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ABSTRACT

This paper describes a framework for the generation of P 2 isoparametric meshes in two dimensions. It is an extension
of existing metric-based methods for high-order straight-sided mesh adaptation to curved meshes. Starting with an
interpolation error estimate for curved trajectories, we compute an optimal metric field using a generalization of the
log-simplex algorithm for high-order metrics. A straight quasi-unit mesh is generated in a frontal approach, then the
edges are curved to minimize their length in the chosen metric. Convergence studies are performed on simple test
cases. In particular, optimal convergence rates (third order) are reached even when the edges curvature decreases at
the same rate as the edge length.
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1. INTRODUCTION

The generation of curvilinear meshes was initially in-
tended to improve the approximation of the boundary
geometry of the domains to be modeled by finite ele-
ments [1, 2]. Recently, a new trend has emerged: the
use of curved meshes inside the domain to approxi-
mate the solution as well as possible [3, 4, 5, 6, 7].
This problem is the one of curvilinear mesh adapta-
tion, where anisotropic but also curvilinear elements
are allowed.

As for anisotropic mesh adaptation, the metric tensor
plays a central role in curvilinear mesh adaptation.
However, to the best of our knowledge, a solution-
based metric tensor field tailored for curved elements is
not yet available in the literature. In [7], the two- and
three-dimensional metric is either induced from the
curvature of the geometry, computed from solutions
of PDE on straight-sided meshes, or a combination
thereof. But the a priori error model uses straight line
parameterizations to write local upper bounds on the

interpolation error, and does not let the elements bend
to follow the solution, yielding potentially shorter el-
ements. In [4, 5], the target metric is chosen to align
the mesh to specified curves or surfaces, but does not
rely on the solution of a PDE.

The motivation to this paper is thus to describe the
structure of the interpolation error if we allow to curve
the mesh elements, by extending the framework pro-
posed by Alauzet & Loseille [8, 9] to curvilinear meshes
in two dimensions.

Another question remains open: how does the curva-
ture of an element influence the interpolation error?
Papers dating from the beginning of the finite element
era have tried to give an answer to this question. In
Ciarlet & Raviart [10], the authors show that, to pre-
serve the optimal convergence of finite elements, the
radius of curvature of the edges of the elements should
decrease as h2 if h is the size of the elements. This
means that in order to preserve the optimal conver-
gence, it is necessary to curve the elements relatively



less and less when the edges’ length is decreased. Here,
we show, using numerical test cases, that this assump-
tion is too strong and that homothetically refined el-
ements i.e. whose relative curvature remains constant
allow for optimal convergence.

The paper is structured as follows. In Section 2, we de-
rive an interpolation error estimate tailored for curved
elements, which is the main contribution of this pa-
per. From this anisotropic estimate, a metric tensor
field is obtained, based on previous work on high-order
straight-sided meshes [11, 12, 13]. In particular, the
extension of the log-simplex algorithm proposed in [13]
to non-homogeneous error polynomial is a new contri-
bution. We then introduce the metric tensor induced
by the graph of the target field u and use it to establish
the principal directions of the mesh. In Section 3, the
mesh generation algorithm is described. In particular,
we adapt the advancing front method introduced in [6]
to use both the error metric and the induced metric
to specify the target sizes and anisotropic directions
of the mesh elements. An extension of the edge curv-
ing method proposed in [6] is also presented. Section 4
presents an application of this mesh adaptation frame-
work to two simple test cases.

2. INTERPOLATION ERROR MODEL
AND METRIC TENSOR

The mesh generation methodology described in this
paper is based on interpolation error. We follow the
steps presented in similar work on higher order (≥ 2)
straight-sided anisotropic mesh adaptation [11, 12, 13].
First, we build an a priori error estimate based on a
Taylor expansion and higher-order derivatives of an
unknown scalar field u(x, y). As we consider quadratic
edges, second and third order derivatives essentially
determine the error estimator. Then, we seek the met-
ric tensor field that best translates this estimate in the
shape of the ideal elements. It is well-known that for
elements with interpolation functions of order k ≥ 2,
the natural connection between the Hessian matrix of
u and the metric tensor driving the mesh adaptation
process no longer holds. Indeed, the metric tensor is
represented by an n × n matrix, with n the space di-
mension, whereas an error estimate based on a Taylor
expansion features tensors of high order derivatives.
Rather, a quadratic form represented by a symmetric
positive-definite matrix which is a tight upper bound
on the error estimate is sought. Finally, the obtained
metric field is scaled to obtain a target number of ver-
tices in the final mesh and perform convergence stud-
ies.

2.1 Curve parameterizations

We start by defining the curves and parameterizations
we consider in this paper. When writing an error
estimate around a vertex x0, initial conditions such
as the starting point, initial direction and curvature
are prescribed, but the final point of the curve is un-
known. Working with a parameter s ≥ 0 (not neces-
sarily the arclength) thus makes sense in this case. On
the other hand, when curving the mesh edges, Section
3.3, both extremities are known and a parameteriza-
tion in t ∈ [0, 1] is used.

2.1.1 Parameterization of paths for er-
ror estimation

Let u(x, y) represent a real-valued scalar field and
x0 = (x0, y0) ∈ R

2 be a point around which we de-
fine an anisotropic error estimate. To write an error
estimator, we consider curves leaving x0 and whose
curvature is obtained from the derivatives of u. In-
deed, for a given unit direction v, there is infinitely
many curved paths leaving x0 with arbitrary initial
curvature κ, each endowed with an amount of error.
Two particular ways of leaving x0 are to follow the
gradient and the level curve of u at x0, i.e. to con-
sider curves C1 ≡ r1(s), C2 ≡ r2(s) everywhere tangent
to ∇u and its orthogonal direction ∇u⊥. As we aim
to generate quadratic edges, we propose to approach
those two curves by their quadratic Taylor expansion
of the form:

xi(s) = ri(0) + sv +
s2

2
κv⊥ + o(s3), i = 1, 2. (1)

This expression is the projection of the local canonical
form of the curve ri(s) into its osculating plane, see e.g.
Prop. 2.6 of [14]. Imposing the match up to order 2 be-
tween the curves Ci and their Taylor expansion yields
the following tangent vectors and curvatures (see e.g.
[6] for the full computation):

v1 = ∇u(x0)/‖∇u(x0)‖,

v2 = ∇u⊥(x0)/‖∇u⊥(x0)‖,

κ1 =
vT
2 H(x0)v1

‖∇u(x0)‖
,

κ2 = −vT
2 H(x0)v2

∇u(x0) · v1
,

(2)

with H the Hessian matrix of u. It is worth noting
that this approximation is not an arclength parame-
terization. Indeed, we have:

‖x′
i(s)‖ =

√

1 + κ2
i s

2, (3)

which is unit only at s = 0. Hence the norm of the
second derivative,

‖x′′
i (s)‖ = κi, (4)



represents the curvature of xi(s) only at s = 0. In
particular, approximation (1) does not have constant
curvature. Computing the exact curvature of the
parabola would require an arclength parameterization
of (1), but the computation of

s̃ ,

∫ s

0

‖x′
i(σ)‖ dσ (5)

yields

s̃ =
sinh−1(κi(0)s) + ks

√
1 + κi(0)2s2

2κi(0)
, (6)

which cannot be solved for s(s̃).

2.1.2 Parameterization of parabolic
edges

As we use isoparametric P 2 finite elements, the mesh
is made of 6-nodes triangles with parabolic edges and
the reference-to-physical transformation x(ξ) is given
by:

x(ξ) =
6∑

i=1

Xiφi(ξ), (7)

where Xi is the position of the vertices in the physical
space and φi(ξ) denote the quadratic Lagrange basis
functions (Fig. 1).
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Figure 1: Reference-to-physical transformation and dis-
placement vector.

The Lagrange functions satisfy φi(Ξj) = δij , with Ξj

the reference vertices and δij the Kronecker delta. On
each edge, the middle vertex (or midpoint) is defined
by the displacement vector α ∈ R

2:

α = X12 −
X1 +X2

2
, (8)

so that the edge parameterization writes for t ∈ [0, 1]:

x(t) = X1 + γt+ L(t)α, (9)

with γ , X2 −X1 and L(t) , 4t(1− t).

2.2 Interpolation error estimate

We now write an estimate of the interpolation error
along curves x(s, θ), θ ∈ [0, 2π]. These curves are ob-
tained by sweeping the unit directions around x0 and
interpolating the curves x1(s) and x2(s) accordingly:

x(s, θ) = x0 + sv(θ) +
s2

2
κ(θ)v⊥(θ),

v(θ) = v1 cos θ + v2 sin θ,

v
⊥(θ) = v

⊥
1 cos θ + v

⊥
2 sin θ,

κ(θ) = κ1 cos
2 θ + κ2 sin

2 θ.

(10)

In the following, we drop the θ and write x(s) to ease
the notation. We want to find an expression for the
interpolation error:

e(s) = u(x(s))−Π2u(x(s)), (11)

with Π2u is the interpolant of u using quadratic La-
grange functions. We consider Taylor’s integral re-
mainder for an interpolation of degree k written for a
parameterization x(s), integrating until an arbitrary
length s = s̄:

e(s̄) =
1

k

∫ s̄

0

(s̄− s)kD(k+1)u(x(s)) ds. (12)

We examine the case k = 2 of quadratic interpola-
tion. Using the chain rule, the third derivative of the
composition (u ◦ x)(s) is given by:

D(3)u = Cijk(x(s))ẋiẋj ẋk + 3Hij(x(s))ẋiẍj , (13)

with Hij = ∂2u/∂xi∂xj , Cijk = ∂3u/∂xi∂xj∂xk and
Einstein’s summation convention on repeated indices.
The term in gradient of u is absent since the third
derivative of the parameterization

...
x vanishes.

Inserting this in the error estimate, we write:

e(s̄) =
1

2

∫ s̄

0

(s̄− s)2D(3)u(x(s)) ds

=
1

2

∫ s̄

0

(s̄− s)2
(

Cijk(x(s))(v + κv⊥s)i,j,k

+ 3Hij(x(s))(v + κv⊥s)i(κv
⊥)j

)

ds

=
Cijk(x0)

2

∫ s̄

0

(s̄− s)2(v + κv⊥s)i,j,k ds

+
3Hij(x0)

2

∫ s̄

0

(s̄− s)2(v + κv⊥s)i(κv
⊥)j ds

, c1s̄
6 + c2s̄

5 + c3s̄
4 + c4s̄

3.
(14)

We have neglected the higher order derivatives (> 3)
and approximated Hij(x(s)) and Cijk(x(s)) by their
value at x0 and took them outside of the integral. The
result is a non-homogeneous polynomial of degree 6 in
s̄: the explicit form of the coefficients ci = ci(θ) is



given in the appendix. For a linear (i.e. straight)
parameterization x(s) = x0 + vs, ẍ = 0 and ẋ = v

and e reduces to a homogeneous polynomial of order
3. Indeed, setting κ = 0, one has:

e(s̄) =
s̄3

6
Cijk(x0)vivjvk (15)

or

1

6

(

C111
︸︷︷︸

a

(s̄3v3
1) + (C112 + C121 + C211)

︸ ︷︷ ︸

b

(s̄3v2
1v2)

+ (C122 + C212 + C221)
︸ ︷︷ ︸

c

(s̄3v1v
2
2) + C222

︸︷︷︸

d

(s̄3v3
2)

)

.

Defining the endpoints x̄ , s̄v1 and ȳ , s̄v2, we write

e(x̄, ȳ) =
1

6

(

ax̄3 + bx̄2ȳ + cx̄ȳ2 + dȳ3

)

(16)

which is the homogeneous error polynomial used for
high-order straight-sided mesh adaptation in [11, 12,
13]. It is worth pointing out that for a curved param-
eterization, we cannot write the error estimate as a
polynomial in (x̄, ȳ), since the path used to travel from
(x0, y0) to (x̄, ȳ) changes the total interpolation error,
contrary to straight-sided parameterization where only
the endpoint matters.

2.3 Optimal metric

Following the approach of [11, 13], we now wish to
find the quadratic form, represented by a matrix Q,
that is the best upper bound for this error polynomial.
More precisely, we seek the symmetric positive-definite
matrix Q such that

de(x,x0) ≤ dQ(x,x0), ∀x. (17)

In this expression, dQ(., .) is the Riemannian distance
induced by the metric tensor associated to Q and
de(., .) is a distance function induced by the error poly-
nomial. These distance functions are a normalized
way to compare Q and e, see e.g. Section 3.2.2 of
[11]. The distance dQ(., .) is defined by the infimum of
the metric-weighted length taken from all the (regular)
curves joining two points p and q:

dQ(p,q) = inf length(c), (18)

where c : [a, b] → R
2 is a differentiable piecewise C1

curve with c(a) = p and c(b) = q and with

length(c) =

∫ b

a

√

(c′(t), c′(t))Q dt, (19)

where (u,v)Q = uTQv is the dot product with re-
spect to Q. While computing the metric tensor at x0,
we place ourselves in the tangent plane to R

2 at x0

and hence consider a constant (unknown) metric Q.
This way, the geodesics of Q are straight lines and
the infimum is obtained by looking only at x − x0.
This will obviously not be the case when we generate
curved edges later on, since variations of the metric
will determine the edges’ curvature. Thus, we can still
write

dQ(x,x0) =
√

(x− x0)TQ(x− x0) (20)

as in the straight-sided case.

The error-based distance function is defined by:

de(x,x0) = |e(s̄(x))| 1
k+1 . (21)

We thus seek, in a frame centered at x0, the SPD
matrix Q such that:

(x(s̄)TQx(s̄))
k+1
2 ≥ |e(s̄)|, ∀ θ ∈ [0, 2π], s̄ > 0 (22)

and such that its unit ball has the maximum area, in
order to minimize the interpolation error for a given
number of mesh vertices, i.e. we seek Q with min-
imum determinant. Minimizing detQ subject to the
constraints (22) is impractical though, since it requires
an expensive discretization of both θ and s̄ to evaluate
the constraints. For a linear parameterization x(s),
the error polynomial is homogeneous and a scaling ar-
gument [11, 13] shows that it is sufficient to satisfy (22)
on the level curve 1 of the error polynomial. The pa-
rameter s̄ can then be obtained by s̄ = e−1(1), so the
resolution requires a discretization of θ only. Here, the
error polynomial (14) is non-homogeneous in s̄ and the
scaling argument does not hold anymore. As v and v⊥

are unit vectors, we can however write the following
upper bound:

|e(s̄)| ≤ s̄3(1 + |κ|s̄) ×



1

6

∑

i,j,k

|Cijk(x0)|+
|κ|
2

∑

i,j

|Hij(x0)|



 ,
(23)

whose limit for small curvature κ is an homogeneous
polynomial. We could thus use this bound in the def-
inition of the error-based distance, which would jus-
tify the scaling argument for regions of low curvature.
Using this bound might be too conservative, so we
make the choice of discretizing only the level curve 1
of the non-homogeneous error polynomial (14) all the
same. The impact of this trade-off between computa-
tional cost, practicality and accuracy is however hard
to quantify, and better solutions might be possible.

At each vertex of the background mesh, the metric
tensor Q is thus found by solving the optimization
problem:

min
a,b,c∈R

detQ

x
T
i Qxi ≥ 1 for i = 1, ..., n,

(24)



where a, b, c are the coefficients of Q and the xi are
points lying on the level curve 1 of e(s̄). As pointed
out in [13], the problem is ill-posed since one can al-
ways fit an ellipse between constraint points whose
determinant goes to 0. To solve this, we use the log-
simplex algorithm proposed in [13] which consists of
(i) solving the optimization problem for L = logQ =
R log(Λ)RT , the matrix logarithm of Q = RΛRT , and
for modified constraints, and (ii) apply iteratively the

transformation x̃ = Q 1
2 x to converge to the initial

constraints. We briefly recall the method: Starting
with the identity matrix Q0 = I, we solve iteratively

min
a′,b′,c′ ∈R

trace Lj

(yT
i )jL(yi)j ≥ −‖(yi)j‖2 log(‖(yi)j‖2)

(25)

for the i = 1, ..., n constraint points. At iteration j,

the metric Qj+1 = Q
1
2
j LjQ

1
2
j is recovered and the con-

straint points are updated using the transformation

(yi)j+1 = Q
1
2
j+1xi. Sweeping the angles θi ∈ [0, 2π]

around the vertex x0, we write:

ei(s̄) , e(s̄, θi) = 1 → s̄ = e−1
i (1), (26)

so that the points xi = x(e−1
i (1)) lie on the level curve

1 of the error polynomial. In [13], the error poly-
nomial is homogeneous and finding the points xi on
the level curve 1 is trivial. Here, the error function
is a non-homogeneous polynomial of degree 6, so un-
fortunately there is no closed-form solution available
to solve ei(s̄) = ±1 and we must rely on a numeri-
cal root-finding algorithm to find the smallest positive
real root, as s̄ is a strictly positive length.

The convergence theorem provided in [13] still holds
even for a non-homogeneous function. Indeed, if the
sequence (Q)j converges to Q as j → ∞, then (i) the
objective function converges to a minimum (L con-
verges to 0, the proof is unchanged) and (ii) the log-
constraints converge to the initial set of constraints
xT
i Qxi ≥ 1.

Without relying on the homogeneous character of e,
the proof goes as follows: the transformation (yi)j =

Q
1
2
j x(e

−1
i (1)) = Q

1
2
j xi converges to yi = Q 1

2 xi as j →
∞. Since L → 0, constraint (25) converges to

0 ≥ −‖yi‖2 log(‖yi‖2)
⇐⇒ 0 ≤ log(‖yi‖2)
⇐⇒ 1 ≤ ‖yi‖2

⇐⇒ 1 ≤ ‖Q 1
2 xi‖2 = x

T
i Q

1
2Q

1
2 xi = x

T
i Qxi,

which concludes the proof.

Solving the optimization problem at each vertex of the
background mesh yields the metric field Q(x). Follow-
ing the continuous mesh theory presented in [8, 15, 16],

the metrics are then scaled to obtain roughly N ver-
tices in the final mesh:

Me(x) = C (detQ(x))
−1

p(k+1)+n Q(x), (27)

with

C = N
2
n

(∫

Ω

(detQ(x))
p(k+1)

2(p(k+1)+n) dx

)

, (28)

with p translates in which Lp norm the interpolation
error should be minimized, k = 2 is the polynomial
degree of the interpolation and n = 2 is the space
dimension. In the following, we set p = 2.

3. MESH GENERATION

With the metric field Me(x) at hand, we now generate
a mesh of P 2 triangles. We follow the unit mesh ap-
proach [17] and aim at generating edges with metric-
weighted length in [1/

√
2,
√
2], to ensure some form

of error equidistribution over mesh elements. In our
approach, the straight mesh is created using an ad-
vancing front of vertices, and is then curved one edge
at a time. This is done in four main steps:

1. generate vertices at unit distance from one an-
other and connect them;

2. curve the straight edges by moving the midpoint
to minimize metric-weighted length;

3. make the curved mesh valid;

4. perform quality-enhancing topological operations
(edge swaps).

3.1 Principal directions of the mesh

In straight-sided anisotropic mesh generation, orienta-
tion of the elements is generally not controlled, since
all triangles inscribed in the unit ball of the local met-
ric are part of an equivalence class [9]. To generate
curved elements however, working in the tangent space
is not sufficient, and we should account for the varia-
tion of the metric and thus follow metric-imposed di-
rections, such as the orthogonal directions given by
the eigenvectors of the metric field, similarly to [18].
Here, instead of taking the eigenvectors of the metric
field Me(x), we introduce the induced metric MI(x),
defined on the graph of u(x, y). The graph G of u,
denoted by p = (x, y, u(x, y)), is a surface in R

3. The
restriction of the euclidian metric,

ds2 = dx2 + dy2 + dz2, (29)

on the surface associated to the implicit function f =
z−u = 0 yields the induced metric (also known as the



first fundamental form):

ds2 =
f2
,x + f2

,z

f2
,z

dx2 +
2f,xf,y
f2
,z

dxdy +
f2
,y + f2

,z

f2
,z

dy2,

(30)
with the notation f,x = ∂f/∂x. As f,z = 1, f,x = −u,x

and f,y = −u,y, this writes:

ds2 = (1+u2
,x) dx

2+2u,xu,y dxdy+(1+u2
,y) dy

2. (31)

The matrix associated to this metric is:

MI =

(
1 + u2

,x u,xu,y

u,xu,y 1 + u2
,y

)

, (32)

whose eigenvectors of the induced metric are

v1 =

(
u,x

u,y
, 1

)

, v2 =

(
−u,y

u,x
, 1

)

. (33)

They are aligned respectively with (u,x, u,y) and
(−u,y, u,x), the direction of the gradient and of the
level curve of u at p. Hence, the curves obtained by
integrating along v1 and v2 are approximations of the
gradient curves and the level curves of u.

There are thus two metric fields of interest: the metric
obtained from the interpolation error analysis Me(x)
(the exponent e for error was added for emphasis) and
the induced metricMI(x) obtained from the geometry
of the graph of u. Contrary to the error metric, the
induced metric is intrinsic to the solution u and does
not involved the interpolation scheme. For each metric
field, two types of curves are of particular interest:

• the geodesics are locally distance-minimizing
curves. They are defined as parameterized curves
g(t) with zero acceleration everywhere on the
curve, that is, with ∇g′g

′ = 0, where ∇g′ denotes
the covariant derivative in the direction g′(t) [14].
For a given coordinate system, the components
form of this relation writes:

d2gi

dt2
+ Γi

jk
dgj

dt

dgk

dt
= 0, (34)

which is as second order ODE in g(t) and where
Γi

jk are the Christoffel symbols of the second
kind, defined as:

Γi
jk =

1

2
M−1

im (Mmj,k +Mmk,j −Mjk,m) .

(35)
Geodesics can be obtained by numerically in-
tegrating (34) using e.g. a 4-th order explicit
Runge-Kutta scheme, along with two initial con-
ditions:

g(0) = x0, g′(0) = v, (36)

with v a unit direction.

• the integral curves tangent to either v1 or v2,
the eigenvectors of the matrix associated to the
metric tensor.

For each of the two metric fields MI and Me, one can
make the following observations:

• The geodesics of the induced metric MI are the
projection on the xy−plane of the geodesics on
the graph of u. While they minimize the euclid-
ian distance on the graph, they do not have ob-
vious properties in terms of error minimization,
i.e. minimizing the error-weighted distance.

• The integral curves of the eigenvectors of MI are
approximations of the gradient and level curves
of u. Let c(ξ) : [−1, 1] → R

2 be a (perfectly
represented) piece of a level curve, such that
u(c(ξ)) = C. The Lagrange interpolate of u on c
of degree k with nk basis functions writes:

Πku =

nk∑

i=1

φi(ξ)u(c(Ξi))

= C

(
nk∑

i=1

φi(ξ)

)

= C

(37)

since the basis functions sum to 1, with Ξi the La-
grange nodes. Thus, the pointwise interpolation
error u−Πku is zero on a level curve.

• The geodesics of the error metric Me minimize
the error-weighted distance and are thus good
candidates for curves on which generate the ver-
tices.

• The integral curves of the eigenvectors of Me fol-
low the directions of extreme error. They have
been investigated e.g. in [18].

The integral curves of both metrics, as well as the
geodesics of Me, exhibit valuable properties in terms
of error minimization. It is however not clear to us
what is the link between these curves, if there is any.
From a practical point of view, integrating along the
geodesics of the error metric has not shown to be
very robust, mostly because small perturbations in
the metric field and its derivatives yield quite different
geodesics. In this work, we chose to integrate along
the eigenvectors of the induced metric. Integrating
along the eigenvectors of Me are currently also being
investigated.

3.2 Vertices generation and triangulation

We start by generating an anisotropic straight-sided
mesh with respect to Me(x) using mmg2d [19], discard-



ing the inner vertices and keeping only the bound-
ary vertices. These vertices form the initial front.
New vertices are chosen from among the four potential
neighbours of a vertex of the front. These neighbours
lie at unit distance (measured with Me) from the ver-
tex along the four directions given by moving forward
or backward along the eigenvectors of MI , Algorithm
1 with L = 1. The principal sizes he

1, h
e
2 of Me, as

well as the angles θI , θe formed by the horizontal and
the first eigenvector of MI and Me, are used to com-
pute the size along the eigenvector of MI in the error
metric. To avoid abrupt variations in the direction
field, the next direction is taken as the closest to the
previous one.

Input: Initial position x0, direction
j ∈ [1, 2, 3, 4], target length L, number of
uniform steps N .

Result: Neighbouring vertex x.
x = x0

for i = 1 → N do

v1,v2 = eigenvectors(MI(x))
if i > 1 then

v = arg max
±v1,±v2

v · vprev

else
V = [v1,−v1,v2,−v2]
v = Vj

end

h =
he
1h

e
2

√

he
1 sin

2(θI − θe) + he
2 cos

2(θI − θe)

x = x+
hLv

N
vprev = v

end

Algorithm 1: Compute neighbour to vertex x0.

The neighbour xj , j = 1, 2, 3, 4 is added to the front if
it is not too close to another vertex of the front. To
avoid computing distances to every existing vertex, an
RTree data structure [20], consisting of a list of ver-
tices along with their exclusion zone of characteristic
size 1/

√
2, is used. The exclusion zone of a vertex

consists of its four neighbours at distance L = 1/
√
2,

approximating the deformed unit ball of Me(x) cen-
tered at the vertex and considering a varying metric
(the true unit ball is not an ellipse anymore). A new
vertex is added if it lies outside of the convex hull of
the neighbouring vertices forming the exclusion zone.

The set of accepted vertices is triangulated using
isotropic Delaunay triangulation, then edge swaps are
performed to enhance element quality based on Me,
yielding an anisotropic straight mesh.

3.3 Curving the edges

The edges are then curved by moving the midpoint.
To curve the mesh in a single pass and not iteratively,

the edges are curved to best approach the geodesics of
the error metric Me. For each parabolic edge x(t) =
x(t,α), we seek the displacement vector α∗ ∈ R

2 such
that the error-weighted edge length:

length(x) =

∫ 1

0

‖x′(t)‖Me dt

=

∫ 1

0

√

(x′(t),x′(t))Me dt

=

∫ 1

0

√

(γ +αL̇,γ +αL̇)Me dt

(38)

is minimized. The minimization problem

min
α∈R2

length(x) (39)

is solved with a quasi-Newton method. In [6], the
edges are curved by restricting the movement of the
midpoint along the orthogonal bisector: we compare
the influence of this choice in the results section. More
precisely, three strategies are compared: (i) moving
the midpoint along the bisector, (ii) moving the mid-
point anywhere in R

2 and (iii) moving the midpoint
in R

2, then relocating it at half of the curved edge’s
length, such that x(t = 1/2) = X12.

This step is critical as several results show that curv-
ing the elements, i.e. using a non-affine transforma-
tion between the reference and the physical triangle,
can have dramatic consequences on the interpolation
quality, see e.g. [10, 21]. In particular, [10] shows that
an asymptotic relation of the form:

‖u−Π2u‖L2 = O(h3) (40)

can be achieved on P 2 isoparametric triangles with La-
grange basis functions if the displacement vector sat-
isfies:

‖X12 −X
straight
12 ‖ = O(h2), (41)

where X12 is the position of the P 2 midpoint and
X

straight
12 = (X1+X2)/2. This result is valid on regular

families of element, that is, elements for which there
exists a constant a0 such that

0 < a0 ≤ ρh
h
, ∀h, (42)

where h is the diameter of the element and ρh is the
diameter of the inscribed sphere. This result was ob-
served on a sequence of six regular meshes, such as the
ones shown on Fig. 2. For each of these meshes, the
inner edges are curved by moving the midpoint along
the unit orthogonal bisector γ⊥:

α = C

(
1√
N

)m

γ
⊥ ∼ Chm

γ
⊥, (43)

with C a constant, N the number of vertices of the
mesh and m an integer exponent.



Figure 2: Structured meshes with edges curved along
the orthogonal bisector.

The observed convergence, Fig. 3, follows the results
from [10]: curving the elements with

‖α‖ = ‖X12 −X
straight
12 ‖ = O(h) (44)

lowers the convergence rate to 2, whereas the optimal
rate is maintained for a higher k.

However, we have observed in our numerical tests (Sec-
tion 4) that curved meshes with the midpoint moved
according to (39) can exhibit an O(h) evolution (or
even lower) and still maintain the optimal convergence
rate. This would suggest that the bounds from [10]
are somewhat too conservative, and that curving the
mesh along privileged directions can prevent this loss
of convergence rate.

3.4 Making the mesh valid

The curved mesh is not necessarily valid, that is, we
do not have Jmin = minξ J(ξ) > 0 for each curved ele-
ment, where J(ξ) = |∂x/∂ξ| is the determinant of the
reference-to-physical transformation x(ξ). To make
the mesh valid, we compute a lower bound on Jmin on
each element using the Bézier-based sufficient condi-
tion in [22]. If the element is invalid (Jmin ≤ 0), we

Figure 3: Interpolation error in L2-norm on curved struc-
tured meshes for the function u(x, y) = r4(x, y) =
x4 + y4 + 2x2y2 for different curvature amplitudes.

backtrack on all three edges and simultaneously reduce
the displacements αi, i = 1, 2, 3 until Jmin is positive.
As the initial mesh is a valid straight mesh, the limit
case is always valid.

3.5 Edge swaps

Finally, mesh quality is enhanced by performing edge
swaps. As the vertices are supposed to be ideally
placed, operations such as position smoothing, vertex
insertions or edge collapses are not performed. The
curvilinear quality indicator on a triangle T used is:

qM = 4
√
3

∫

T

√
detM dx

∑3
i=1 LM(ei)

, (45)

with LM(ei) the length of the edge i. We select the
error metric Me to compute the quality.

4. NUMERICAL RESULTS

We test our methodology on two simple test cases:

• u1(x, y) = r4(x, y) = (x2 + y2)2,

• u2(x, y) = atan
(
10
[
sin
(
3πy
2

)
− 2x

])
.

To focus on metric computation and mesh gener-
ation only, we use analytic derivatives Hij(x) and
Cijk(x) of u. The log-simplex optimization prob-
lem (25) is solved using the SoPlex library [23] and
the minimization problem (39) is solved using the
Ceres library [24]. For each test case, we study
the convergence of the Lagrange P 2 interpolation on



isoparametric elements by increasing the desired num-
ber of vertices N in each mesh. The study is per-
formed on sets of meshes with target complexity N =
[50, 100, 200, 400, 600, 800, 1000, 1200, 1600]. To gener-
ate a mesh of target complexity Ni, we proceed itera-
tively and start from a coarse structured background
mesh. We compute the metric field on the background
mesh, generate a straight anisotropic mesh then use
this mesh as a background mesh to have a more accu-
rate representation of the metric field. We iterate this
way five times before curving the mesh. The gener-
ated meshes feature curved elements where necessary
and typically contain about 1.15 times the requested
number of vertices (Fig. 4 and 6).

Tests were performed sequentially on a laptop with an
Intel Core i7 8750h CPU at 2.2 Ghz and 16Gb of mem-
ory. Non-optimized timings are presented in Table 1
for the second test case and for target complexities
N = 200 and 1600. Despite some optimizations, the
overall execution time remains very high. As expected,
solving the minimization problem for Q is the costli-
est part of the metrics computation. Due to the high
number of metric evaluations when computing length
integrals, most of the meshing step is currently spent
interpolating the metric and its derivatives from the
background mesh.

N = 200 1600

Metric computations (5 passes):
Solve s̄ = e−1(1) 1.47 10.27
Minimize detQ 8.20 51.89
Others (metric scaling, etc.) 0.81 8.04

Total metrics 10.48s 70.2s

Mesh generation:
Generate nodes 3.22 28.24
Initial edges curving 0.82 6.9
Edge swaps 5.86 77.31
Others 0.42 3.49

Total mesh 10.32 115.94
incl. Metric interpolation 9.92 107.76
Total 20.80s 186.57s

Table 1: Timings for the second test case for target com-
plexity N = 200 and 1600: computation of the metric
tensor fields and mesh generation. All times are given in
seconds.

As it is standard in anisotropic mesh adaptation, the
error is reported as a function of the number of mesh
vertices N1/n with n the space dimension, here 2. For
straight meshes with interpolation functions of degree
k in two dimensions, the continuous mesh theory [8,
15, 16] predicts an evolution of the error in the Lp

norm of the form

‖e‖Lp ∼ CN−
k+1
2 ∼ C(

√
N)−(k+1), (46)

thus an asymptotic convergence rate of k+1 = 3. The
optimal convergence rate in L2 norm is observed for
both test cases, Fig. 5 and 7, as well as an order of
2 in H1 norm. The graphs in Fig. 5 and 7 show the
influence of the curving strategy on the interpolation
error, and are associated to the three approaches dis-
cussed in Section 3.3. For both test cases, curving
the edges along the bisector or relocating the midnode
after curving without constraint yield very similar re-
sults, and both their error levels are slightly under
those of the second curving strategy, which lets the
midpoint move freely in R

2. This suggests that curv-
ing along the orthogonal bisector is sufficient to gen-
erate optimally adapted meshes, in addition to being
slightly faster (1 degree of freedom instead of 2). Fi-
nally, the evolution of the norm of the displacement α
as a function of

√
N is shown on Fig. 5 and 7. Notably,

the evolution is linear or sublinear, while maintaining
optimal convergence rates for the interpolation error.

5. CONCLUSION AND FUTURE WORK

We have presented a methodology for two dimensional
curvilinear mesh generation: interpolation error esti-
mator for curved trajectories, generalization of the ex-
isting log-simplex algorithm for high-order metric ten-
sor computation and frontal curved mesh generation.
Adapted meshes exhibit mild to more pronounced cur-
vature and reach the optimal third order convergence
rate for P 2 Lagrange elements in L2 norm. In par-
ticular, it was observed that edge curvature, repre-
sented by the displacement vector α, does not neces-
sarily need to decrease faster than the edge length to
maintain optimal convergence rates.

To keep the computation of the metric field tractable
and to reduce the computational cost, the non-
homogeneous character of the error polynomial was
set aside to use existing techniques mostly as is. More
tests are still necessary to assess the impact of this
choice. Future work will be focused on this topic,
as well as handling curved boundaries and tackling a
three-dimensional extension of this framework.
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Figure 4: Adapted meshes for u(x, y) = (x2 + y2)2

and target complexity N = 50, 100, 200. Vertices are
generated along the eigenvectors of the induced metric
MI , which are the directions of the gradient and level
curves of u. The size along these curves is determined by
the error metric Me. The edges are curved by moving
the midpoint freely to minimize the edge length in the
error metric.
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Figure 5: Top: surface plot for u1. Middle: interpola-
tion error for u1 in L2 (squares), L∞ (diamonds) and
H1 (dots) norms for three approaches to edges curving.
The error curves obtained by moving the midnode along
the orthogonal bisector (blue) and by relocating the opti-
mal midnode at half-length (green) are mostly identical.
Bottom: L2 (squares) and L∞ (diamonds) norm of the

displacement vector ‖α‖ = ‖X12 −X
straight
12 ‖ as a func-

tion of
√
N (∼ 1/h).



Figure 6: Adapted meshes for u2(x, y) and target com-
plexity N = 100, 200, 400.
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Figure 7: Top: surface plot for u2. Middle: interpola-
tion error for u2 in L2 (squares), L∞ (diamonds) and
H1 (dots) norms for three approaches to edges curving.
Bottom: L2 (squares) and L∞ (diamonds) norm of the

displacement vector ‖α‖ = ‖X12 −X
straight
12 ‖ as a func-

tion of
√
N (∼ 1/h).



7. APPENDIX

Defining ai , κv⊥i and

C̄112 , C112 + C121 + C211

C̄122 , C122 + C212 + C221,

the coefficients of the error polynomial (14) are:

c1 =
1

120

(

C111a
3
1 + C̄112a

2
1a2 + C̄122a1a

2
2 + C222a

3
2

)

,

c2 =
1

20

(

C111a
2
1v1 + C̄112(a

2
1v2 + 2a1a2v1)

+ C̄122(a
2
2v1 + 2a1a2v2) + C222a

2
2v2

)

,

c3 =
1

8

(

C111a1v
2
1 + C̄112(a2v

2
1 + 2a1v1v2)

+ C̄122(a1v
2
2 + 2a2v1v2) + C222a2v

2
2

+H11a
2
1 + (H12 +H21)a1a2 +H22a

2
2

)

,

c4 =
1

6

(

C111v
3
1 + 3C̄112v

2
1v2 + 3C̄122v1v

2
2 + C222v

3
2

)

+
1

2
(H11a1v1 +H12a2v1 +H21a1v2 +H22a2v2) .

References

[1] Toulorge T., Geuzaine C., Remacle J.F., Lam-
brechts J. “Robust untangling of curvilinear
meshes.” Journal of Computational Physics, vol.
254, 8–26, 2013

[2] Fortunato M., Persson P.O. “High-order unstruc-
tured curved mesh generation using the Winslow
equations.” Journal of Computational Physics,
vol. 307, 1–14, 2016

[3] Zhang R., Johnen A., Remacle J.F. “Curvi-
linear mesh adaptation.” International Meshing
Roundtable, pp. 57–69. Springer, 2018

[4] Aparicio-Estrems G., Gargallo-Peiró A., Roca X.
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schémas numériques d’ordre très élevé. Ph.D.
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