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Abstract
Computational analysis with the finite element method re-
quires geometrically accurate meshes. It is well known that
high-order meshes can accurately capture curved surfaces
with fewer degrees of freedom in comparison to low-order
meshes. Existing techniques for high-order mesh genera-
tion typically output meshes with same polynomial order
for all elements. However, high order elements away from
curvilinear boundaries or interfaces increase the computa-
tional cost of the simulation without increasing geometric
accuracy. In prior work [5, 21], we have presented one such
approach for generating body-fitted uniform-order meshes
that takes a given mesh and morphs it to align with the sur-
face of interest prescribed as the zero isocontour of a level-set
function. We extend this method to generate mixed-order
meshes such that curved surfaces of the domain are dis-
cretized with high-order elements, while low-order elements
are used elsewhere. Numerical experiments demonstrate the
robustness of the approach and show that it can be used to
generate mixed-order meshes that are much more efficient
than high uniform-order meshes. The proposed approach
is purely algebraic, and extends to different types of ele-
ments (quadrilaterals/triangles/tetrahedron/hexahedra) in
two- and three-dimensions.

1 Introduction
Meshes are an integral part of computational analy-
sis using techniques such as the finite element method
(FEM) and the spectral element method (SEM). From
a mesh generation perspective, there are broadly two
main requirements. First, the mesh must accurately
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capture the domain boundaries and multimaterial in-
terfaces. Second, the elements of the mesh must have
good quality in terms of shape, size, and orientation
to ensure accuracy in the numerical solution of the
PDE of interest. This latter issue of mesh quality has
been studied extensively, and there are various tech-
niques based on r- and h-adaptivity for improving the
quality of an existing mesh and increasing the accu-
racy of the solution [1, 4, 13, 10, 22, 25, 32, 43, 44].
The first issue of automatically generating a geomet-
rically accurate mesh is a challenging open-question,
and has led to the development of techniques that sup-
port meshes that are not aligned with the exact geom-
etry [16, 23, 30, 38, 33]. These methods usually re-
quire complex numerical techniques to ensure robust-
ness and accuracy, and classical approaches based on
body-fitted/domain-conforming meshes are usually pre-
ferred in many situations.

In the context of body-fitted meshes, it is well
known that a high-order mesh can accurately capture
curved surfaces at a lower computational cost in com-
parison to its lower order counterpart. From a mesh
generation point of view, it is convenient to gener-
ate a uniform-order mesh, i.e. a mesh in which all
the elements are represented by the same number of
degrees of freedom. Uniform-order meshes are also
necessary when the FEM framework cannot support
mixed-order/p-refined/p-adaptive meshes. For frame-
works that support p-refined meshes, high-order ele-
ments can increase the computational cost without in-
creasing accuracy when they are used in region where
they are not necessary, e.g., around planar surfaces.
Note that mesh curvature can also be dictated by a dis-
crete simulation field, e.g., in Arbitrary Lagrangian Eu-
lerian (ALE) simulations the mesh adaptivity is usually
driven by the numerical solution [8, 9]. For the pur-
poses of this work we focus on geometry-driven mesh
curvature.

From a historical perspective, body-fitted high-
order meshes are typically generated by starting with
a linear body-fitted mesh, elevating the mesh to a
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higher polynomial order, and projecting the higher order
nodes of the boundary elements to the domain boundary
[42, 12, 31, 14, 41, 34, 36, 24]. Each of these approaches
deals with uniform-order meshes. The literature for p-
refined mesh generation is very sparse, except mainly
the work by Karman et al. [17]. Therein, the authors
present a method for taking a CAD geometry and a
corresponding linear body-fitted mesh, and sequentially
elevating the order of the elements at the boundary,
blending the polynomial order increase in the interior,
and smoothing the mesh to ensure mesh validity. The
p-refinement/order-elevation for the boundary elements
is based on the error between the discretized surface and
the actual surface, while the order of interior elements
is determined by measuring the difference in the shapes
of adjacent elements with different polynomial orders.

We explore mesh p-adaptivity in the case when the
target surface is described by the zero isocontour of a
level-set function. Level-set based descriptions are com-
monly used for material interfaces in multimaterial con-
figurations [40], and evolving geometries in shape and
topology optimization [39, 2, 15], amongst other ap-
plications. In Prior work [21, 5], we have presented a
technique for taking any mesh (e.g., uniform Cartesian-
aligned mesh) and morphing it using node movement
(r-adaptivity) to align with the target surface. This ap-
proach has proven to be robust and efficient at obtaining
body-fitted high-order meshes for shape optimization
applications in the FEM framework [5].

The main contribution of this work is to extend
the r-adaptivity framework with p-refinement to pro-
duce mixed-order meshes. The proposed approach dif-
fers from Karman et al. in several ways, namely, [17]
addresses p-adaptivity in the context of classical mesh
generation, whereas we pose the problem as mesh adap-
tivity. The motivation for this approach is to be able to
use existing FEM frameworks for obtaining body fitted
meshes without having to couple with specialized mesh
generation software. Consequently, our method assumes
that the surface is prescribed by a discrete level-set func-
tion, instead of being given through CAD. Furthermore,
our r-adaptation approach aligns the mesh with the zero
level-set, while simultaneously ensuring good mesh qual-
ity through minimization of a global objective. In con-
trast, [17] uses a sequence of nodal projections (mesh
alignment) followed by mesh smoothing to ensure mesh
validity. Finally, instead of using the distance between
the actual surface and the discretized surface for deter-
mining p-refinements, we use a level-set function based
estimator.

The remainder of the paper is organized as follows.
We introduce the main components of the rp-adaptivity
framework in Section 2. Next, in Section 3 we go

into the deeper technical details of the p-adaptive mesh
alignment approach. Finally, we present various numer-
ical experiments to demonstrate the efficiency of mixed-
order meshes in comparison to uniform-order meshes in
Section 4. Summary and directions for future work are
given in Section 5.

2 Preliminaries
In this section, we discuss the key components of
our finite element framework that are essential for
understanding the new rp-adaptivity method. We first
introduce some mathematical notation relevant to the
method. Next, we describe how p-adaptivity constraints
are imposed for degrees of freedom between elements
of different polynomial order, and finally discuss the
target matrix optimization paradigm (TMOP)-based
framework for mesh alignment using r−adaptivity.

2.1 Discrete Mesh Representation In our finite
element based framework, the domain Ω ⊂ Rd is
discretized as a union of curved mesh elements, Ωe,
e = 1 . . . NE , each of order p. To obtain a discrete
representation of these elements, we select a set of scalar
basis functions {w̄i}

Np

i=1, on the reference element Ω̄e.
In the case of tensor-product elements (quadrilaterals
in 2D and hexahedra in 3D), Np = (p + 1)d, and the
basis spans the space of all polynomials of degree at
most p in each variable. These pth-order basis functions
are typically chosen to be Lagrange interpolants at the
Gauss-Lobatto nodes of the reference element. The
position of an element Ωe in the mesh M is fully
described by a matrix xe of size d × Np whose columns
represent the coordinates of the element degrees of
freedom (DOFs). Given xe, we introduce the map
between the reference and physical element, Φe : Ω̄e →
Rd:

(2.1) x(x̄) = Φe(x̄) ≡
Np∑
i=1

xe,iw̄i(x̄), x̄ ∈ Ω̄e, x ∈ Ωe,

where xe,i denotes the i-th column of xe, i.e., the i-th
node of element Ωe.

Throughout the manuscript, x will denote the po-
sition function defined by (2.1), xe will denote the
element-wise vector/matrix of nodal locations for ele-
ment Ωe, and xE = [x1, x2, . . . xNE

] will denote the
global vector of nodal locations for all elements.

2.2 TMOP for Mesh Quality Improvement via
r−adaptivity For a given element with nodal coordi-
nates xe, the Jacobian of the mapping Φe at any refer-
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ence point x̄ ∈ Ω̄e is
(2.2)

Aab(x̄) = ∂xa(x̄)
∂x̄b

=
Np∑
i=1

xi,a
∂w̄i(x̄)

∂x̄b
, a, b = 1 . . . d

where xa, represents the ath component of x (2.1), and
xi,a represents the ath component of xe,i, i.e., the ith
DOF in element Ωe. The Jacobian matrix A represents
the local deformation of the physical element Ωe with
respect to the reference element Ω̄e at the reference
point x̄. This matrix plays an important role in FEM
as it is used to determine mesh validity (det(A) must
be greater than 0 at every point in the mesh), and
also used to compute derivatives and integrals. The
Jacobian matrix can ultimately impact the accuracy
and computational cost of the solution [29]. This lends
to the central idea of TMOP of optimizing the mesh to
control the local Jacobian Ad×d in the mesh.

The first step for mesh optimization with TMOP
is to specify a target transformation matrix Wd×d,
analogous to Ad×d, for each point in the mesh. Target
construction is typically guided by the fact that any
Jacobian matrix can be written as a composition of four
geometric components [20], namely volume, rotation,
skewness, and aspect-ratio:

(2.3) Wd×d = ζ︸︷︷︸
[volume]

◦ Rd×d︸ ︷︷ ︸
[rotation]

◦ Qd×d︸ ︷︷ ︸
[skewness]

◦ Dd×d︸ ︷︷ ︸
[aspect ratio]

.

In practice, the user may specify W as a combination
of any of the four fundamental components that they
are interested in optimizing the mesh for. For the
purposes of this paper, we are mainly concerned with
ensuring good element shape (skewness and aspect-
ratio), so we set W to be that of an ideal element,
i.e., square for quad elements, cube for hex elements,
and equilateral simplex for triangles and tetrahedrons.
Advanced techniques on how W can be constructed for
optimizing different geometric parameters, or even for
automatically adapting the mesh to the solution of the
PDE are given in [8, 9, 18].

The next key component in the TMOP-based ap-
proach is a mesh quality metric that measures the de-
viation between the current Jacobian transformation A
and the target transformation W . The mesh quality
metric µ(T ), T = AW −1 in Figure 1, compares A and
W in terms of some of the geometric parameters. For
example, µ2,s = |T |2

2τ − 1 is a shape metric1 that de-
pends on the skewness and aspect ratio components, but
is invariant to orientation/rotation and volume. Here,
|T | and τ are the Frobenius norm and determinant of

1The metric subscript follows the numbering in [19, 20].

Figure 1: Schematic representation of the major TMOP
matrices.

(a) (b)

Figure 2: (a) Original and (b) optimized 4th order mesh
for a turbine blade.

T , respectively. Similarly, µ77,v = 1
2 (τ − τ−1)2 is a

size/volume metric that depends only on the volume of
the element. We also use shape+size metrics such as
µ80,vs = γµ2,s + (1 − γ)µ77,v, 0 ≤ γ ≤ 1, that depend
on volume, skewness and aspect ratio, but are invariant
to rotation.

Using the mesh quality metric, the mesh optimiza-
tion problem is minimizing the global objective:

(2.4) F (x) =
∑

Ωe∈M

∫
Ωet

µ(T (x))dxt,

where F is a sum of the TMOP objective function for
each element in the mesh, and Ωet is the target element
corresponding to the element Ωe. Minimizing (2.4)
results in node movement such that the local Jacobian
transformation A resembles the target transformation
W as close as possible at each point, in terms of the
geometric parameters enforced by the mesh quality
metric. Figure 2 shows an example of high-order mesh
optimization for a turbine blade using W = I with
a shape metric. The resulting optimized mesh has
elements closer to unity aspect ratio and skewness closer
to π/2 radians in comparison to the original mesh, as
prescribed by the target W = I.

2.3 r-adaptivity for Mesh Quality Improve-
ment and Surface Alignment In the framework of
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mesh morphing to obtain body-fitted meshes, it is as-
sumed that the target surface is described as the isocon-
tour of a smooth discrete level-set function, σ(x). Fig-
ures 3(a) and (b) show a simple example of a squircle
interface represented by the zero isocontour of the level
set function, σ(x) = (x − 0.5)4 + (y − 0.5)4 − 0.244, on a
third-order multimaterial quadrilateral mesh. To effect
alignment of the multimaterial interface with σ(x) = 0,
the TMOP objective function (2.4) is augmented as fol-
lows:

(2.5) F (x) =
∑

E∈M

∫
Et

µ(T (x))dxt︸ ︷︷ ︸
Fµ

+ wσ

∑
s∈S

σ2(xs)︸ ︷︷ ︸
Fσ

.

Here, Fσ is a penalty-type term that depends on the
penalization weight wσ, the set of nodes S discretizing
the set F of mesh faces/edges to be aligned to the level
set, and the level set function σ(x), evaluated at the
positions xs of all nodes s ∈ S ∈ F . In Figure 3(b), F
is thus the union of all faces between the two materials
(colored blue and orange), and S is the set of all the
nodes that are located on these faces.

Minimizing Fσ represents weak enforcement of
σ(xs) = 0, only for the nodes in S, while ignoring the
values of σ for the nodes outside S. Minimizing the full
nonlinear objective function, F = Fµ + Fσ, produces a
balance between mesh quality and surface fitting.

The objective function (2.5) is usually minimized
by the Newton’s method. This requires the first- and
second-derivative of the objective (Fµ and Fσ) with
respect to the node position. The Newton iterations are
typically done until the maximum fitting error |σ|S,∞ is
below a user-specified threshold:

|σ|S,∞ := max
s∈S

|σ(xs)|.(2.6)

Here, the maximum fitting error is the maximum value
of the level-set function evaluated at the nodes s ∈
S ∈ F . Further implementation details are provided
in [5, 21]. Figures 3(c) and (d) show a first- and third-
order optimized 4 × 4 mesh, respectively, obtained by
minimizing (2.5). Figures 3(e) and (f) show optimized
cubic 8 × 8 and 16 × 16 meshes, respectively.

The level-set in Figure 3 is representative of why p-
refined meshes are important. Here, the squircle level-
set has regions of both high curvature (resembling a
circle) and low curvature (resembling a square). Using
a linear mesh, as in Figure 3(c), results in an interface
aligned mesh where the element vertices are located
exactly on the zero level-set. This is due to the node-
wise formulation (2.5). But in a continuous sense,
it is clear that the linear mesh does not align well.
This can be addressed by using a high-order mesh

(a) σ(x) & 0 isocurve. (b) Initial mesh, NE = 16.

(c) Optimized, p = 1. (d) Optimized, p = 3.

(e) NE = 64, p = 3. (f) NE = 256, p = 3.

Figure 3: (a) Level set function σ(x) with zero isocon-
tour in red, (b) a Cartesian mesh with material inter-
face nodes to be aligned to the zero level set of σ(x).
(c) Linear mesh and (d) cubic mesh optimized to align
with the level-set. Uniformly refined and optimized cu-
bic meshes are also shown with (e) NE = 64 and (f)
NE = 256 elements.

as shown in Figure 3(d), which aligns more closely
with the zero-isocontour, even in the regions of high
curvature. In Figures 3(d)-(f), we also see that as the
mesh is uniformly refined, there are a lot more high-
order elements than needed, both in the regions of low
curvature on the interface and away from the interface.
Such extraneous high-order elements could be avoided
by using p-refined meshes, which we will address in the
next section.

While it is assumed that the prescribed level-set
function σ(x) is smooth, this is often not the case for
real-world applications. The node-wise formulation in
(2.5) has proven to be more robust in comparison to an
integral-based formulation when the level-set function
is not smooth. For smooth functions, an integral-
based formulation is expected to be better suited for
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Constrained DOFs

True DOFs

p = 3 p = 2

Figure 4: Schematic showing the DOFs for a p-refined
mesh.

p-adaptivity, and we will explore this in future work.

2.4 p-Adaptivity Constraints p-refinement intro-
duces hanging/non-conforming nodes between elements
of different polynomial orders. In our framework, the
hanging nodes on a shared edge/face from higher-order
element interpolate from the nodes of the lower-order
element. Thus, the accuracy of a discrete finite ele-
ment function along a shared edge/face is limited by
the lowest polynomial order of adjacent elements. Con-
sequently, when we p-refine for mesh fitting at a cer-
tain mesh face, the polynomial order of the elements
on both sides of the face is elevated. Figure 4 shows
a simple example of a two element p-refined mesh with
p = 2 and 3 depicting the constrained and true DOFs.
A detailed description of how general finite element as-
sembly is handled with hanging nodes in our framework
is provided in [3, 7].

3 Methodology
In this section, we describe our approach for p-
adaptivity.

3.1 Level-Set Function Representation and Er-
ror Computation for Mesh Fitting In our frame-
work, we allow the level-set function to be represented
on a different background mesh MB than the mesh to
be morphed, i.e., σB(xB), where xB represents the posi-
tions of the background mesh. This decoupling is espe-
cially critical when the current mesh M does not have
enough resolution to represent the level-set function and
its gradients with sufficient accuracy near the zero level
set. Since the discretization error in representing a fi-
nite element function depends on the element size h and
the polynomial order p, we typically use a background
mesh that is adaptively refined around the zero isocon-
tour of the level-set function and has sufficiently high
polynomial order.

The example in Figure 3 demonstrates that a node-
wise approach is not sufficient for measuring the accu-
racy of mesh alignment to the level-set. We instead
measure the alignment error on each face f ∈ F as the
squared L2 norm of the level-set function on that face:

ef∈F := ||σB ||2L2,f =
∫

f

σ2
B(x).(3.7)

Here we compute the integrated fitting error for a
face/edge of the mesh to be morphed (f ∈ F ∈ M)
with respect to the level-set function σB defined on the
MB . This integration requires interpolation of σB at
the quadrature points associated with f .

3.2 Level-Set Interpolation from MB to M
Since we use a background mesh MB for σB(xB), it
is required to transfer the level set function and its
derivatives from MB to the nodes S ∈ M prior to each
Newton iteration, and at the quadrature points asso-
ciated with f ∈ F prior to computing the integrated
error (3.7). This transfer between the background mesh
and the current mesh is done using findpts, a high-order
interpolation library [11]. The findpts library enables
high-order interpolation at arbitrary points using a se-
quence of three functions. First, in a pre-processing step
(findpts setup), findpts constructs some internal data
structures based on the input mesh that allow it to do
a fast parallel search for arbitrary points in the second
step. Next, the findpts function takes as an input a
set of points x∗ = (x∗

1, x∗
2 . . . x∗

b), where b is the number
of points to be found, and determines the computational
coordinates of each point. These computational coordi-
nates are q∗

j = (e∗, p∗, x̄∗, ȳ∗, z̄∗)j the element e∗, pro-
cessor p∗, and the corresponding reference space coordi-
nates x̄∗ = (x̄∗, ȳ∗, z̄∗). Finally, findpts eval interpo-
lates any given finite element function u at x∗

j using the
computational coordinates returned by findpts and a
form similar to (2.1). The user is referred to Section
2.3 of [28] and Section 3.2 of [27] for more details. For
brevity, we will refer to interpolation of any scalar func-
tion uB(xB) at arbitrary points (x∗) in physical space
using findpts as:

(3.8) u(x∗) = I(x∗, xB , uB(xB)).

Using (3.8), we compute the integrated fitting error
on each face as

(3.9) ef∈F =
Nq∑
q=1

wq

(
I(xq, xB , σB(xB))

)2
dxq,

where Nq is the number of quadrature points on face
f and xq are the physical space coordinates of the qth
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(a)σB(xB), pσB
= 4 (b) σ(x), p = 1 (c) σ(x), p = 3

Figure 5: Interpolating the level-set function from (a)
adaptively refined background mesh with pσB

= 4 to
(b) an optimized linear mesh and (c) an optimized cubic
mesh.

quadrature point. From an implementation perspective,
we query findpts to get the interpolated value at all the
quadrature points simultaneously, and use the interpo-
lated values for integration as needed.

Figure 5 shows an example of high-order interpo-
lation through findpts. A quartic representation of the
squircle level-set function is interpolated at the nodal
positions of the optimized linear- and cubic-mesh. The
level-set function is of the same order as the mesh, i.e.
p = 1 in Figure 5(b) and p = 3 in Figure 5(c). As
expected, the p = 3 case resembles the source function
more accurately than the p = 1 case.

3.3 p-Refinement Criterion for Interface Ele-
ments To motivate our approach, we present Figure
6 which shows how the total fitting error, computed as
the sum of integrated fitting error (3.7) over all the faces
f ∈ F marked for fitting, varies with the number of de-
grees of freedom for different uniform-order optimized
meshes. For each p considered, the coarse 4 × 4 mesh
shown in Figure 3(b) is also refined up to 3 times, each
of which are indicated by different data points on the
corresponding curve. As we can see in Figure 3(d)-(f),
with uniform mesh refinement, we get a lot more ele-
ments away from the interface that are essentially linear
in shape, and using p = 3 for these elements is increasing
the computational cost of the system without providing
any gain in accuracy for the mesh alignment problem.
Also note that for a given number of DOFs, higher poly-
nomial order results in higher accuracy, which is why
high-order meshes are preferred over uniformly refined
low-order meshes.

The above observations are used to guide our ap-
proach for mesh p-refinement. We typically start with
the mesh at given polynomial order, e.g., pinit = 1. We
then morph the mesh using the TMOP-based formula-
tion (2.5). Next, we compute the integrated fitting error
ef (3.7) on each face f marked for fitting, and refine the
elements adjacent to that face if the error is greater than
a user prescribed threshold. From a practical point of
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Figure 6: Comparison of total DOFs versus total inte-
grated error for meshes with uniform polynomial orders
(p). For each p considered, the coarse 4 × 4 mesh is
uniformly refined up to 3 times, and aligned with the
squircle level-set.

view, there are two choices for the refinement thresh-
old (eref). First is an absolute threshold (γ1) that is
typically guided by the user’s knowledge of the level-set
function. In this case, elements adjacent to a face are
refined if

Criterion 1: ef > eref = γ1.(3.10)

The second is a relative threshold (determined by γ2)
that depends on the maximum of the integrated fitting
error for all the faces in the initial mesh (eF,∞). In this
case, adjacent elements are p-refined if

Criterion 2: ef ≥ γ2 · eF,∞.(3.11)

Once the integrated fitting error has been computed for
each face and the adjacent elements have been marked
for p-refinement, the polynomial order of these elements
is increased by a user-prescribed parameter (∆pref).
Since not all the high-order nodes of this p-refined
mesh are located on the zero isocontour, the mesh is
optimized again by minimizing (2.5). This process of
morphing followed by p-refinement is repeated until all
the faces have their integrated fitting error below the
user-prescribed threshold or the elements have been
elevated to maximum allowed polynomial order pmax.

In terms of increase in polynomial order p, there
are two choices of interest. The first straightforward
choice is ∆pref=1. A drawback of ∆pref=1 is that it can
require multiple Newton minimization steps for (2.5)
(up to pmax − pinit times) until the mesh aligns with
the target isocontour with the desired accuracy (eref).
Each of these Newton minimization steps has a non-
trivial computational cost that increases with p. The
second choice is to use ∆pref=pmax − pinit such that
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all the interface elements to be refined are elevated to
the maximum polynomial order. The mesh can then
be morphed to align with the level-set, and no more
Newton iterations would be needed afterwards.

Irrespective of what ∆pref is, we first optimize the
mesh at pinit, because the cost associated with it can be
significantly lower in comparison to higher polynomial
orders if pmax is much greater than pinit. This choice
is driven by the fact that the storage, assembly, and
evaluation of FEM operators scales as O(p2d), O(p3d),
and O(p2d), respectively, for a traditional full assembly-
based approach [3]. Furthermore, optimizing the mesh
at a lower polynomial order, e.g., pinit = 1, provides a
good initial condition for solving the high-order mesh
optimization problem as demonstrated by Ruiz-Gironés
et al. [37].

The approach outlined in this section is general
in the sense that it gives the user flexibility on a
case-by-case basis. Our preliminary experiments show
that a robust choice is to start with pinit = 1, set
∆pref=pmax − pinit, and simply set eref = γ1 = 0 to
refine all elements at the interface once the linear mesh
has been aligned with the level-set function.

3.4 p-Derefinement Criterion After we p-refine
the mesh as described in the previous section, the mor-
phed mesh could have some interface elements at higher
polynomial order than needed, and these elements will
unnecessarily increase the computational cost of the ac-
tual simulation. To ensure that interface elements are of
minimum p required to achieve the desired accuracy, we
take the optimized p-refined mesh and check for pos-
sible derefinements. This is done by taking the finite
element corresponding to each face f , and projecting
it to lower order spaces between the current polyno-
mial order and pinit sequentially, and finding the lowest
polynomial order that maintains the desired accuracy.
Unlike the refinement case, the TMOP objective is not
minimized again by solving the mesh alignment problem
after derefinement, i.e., there is no r−adaptivity step af-
ter derefinement. Here, we consider three derefinement
criteria. Our first criterion is a threshold relative to the
refinement threshold:

Criterion 1: ef,p̂ < ederef = β1eref,(3.12)

where ef,p̂ represents the integrated error of the face f
evaluated at polynomial order pinit < p̂ < pmax, and β1
is a scalar that controls the desired accuracy relative to
the refinement threshold. The second criterion is based
on maximum allowed change in the integrated fitting
error relative to the current error at order p, i.e.,

Criterion 2: ef,p̂ < (1 + β2)ef,p.(3.13)

For example, β2 can be 0.05 if the user wants to allow
up to 5% increase for an acceptable derefinement. The
third and final criterion is based on maximum decrease
in the size l of the edge/face f relative to its current
size:

Criterion 3: lf,p̂ > (1 − β3)lf,p.(3.14)

This criterion is motivated by the fact that a derefine-
ment step can change the shape quality of the element.
A small decrease of l suggests that the shape quality
around the face remains mostly the same, which is the
desired configuration.

Note that when interface elements are derefined, we
must also make sure that none of these elements or their
neighbors become inverted. This is especially important
in high-curvature regions. Hence if a derefinement step
leads to an inverted element, the step is rejected.

Figure 7 shows a comparison of the p-refined meshes
with uniform-order meshes for the squircle level-set. In
this example, pinit = 1, and we set pmax = 3, ∆pref=2,
γ1 = 10−14, and β3 = 10−5, In each case, we first
optimize the linear mesh, then p-refine the mesh using
the absolute error-based threshold, and optimize the
mesh again. At this point, we show the total DOFs
vs integrated error for the aligned mesh as approach
A in Figure 7(b). As we can see, approach A results
in the mesh that has essentially the same accuracy
as a uniform-order p = 3 mesh but at a much lower
computational cost. For approach B in Figure 7(c),
we also derefine the mesh at the end using β3 = 10−5.
This slightly reduces the total DOFs and accuracy of
the alignment as expected. Notice that the optimized
mesh has highest order elements of p = 3 at the high-
curvature region, and p = 2 and p = 1 at regions
of low and no curvature, respectively. Figure 7(b)
also demonstrates an example of p-derefinement being
rejected to prevent inverting an element. At the high-
curvature regions of the squircle, the elements on the
outside of the level-set derefine from p = 3 to 2, but the
element on the inside stays at p = 3.

3.5 Propagating p-refinement to Interior Ele-
ments As pointed out in [17], for cases like viscous
flow simulations where elements near the boundary have
high aspect-ratio, mesh curving of only the boundary el-
ements can tangle the mesh. To support mesh curving
for such cases, we allow the user to specify the maxi-
mum allowable difference (∆p) between the polynomial
orders of neighboring elements. This parameter can
vary as one moves away from the boundary or simply be
held constant. For example, for thin boundary layer ele-
ments, a user may want to impose ∆p=0 for the first few
layers adjacent to the boundary and ∆p=1 away from
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(a) Uniform p = 3. (b) p-refined A.

(c) p-refined B. (d) p-refined C.
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(e) Error versus total DOFs for different approaches.

Figure 7: Comparison of uniform-order and p-refined
meshes. For uniform polynomial order, a coarse 4 × 4
mesh is uniformly h-refined up to 3 times, and aligned
with the squircle level-set. For p-refined meshes, three
different approaches are considered. We start with a
linear mesh and align it with the squircle level-set. For
approach A, we then p-refine the mesh around the
interface using γ1 = 10−14 (3.10), and then re-align
the mesh with the level-set. For approach B, we take
this mesh and derefine it using the size-based criterion
(3.14) with β3 = 10−5. For approach C, we do the same
as approach B, but also make sure that the maximum
difference in order of adjacent elements is at-most 1
when the mesh is p-refined/derefined.

the boundary. On the other hand, for the case like the
squircle, ∆p can be simply set to pmax so that only the
elements at the surface of interest are curved. For lack
of a better choice, ∆p can also be held constant at 1 so
that the element polynomial orders go smoothly from
pmax to pinit as we go away from the surface marked
for fitting. From a p-adaptivity perspective, this entails
propagating the polynomial orders of the elements adja-
cent to F after p-refinement, but before realigning with
the level-set, and after p-derefinement. We show the
final optimized mesh for the squircle case with ∆p=1
in Figure 7(d) as approach C. As evident, using this
approach does not increase the total number of DOFs
significantly, maintains the fitting accuracy, but can po-
tentially circumvent deterioration in mesh quality. Note
from an implementation perspective, the polynomial or-
ders are propagated in our framework through edge-
based connections in 2D and face-based connections in
3D.

3.6 Summary of the p-adaptivity Algorithm
Algorithm 1 summarizes our p-adaptivity methodology
for mesh alignment. There are three sets of inputs to
our method. The first set consists of the parameters
that affect the mesh quality, i.e. the target matrix
W , the mesh quality metric µ(T ), and the mesh M
with nodal coordinates x that is to be optimized. The
second set impacts the mesh alignment problem from
a uniform-order mesh’s perspective. These inputs are
the background mesh MB with nodal coordinates xB

and the level-set function σB(xB) defined on it. The
first two sets together define the r-adaptivity method
for mesh morphing to align with a level-set function
[5]. The third and final set is the set of parameters that
controls the p-adaptivity algorithm. This consists of the
maximum polynomial order allowed in the mesh pmax,
the change in element order upon p-refinement ∆pref ,
maximum allowed difference in polynomial orders of
adjacent elements ∆p, and refinement- (γ1 or γ2) and
derefinement-threshold criterion (β1 or β2 or β3).
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Algorithm 1: rp-adaptivity for Mesh Alignment
Input: µ, W ; M(x), MB(xB), σB(xB);

pmax, ∆pref, ∆p, (eref : γ1|γ2), (ederef : β1|β2|β3)
Output: Variable order mesh aligned with

level-set.
1 Determine the set of faces F that have to be

aligned with the level-set function.
2 Minimize (2.5) to align the input mesh (x) to

level-set function (σB(xB)) while ensuring good
mesh quality as prescribed by µ and W . See
Algorithm 1 of [5].

3 while true do
4 Compute ef ∀f ∈ F , and set polynomial order

of faces with ef > eref to
min(pmax, pf + ∆pref ), Section 3.2 and 3.3.

5 If no faces are p-refined, go to 14.
6 Propagate polynomial orders to interior

elements, Section 3.5.
7 Minimize (2.5) for r-adaptivity.
8 if ∆pref > 1 then
9 Compute ef ∀f ∈ F and decrease

polynomial order of face to minimum
order that meets derefinement criterion,
Section 3.4.

10 Propagate polynomial orders to interior
elements, Section 3.5.

11 end
12 If elements were refined up to pmax at Step 4,

go to 14.
13 end
14 Return variable order mesh aligned with σB(xB).

4 Results
In this section, we demonstrate the impact of our rp-
refinement approach using various numerical experi-
ments and show that it extends to different element
types in 2D and 3D. Our implementation uses the
general finite element infrastructure provided by the
MFEM finite element library [3, 26].

4.1 p−Refinement in 3D For our first example, we
consider the 3D variant of the squircle level-set. The
domain Ω ∈ [0, 1]3 is modeled using a 16 × 16 × 16
uniform Cartesian mesh, and the target surface is
prescribed through the level-set function:

σ(x) = (x − 0.5)4 + (y − 0.5)4 + (z − 0.5)4 − 0.34,

which is discretized on an adaptively refined background
mesh with pσB

= 4. A slice-view of the background
mesh is shown with the zero isosurface of the level-set
in Figure 8(a), and a slice-view of the uniform linear
mesh to be optimized is shown in Figure 8(b).

For mixed-order curving, we first take the linear
uniform mesh, and morph it to align with the targt

(a) MB and σ(xB) = 0 (b) M and σ(xB) = 0
N ≈ 350k, eF = 1.1 · 10−5.

(c) Uniform p = 3. (d) Mixed-order mesh.
β3 = 0.0

N ≈ 350k, eF = 2.1 · 10−12. N ≈ 102k, eF = 2.1 · 10−12.

(e) Mixed-order mesh. (f) Mixed-order mesh.
β3 = 10−2 β3 = 10−3

N ≈ 35k, eF = 1.7 · 10−9. N ≈ 45k, eF = 1.4 · 10−11.

Polynomial order
Figure 8: Mixed order mesh curving for 3D. The zero
isosurface of the level-set function σ(xB) = 0 defined
on the background mesh (MB) is shown for each case,
and only the cut-view of M is shown for clarity. For
the p-refined meshes, we start with pinit = 1 and use
pmax = 3, ∆p = 1, γ1 = 0. The final mixed-order
meshes are shown for β3 = 0 (no p-derefinement),
10−2 and 10−3. The number of DOFs (N) and fitting
accuracy eF are indicated for the initial and optimized
meshes.

surface. Then, we p-refine the mesh around the interface
uniformly (i.e. γ1 = 0.0) with pmax = 3, ∆p = 1, and
re-align it with the level-set. Figure 8(d) shows the p-
refined mesh with p = 3 around F . Here, ∆p = 1, and
as a result the difference in polynomial order of face
neighbors is 1. Finally, we take this optimized mesh and
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derefine it using the size-based criterion (3.14). Figure
8(e) and (f) shows the mixed-order mesh with β3 = 10−2

and 10−3, respectively.
Figure 9 shows a comparison in the accuracy of

alignment of the uniform-order meshes at p=1, 2, and
3, with the p-refined meshes. For the uniform-order
meshes, increasing p increases the computational cost
significantly without much increase in the geometric
accuracy. This is similar to what we had observed in
the 2D example. For p-refined meshes, elevating the
polynomial order of elements at the interface to pmax =
3 with ∆p = 1 gives us the same geometric accuracy as
a uniform p = 3 mesh but at a 71% lower computational
cost in terms of DOFs (N = 102435 versus 352947). The
p-refined mesh also has fewer DOFs than a uniform-
order quadratic mesh, and provides higher accuracy.
Figure 9 also shows that derefining the mesh using the
size-based criterion decreases the number of DOFs and
the fitting accuracy as expected. The number of linear,
quadratic, and cubic elements in each of the mixed-order
meshes are summarized in Table 1.

p=1 p=2 p=3
β3 = 0 2784 536 776

β3 = 10−3 3320 696 80
β3 = 10−2 3704 312 80

Table 1: Number of linear, quadratic, and cubic ele-
ments for each of the mixed-order meshes aligned with
the 3D level-set.

Recall that in our approach, we elevate polynomial
order of elements at the interface based on the inte-
grated error on the faces that are aligned to the level-
set function (Section 3.3). Since the lowest-order en-
tity constraints the solution, it is essential that in 3D,
elements having only edges on the interface are also p-
refined when necessary (Section 2.4). We handle such
elements by setting their polynomial order as the max-
imum of the polynomial orders of their neighbors that
have a face on the interface. This is essential for obtain-
ing accurate alignment with the level-set in 3D. Figure
8(d) shows there are 4 such corner elements in region
of high curvature that have an edge on the interface,
which are elevated to p = 3 due to their neighbors.

4.2 Domain Prescribed by Geometric Primi-
tives Curvilinear domains are commonly prescribed as
a combination of geometric primitives in Constructive
Solid Geometry (CSG) [35]. Figure 10 shows one such
example adapted from [5] where the domain is pre-
scribed as an intersection of geometric primitive for a
circle, parabola, and a trapezium. Each geometric prim-
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p-refined: β3 = 0

Figure 9: Comparison of total DOFs versus total inte-
grated error for uniform-order and p-refined meshes in
3D. We consider p=1, 2, and 3 for uniform-order meshes.
For p-refinement, we use pinit = 1, pmax = 3, ∆p = 1,
γ1 = 0, and show the mesh for β3 = 0, β3 = 10−2, and
10−3.

itive is prescribed as a step function G(xB) that is 1
inside one material and -1 inside the other material.
For such cases, we start with a coarse background mesh
and use adaptive mesh refinement around the zero level
set of G(xB). When the zero isocontour interface inter-
sects with the boundary of the domain, as in the present
case, we configure the background mesh to completely
encompass the spatial domain of the morphed mesh M,
and extend slightly beyond it, i.e. ΩB ⊇ Ω. This is
essential for accurate computation of derivatives near
the boundary of M. Figure 10(a) shows the resulting
background mesh MB . Next, we compute a discrete
distance function σB(xB) using the p-Laplacian solver
of [6], Section 7, from the zero level set of G(xB). Figure
10(b) shows the mesh to be morphed M, the level-set
function σB(xB), and its zero isocontour.

With the level-set function defined on MB , we as-
sign the fictitious material indicators to elements in M
to determine element faces that will be aligned with
σB(xB). The uniform linear mesh with two materials is
shown in Figure 10(c). To minimize the TMOP prob-
lem, we use a shape metric with target transformation
W set to be that for an equilateral triangle everywhere
in the domain. The optimized linear mesh aligned with
the zero isocontour of σB(xB) is shown in Figure 10(d).
Note that due to the prescribed mesh quality metric and
target, the elements away from the interface have opti-
mized to as close to equilateral triangle as possible. As
expected, the optimized linear mesh aligns well with the
zero isocontour in regions of low curvature, but cannot
capture the surface accurately in high curvature regions
due to lack of degrees of freedom.

Next, using eref=0., all the elements at the interface
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(a) MB and σB(xB) = 0. (b) M and σB(xB); ΩB ⊇ Ω.

(c) Initial M, p = 1. (d) Optimized M, p = 1.
N = 1090, eF = 2 · 10−5. N = 1090, eF = 2 · 10−6.

(e) Optimized M, (f) Final mixed order M.
p = 4 around F .

N = 5086, eF = 4 · 10−9. N = 1472, eF = 3 · 10−8.

Polynomial order
Figure 10: Mixed order mesh curving for a Fischer-
Tropsch reactor like domain. For the p-refined meshes,
the maximum element order is pmax = 4, ∆p = 1,
and the derefinement is done using size-based criterion
(3.14) using 10−4. The zero isosurface of the level-set
function σB(xB) = 0 defined on the background mesh
MB is shown for each case. The number of DOFs (N)
and fitting accuracy eF are indicated for the initial and
optimized meshes.

are refined to pmax = 4 with ∆p = 1. This p-refined
mesh is then morphed again to align with the level-
set function by minimizing the TMOP objective, as
shown in Figure 10(e). Finally, we derefine the elements
based on the relative change in element size criterion
(β3 = 10−4 in (3.14)), to obtain the mixed order mesh
shown in Figure 10(f).

In terms of accuracy, the initial linear mesh has
1024 elements with 1090 DOFs and a total integrated
fitting error of 1.5 · 10−5. This fitting error reduces to
1.5 · 10−6 in the morphed linear mesh. The p-refined
mesh with quartic elements at the interface has 5086
DOFs and eF = 3.8 · 10−9. Finally, the mixed order
mesh after derefinement has 967 linear elements, 45
quadratic elements, 10 cubic elements, and 2 quartic
elements (Figure 10(f)), with a total of 1472 DOFs and
a fitting accuracy of eF = 2.6 · 10−8. In contrast,
the total number of DOFs would have been 16642 had
a uniform fourth order mesh been used. Thus, this
final mixed order mesh with has 91% fewer DOFs in
comparison to a uniform-order mesh. Note that in this
example, the primary source of geometrical error are the
sharp corners in the surface of interest. Ideally, such
regions should be handled with higher mesh resolution,
and we will explore augmenting our framework with h-
refinement in future work.

4.3 Coarse Mixed-Order Mesh Starting From
a Dense Low-Order Mesh While high-order meshes
have become popular in recent times, a lot of classi-
cal mesh generation tools still support only low-order
meshes. In this example, we show use of our framework
to obtain a coarse mixed-order mesh starting from a
dense low-order mesh.

Figure 11(a) shows a linear mesh (Mlin) generated
for the 2D Apollo capsule. Using this linear mesh we
construct a background coarse quad mesh MB and
adaptively refine it based on the boundary of Mlin. We
use findpts (Section 3.2) to determine which elements
of MB intersect with the boundary of Mlin. Figure
11(b) shows the overlap between MB and Mlin. Next,
we generate a discrete grid function ϕB(xB) on MB

that indicates whether a given node of MB is inside
(ϕB = +1) or outside (ϕB = −1) the domain of Mlin.
This discrete function is similar to the non-smooth
representations that we get for geometric primitives in
our CSG-based approach, as described in the previous
section. The level-set function σB is then extracted as
the distance function to the zero-isocontour of ϕB . The
error in the zero isocontour of this level-set function
σB , with respect to the true boundary of Mlin, is
proportional to the element size of MB , and we use 12
levels of AMR for MB to decrease this error. Figure
11(c) shows the level-set function σB(xB), its zero
isocontour, and the original linear mesh Mlin.

With the level-set function σB , we obtain a mixed-
order mesh using the approach presented in this work.
Starting from a uniform linear triangular mesh, we mark
the elements based on whether they are located inside
or outside the domain, see Figure 11(d). The elements
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determined to be completely outside the domain are
removed from the mesh, and the boundary of the new
mesh is aligned to σB(xB) = 0. The optimized linear
mesh is shown in Figure 11(e). Next, we elevate all
elements adjacent to the interface to pmax = 4 and use
∆p = 1 to ensure that the maximum different between
polynomial order of edge-neighbors is 1. The optimized
mesh is shown in Figure 11(f) along with the polynomial
order of each element. The final mixed order mesh
shown in Figure 11(g) is obtained by using β3 = 2·10−4.

The total integrated error for the final mixed-order
mesh is 10−8. The original mesh in Figure 11(d) has
526 elements, which is trimmed to 390 elements shown
in Figure 11(e). The final optimized mixed-order mesh
has 359 linear, 19 quadratic, 9 cubic, and 4 quartic
element. We note that the maximum local error in the
final mixed-order mesh is at the element with p = 4
at the left corner. This is due to the high-curvature of
the zero isocontour in that region, combined with the
overall coarse resolution in the mesh. This is similar
to what was observed in the example in the previous
section. In future work, we will seek to address this issue
using h-refinement such that local mesh resolution can
be enhanced on demand when pmax is not high enough
to obtain the desired accuracy.

5 Summary and Future Work
We have presented a novel approach for generating
mixed-order meshes through rp-adaptivity in the con-
text of surface fitting. This approach uses TMOP for
ensuring good mesh quality as a mesh is morphed to
align with the surface prescribed as the zero isocon-
tour of a level-set function. The proposed approach
is purely algebraic, and extends to different element
types in 2D and 3D. We have proposed different pos-
sibilities for setting up the mesh p-adaptivity problem,
and demonstrated how it can be used to generate mixed
order meshes for problems of practical interest. We
have also identified ways to further improve the effec-
tiveness of the method, for example, using h-refinement
to augment local resolution when needed. In future
work, we will present an automated algorithm based on
hrp-adaptivity to robustly obtain accurate mixed order
meshes for different problem types with minimal user
input.

(a) Mlin (b) Mlin and MB

(c) σB(xB) and Mlin. (d) Initial M (p = 1).

(e) Optimized M (p=1). (f) Optimized M,
p = 4 around F .

(g) Mixed-order M, σB(xB) = 0, and Mlin

Figure 11: Generating a mixed order mesh for the
Apollo capsule starting from a dense linear mesh. The
input linear mesh Mlin is used to define a level-set
function σB(xB) on an adaptively refined background
mesh MB . A coarse linear mesh M is then aligned with
σB(xB) = 0, and p-refined using pmax = 4, ∆p = 1,
and γ1 = 0. The p-refined mesh is then optimized to
align with σB(xB) = 0, and derefined using (3.14) with
β3 = 2 · 10−4 to obtain the final mixed-order mesh.
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