ(S).

In general, there are 2g − 2 zeros for a holomorphic 1-
form.

Each holomorphic 1-form φ can be decomposed into
two conjugate harmonic 1-forms, namely,

φ = ω +
√
−1∗ω,

where ω is a real harmonic differential form.
Given a holomorphic 1-form φ, for any point on

the surface p ∈ S, a tangent direction v ∈ TpS is
called a horizontal direction, if φ(v) ∈ R is a real
number; similarly if φ(v) is an imaginary number, then
v is called a vertical direction. A curve γ is called a
horizontal trajectory of φ, if its tangent directions are
horizontal everywhere except at the zeros of φ. The
vertical trajectories of φ are defined similarly.

For any non-zero point p ∈ S of φ, there is
a unique horizontal (vertical) trajectory through it.
For a zero point p with order np, there are np + 1
horizontal (vertical) trajectories through it. Such a kind
of horizontal trajectory is called a critical horizontal
trajectory.

4 Computational Algorithm

Data Structure The surfaces are represented as tri-
angle meshes (simplicial complex) M(V,E, F ), where
V,E, F are the set of vertices, edges and faces respec-
tively. We use [v0, v1, . . . , vn] to represent a simplex
with vertices v0, v1, . . . , vn, the orientation of the sim-
plex is given by the order of the vertices. A k-chain is
a linear combination of k-dimensional simplexes,

σ =
∑
i

λiσi, λi ∈ Z,

σi is a k-dimensional simplex. The linear space of
all k-dimensional chains is denoted as Ck(M,Z). The
boundary operator ∂k : Ck(M,Z) → Ck−1(M,Z) is
defined as

∂k[v0, v1, . . . , vk] :=

k∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk].

A k-dimensional simplicial σ is a linear map σ :
Ck(M,Z) → Z. The k-dimensional co-chain space
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Ck(M,Z) consists of all the k-dimensional co-chains.
The coboundary operator dk : Ck(M,Z)→ Ck+1(M,Z)
is defined as the dual operator of ∂k+1. For example,
suppose ω is a 1-form, σ is a 2-chain, then

dω(σ) = ω(∂σ).

The simplicial integration is calculated using summa-
tion. Suppose given a 1-chain γ, γ =

∑
k[vik , vik+1

],
then ∫

γ

ω =
∑
k

ω([vik , vik+1
]).

The wedge product of two simplicial 1-forms ω1, ω2 on
a 2-simplex σ is given by the following formula:

(4.1) ω1 ∧ ω2(σ) =
1

6

∣∣∣∣∣∣
ω1(ei) ω1(ej) ω1(ek)
ω2(ei) ω2(ej) ω2(ek)

1 1 1

∣∣∣∣∣∣
where σ is a face with three edges ei, ej , ek sorted
counter-clock-wisely.

The triangulation of M is dual to a cell decomposi-
tion M⋆ as follows:

1. Each face f ∈ M is dual to a vertex f⋆ ∈ ⋆M , f⋆

is the circum-center of f ;

2. Each edge e ∈M shared by two faces (from right to
left) fi, fj ∈M is adjacent to an edge e⋆ = [f⋆

i , fj
⋆];

3. Each vertex v ∈ M is adjacent to faces
f0, f1, . . . , fk ∈ M , ordered counter-clock-wisely,
dual to a cell

v⋆ = [f⋆
0 , f

⋆
1 , . . . , f

⋆
k ].

The Hodge star operator ⋆ : Ck(M,Z → C2−k(M̄,Z
is defined as follows, suppose ω is a k-form, σ is a k-
simplex, then

⋆ω(σ⋆)

|σ⋆|
=

ω(σ)

|σ|
.

Given two simplicial 1-forms ω1 and ω2, the 2-form
ω1 ∧ ∗ω2 on each face σ = [vi, vj , vk] is evaluated as

ω1 ∧ ∗ω2(σ) =
1

2
[ cot θiω1(ei)ω2(ei)+

cot θjω1(ej)ω2(ej)+

cot θkω1(ek)ω2(ek)]

(4.2)

In the current project, all the differential forms are
approximated as simplicial forms (simplicial co-chains).
Given a 0-form f : V → R, the value of f at a vertex vi,
f(vi) is stored on the vertex; similarly, given a 1-form
ω : E → R, the value on each oriented edge e, ω(e) is

stored on e. For a complex 1-form φ : E → C, the value
on an oriented edge e, φ(e) is stored on e.

γ0

γ2

γ1

γ3

τ1

τ2

τ3

S

(a). input mesh (b). cuts

Figure 1: The input mesh and the shortest paths from
interior boundaries to the exterior boundary.

Input The input is a genus zero surface S with multiple
boundaries, represented as a triangle mesh,

∂S = γ0 − γ1 − γ2 − · · · − γn,

where γ0 is the exterior boundary component, γi,
i = 1, 2, . . . , n, are interior boundary components, as
shown in the Fig. 1 frame (a).

Cuts For each interior boundary component γi,
i = 1, . . . , n, we compute the shortest path τi from
γi to the exterior boundary component γ0. Basically,
for each vertex vk ∈ γi, we use breadth-first search to
traverse the triangle mesh and find the shortest path
to γ0, then we choose the one with the minimal length
as τi. Fig. 1 frame (b) shows the shortest paths (cuts)
computed this way on the input mesh.

Exact Harmonic Forms For each interior boundary
component γi, i = 1, . . . , n, we compute a unique
harmonic function fi with Dirichlet boundary condition,
the restriction of fi on γi equals to 1, the restriction of
fi on other boundary components equal to zero. This
boils down to solving the Laplace-Beltrami equation:
for i = 1, 2, · · · , n,

(4.3)

 ∆gfi = 0
fi|γi = 1
fi|γj = 0 j ̸= i

The equation ∆gfi = 0 is equivalent to δdfi = 0.
By using the Finite Element Method, this equation is
converted to a large sparse linear system.

For each edge eij = [vi, vj ], we compute the cotan-
gent edge weight wij as follows: suppose eij is shared
by two faces [vi, vj , vk] and [vj , vi, vl] the corner angles

against eij are θijk and θjil , then the edge weight is the
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summation of the cotangent of both corner angles; if
eij is on the surface boundary, and only adjacent to one
face [vi, vj , vk], then the edge weight equals to cotangent

of θijk ,

wij :=

{
cot θijk + cot θjil eij ̸∈ ∂S

cot θijk eij ∈ ∂S

For each interior vertex vj ̸∈ ∂S, we have a linear
equation δfi(vj) = 0,

δfi(vj) =
∑

vk∼vj

wjk(fi(vk)− fi(vj)) = 0,

where vk ∼ vj means the vertex vk is connected with
vj via ejk. For boundary vertex vj ∈ ∂S, fi(vj)
is fixed. The stiffness matrix of the linear system
is positive definite. The linear system can be solved
using conjugate gradient method efficiently. Fig. 2 left
columns visualize n exact harmonic 1-forms by using
texture mapping.
Non-exact Harmonic Forms For each interior
boundary component γi, i = 1, 2, . . . , n, we compute
a non-exact harmonic form ωi, such that∫

γj

ωi = δij , i, j = 1, 2, . . . , n.

For each interior boundary component γi ∈ ∂S, we slice
the surface S along the shortest cut τi to obtain S̄i, τi is
split into two boundary components τ+i , τ−i ∈ ∂S̄i. We
then define a function gi : S̄i → R,

(4.4) gi(vk) =

 1 vk ∈ τ+i
0 vk ∈ τ−i
rand otherwise

For each edge e ∈ τi, the corresponding edges e+ ∈ τ+i
and e− ∈ τ−i , and

dgi(e
+
i ) = dgi(e

−
i ) = 0,

hence dgi is a 1-form defined on the original surface S,
denoted as ηi. By the construction ηi is closed, and∫

γj

ηi = δij ,

hence {η1, η2, . . . , ηn} form a basis of H1(S,R).
According to Hodge theorem 3.2, for each cohomol-

ogy class, there is a unique harmonic form. We can find
a function hi : S → R, such that ωi = ηi + dhi is har-
monic, and satisfies the equation ∆gωi is zero, namely
dωi = 0 and δωi = 0. By the construction of ωi, the
first closedness condition is satisfied automatically. We

only need to ensure the second condition. This gives us
the following equation:

(4.5) δdhi = ∆ghi
= −δωi,

with the Neumann boundary condition ∂hi/∂n = 0,
where n is the exterior normal on the surface boundary.
Namely, for each vertex vj ∈ S, we have∑

vk∼vj

wjk(hi(vk)− hi(vj)) = −
∑

vk∼vj

ηi([vj , vk]).

(a) f1 (b) ω1

(c) f2 (d) ω2

(e) f3 (f) ω3

Figure 2: Exact (left) and non-exact (right) harmonic
differentials.

The linear coefficient matrix is positive definite
on the linear subspace

∑
k hi(vk) = 0, therefore, it
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can be efficiently solved using the conjugate gradient
method. The solutions give the non-exact harmonic 1-
forms ωi = ηi + dhi. Fig. 2 right columns visualize n
non-exact harmonic 1-forms by using texture mapping.
Conjugate Harmonic Forms So far, we have com-
puted n exact harmonic 1-forms {df1, df2, · · · , dfn} and
n non-exact harmonic 1-forms {ω1, ω2, · · · , ωn}, then
we compute the conjugate their harmonic 1-forms. In
theory, the conjugate harmonic 1-form of a non-exact
harmonic 1-form is an exact harmonic 1-form, and the
conjugate of an exact harmonic 1-form is a non-exact
harmonic 1-form. Hence, we can construct the equa-
tions:

(4.6) ⋆ωi = λi1df1 + λi2df2 + · · ·+ λindfn

therefore, we obtain the linear equation group:

(4.7)



∫
S

ω1 ∧ ⋆ωi = λi1ω1 ∧ df1 + · · ·λinω1 ∧ dfn∫
S

ω2 ∧ ⋆ωi = λi2ω2 ∧ df1 + · · ·λinω2 ∧ dfn

· · · · · · · · ·∫
S

ωn ∧ ⋆ωi = λi1ωn ∧ df1 + · · ·λinωn ∧ dfn

The left-hand side of Eqn. 4.7 can be calculated using
the formula in Eqn. 4.2, the right-hand side can be
evaluated using the formula in Eqn. 4.1. There are n
equations for n unknowns, and the linear system is non-
degenerated, so we can solve the coefficients λij ’s and
obtain the conjugate harmonic 1-form ⋆ωi. Then we
obtain n holomorphic 1-forms:

(4.8) φi = ωi +
√
−1⋆ωi, i = 1, 2, . . . , n.

Fig. 3 show the basis of the holomorphic 1-form
group φ1, φ2 and φ3. The frame (d) shows the linear
combination φ1 − φ2 + φ3.

Another way to change the holomorphic 1-forms is
to alter the boundary condition in Eqn. 4.3, then the
same algorithm pipeline will produce different holomor-
phic 1-forms.
Optimization of Holomorphic 1-forms

Given a basis of the group of all holomorphic 1-
forms ωk, k = 1, . . . , n, ωk = αk+

√
−1βk, where αk and

βk are the real and imaginary parts of ωk respectively,
we represent each ωk as a simplicial 1-form defined on
edges ωk : E → C. Any holomorphic 1-form ω is a linear
combination of ωk’s,

ω = λ1ω1 + λ2ω2 + · · ·+ λnωn,

where λk’s are the coefficients. Applying ω to an edge
e ∈ E, we have ω(e) =

∑n
k=1 λk(αk(e) +

√
−1βk(e)).

The holomorphic 1-form ω induces a Riemannian metric
|ω|2, denoted as gλ.

(a). φ1 (b). φ2

(c). φ3 (d). φ1 − φ2 + φ3

Figure 3: holomorphic 1-form basis.

For a triangle ∆k ∈ F with edges ek1 , e
k
2 , e

3
3, its area

under the metric induced by ω is given by

|∆k|gλ
: =

1

2
ω(ek1)× ω(ek2)

=
1

2

n∑
i=1

λiαi(e
k
1)

n∑
j=1

λjβj(e
k
2)

− 1

2

n∑
i=1

λiβi(e
k
1)

n∑
j=1

λjαj(e
k
2)

=
1

2

n∑
i,j=1

λiλj

∣∣∣∣ αi(e
k
1) βi(e

k
1)

αj(e
k
2) βj(e

k
2)

∣∣∣∣
which is a quadratic function in variables λk’s. The
total energy is defined as

(4.9) E(λ) :=
∑

∆k∈F

(|∆k|gλ
− |∆k|g)2

after expansion

(4.10) E(λ) =
∑

∆k∈F

1

2

n∑
i,j=1

ckλiλj − |∆k|g

2
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where

ck :=

∣∣∣∣ αi(e
k
1) βi(e

k
1)

αj(e
k
2) βj(e

k
2)

∣∣∣∣ .
The partial derivative is
(4.11)

∂E(λ)

∂λi
= 2

∑
∆k∈F

1

2

n∑
i,j=1

λiλjck − |∆k|g

 n∑
j=1

λjck



Figure 4: holomorphic 1-forms.

Quad-mesh generation Suppose we have obtained a
holomorphic 1-form φ, we need to locate the zeros of the
differential form. In general, there are n−1 zeros on the
surface. For each vertex vi, we estimate the conformal
factor at vi,

(4.12) u(vi) :=
1

ni

∑
vj∼vi

|φ([vi, vj ])|2

|vj − vi|2
,

where ni is the topological valence of vi. Then we sort
all the u(vi)’s in the ascending order and choose the
smallest n− 1 vertices as the zeros.

Suppose v is a zero point of φ, its one right neigh-
boring vertices {v0, v1, . . . , vk} sorted counter-clock-
wisely form a loop γ. We immerse the loop to the
complex plane with z(v) = 0, z(vi) = φ([v, vi]), i =
0, 1, . . . , k, then the winding number of the image z(γ)
equals to the order of v plus one, µv(φ) + 1. The real
axis intersects z(γ). Suppose the positive real axis in-
tersects z(γ) at the edge [vi, vi+1], then we immerse the
neighborhood of [vi, vi+1] and extend the positive real
axis to find the next intersection point. By repeating
this procedure, we can extend the horizontal trajectory
until it hits the boundary of the surface or returns to
the zero point v again, then we have traced a critical
horizontal trajectory through v. Similarly, we can also
trace the critical vertical trajectory through v. All the
critical horizontal and vertical trajectories partition the
surface into patches {Ω1,Ω2, . . . ,Ωk}, by integrating φ,
we can embed each patch Ωi on the complex plane. We
tessellate the critical trajectories, then quadrangulate

the planar image of each patch Ωi with the tessellation
of the critical trajectories as the boundary constraints to
obtain a quad-mesh Qi. The union of the quad-meshes
Qi’s form the quad-meshQ of the input surface S. Fig. 5
shows two quad-meshes induced by the holomorphic 1-
forms in Fig. 4. The details of the algorithm pipeline
can be found in Alg. 1.

Furthermore, the quad-element size can be treated
as one of the input parameters. The algorithm computes
the Jacobin matrix of the conformal mapping, and
tessellated the parameter domain into quad-meshes,
such that the mean quad edge length multiply the
square root of the determinant of the Jacobin matrix
equals to the input size parameter.

Figure 5: Quadrilateral meshes.

The final mesh quality depends on the initial tri-
angular mesh. The computation of harmonic differen-
tials is to solve the Laplace-Beltrami equation on the
surface. According to the Finite element theory, the
convergence, approximation accuracy of the discrete so-
lutions depend on the triangle mesh quality.

5 Experimental Results

All algorithms have been developed using generic C++
under Visual Studio 2022 on the Windows platform. All
the experiments are conducted on a laptop with Intel(R)
Core(TM) i7-10750H CPU @2.60GHz with 6 cores and
64GB of memory.

We have tested our proposed method in medical
imaging applications. Pretreatment Computed Tomog-
raphy Angiography (CTA) scans of abdominal aor-
tic aneurysm (AAA) patients treated with endovascu-
lar aneurysm repair (EVAR) were retrospectively and
anonymously collected with Institutional Review Board
approval. The scanned images were segmented, and
the blood vessel surfaces were reconstructed. Each
vessel surface is a topological poly-annulus with many
branches.
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Figure 6: The energy E(λ) monotonously decreases
during the optimization.

Fig. 6 shows the optimization process for an ab-
dominal aortic aneurysm model. The horizontal axis
shows the number of iterations, and the vertical axis
shows the energy. It can be seen clearly that the energy
monotonously decreases and converges to the minimum
during the process.

As shown in Fig. 10, the aneurysm model has 9
branches, 10 boundary components, 26165 vertices, and
50000 faces. The computation of holomorphic 1-form
basis takes about 165.61 seconds, but the optimization
takes only about 2144ms. From the figure, it is easy
to visually see that the uniformity of the checkers is
improved prominently during the optimization. In the
beginning, the checkers on thin branches are relatively
sparse, while those on the top part of the main trunk are
much denser. In the final stage, the checker density on
the thin branches and that on the main trunk are much
more uniform. Fig 7 shows the quad-mesh resulting
from the optimization. It can be seen that the quad
faces on both the thin branches and the main trunk are
evenly distributed and suitable for simulation purposes.
Fig. 8 shows the histograms of corner angles and the
logarithms of the ratios between adjacent edge lengths
of the quad-mesh in Fig. 7, which demonstrates the good
quality of the mesh.

Fig. 11 and Fig. 9 show another blood vessel exam-
ple, which has 7 branches and 8 boundary components.
The vessel mesh is with 77242 vertices, 228481 edges,
and 151242 faces. The computation of holomorphic dif-
ferential basis takes about 303.74 seconds, and the op-
timization takes about 5510ms. From the figures, we
can see that during the optimization, the uniformity of
the checkers is monotonously increasing, and the final
quad-mesh has high quality.

We have tested about 8 blood vessel models with
branches about 7−9. The whole computational process
is fully automatic without human intervention. The
optimized quad-meshes are with high uniformity, and

conformality to the input geometry, all the quad-faces
are similar to the planar square. The quad-meshes are
used to generate hex-meshes of the blood vessel wall as
thin cells and applied for fluid dynamic simulation. The
numerical computation process is stable and converges
fast. These experiments demonstrate the practical value
of the proposed quad-mesh optimization algorithms.

(a). front view (b). back view

(c). zoomed view (d). zoomed view

Figure 7: The quad-meshes obtained from the optimal
result in Fig. 10.

Figure 8: The histograms of the corner angles (left)
and the logarithms of ratios between the adjacent edge
lengths of the quad-mesh in Fig. 7.
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(a). front view (b). back view

(c). zoomed view (d). viewed view

Figure 9: The quad-meshes obtained from the optimal
result in Fig. 11.

6 Conclusion

This work proposes a practical algorithm for generating
quadrilateral meshes as uniformly as possible on topo-
logical poly-annulus surfaces with the least number of
singularities. We prove that quadrilateral meshes with
4k degree vertices, k ∈ Z+ induce holomorphic 1-forms,
therefore the space of all such kinds of quad-meshes is
finite dimensional. Hence in order to control the quad-
mesh qualities, we propose to optimize a quartic poly-
nomial energy to improve the uniformity. The experi-
mental results demonstrate the efficiency and efficacy of
the proposed method.

In our future works, we will improve the proposed
method and validate its practical application by han-
dling more complex engineering models with intricate
constraints.
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Figure 10: Optimization of the first blood vessel model,
from top to bottom, left to right, during the process,
the uniformity of the quadrilaterals increases.
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Figure 11: Optimization of the second blood vessel
model, from top to bottom, left to right, during the
process, the uniformity of the quadrilaterals increases.

Algorithm 1 Optimal Quad Mesh Generation

Require: A triangular mesh M with genus zero with
n+ 1 boundary components;

Ensure: An quad-mesh of M with least distortion;
1: for all interior boundary loop γi do
2: Compute the shortest path τi from γi to γ0.
3: end for
4: for all interior boundary γi do
5: Solve Eqn. 4.3 to obtain exact harmonic forms

{df1, . . . , dfn};
6: end for
7: for all cut τk do
8: Slice M along τk to get M̄k, τk corresponds to τ+k

and τ−k ;
9: Construct random function gk on M̄k using

Eqn. 4.4;
10: Set the closed 1-form ηk ← dgk
11: end for
12: for all closed 1-form ηk do
13: Find the function hk : S → R by solving Eqn. 4.5;

14: Set the non-exact harmonic 1-form ωk ← ηk+dhk

15: end for
16: for all non-exact harmonic 1-form ωk do
17: Find the conjugate harmonic 1-form ⋆ωk by solv-

ing Eqn. 4.7;
18: Set the holomorphic 1-form φk ← ωk +

√
−1⋆ωk

19: end for
20: Find the optimal holomorphic 1-form φ∗ by mini-

mizing the energy in Eqn. 4.10;
21: Locate the n−1 zeros {p1, . . . , pn−1} of φ∗ by sorting

the conformal factor Eqn. 4.12;
22: for all zero point pi do
23: Trace the critical horizontal trajectory through

pi;
24: Trace the critical vertical trajectory through pi;
25: end for
26: All the critical trajectories partition the surface S

input patches {Ω1,Ω2, . . . ,Ωk};
27: Tessellate the critical trajectories;
28: for all surface patch Ωi do
29: Map Ωi onto a planar rectangle by integration φ∗;

30: Quadrangulate the planar image of Ωk with the
tessellation of the critical trajectories as the
boundary constraints to obtain a quad-mesh Qk;

31: end for
32: Set the quad-mesh of M Q←

⋃
k Qk;

33: return Q
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