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ABSTRACT

Two important classes of three-dimensional elements in computational meshes are hexahedra and tetrahedra. While
several efficient methods exist that convert a hexahedral element to tetrahedral elements, the existing algorithms
for tetrahedralization of a hexahedral complex limit pre-selection of face divisions. We generalize a procedure for
tetrahedralizing triangular prisms to tetrahedralizing cubes, and combine it with certain other triangulation techniques
to design an algorithm that can triangulate any hexahedra.
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1. INTRODUCTION

Tetrahedralization of hexahedra has several applica-
tions: rendering engines may only process tetrahedra,
discretization methods may only require tetrahedra,
and some geometric algorithms are only phrased over
tetrahedra. Thus, it would be advantageous to convert
a hexahedral mesh into as few tetrahedra as possible.
Several algorithms exist for this purpose including the
popular marching tetrahedra algorithm. These algo-
rithms take advantage of the most natural subdivision
of a hexahedron into tetrahedra, and thus, have an
inherent simplicity in terms of both understanding and
implementation. However, these common algorithms,
including the marching tetrahedra, impose severe con-
straints on the input mesh as they cannot guarantee a
conforming division of an arbitrary hexahedral complex,
due to non-matching face splits [1].

This work aims to provide a general algorithm that
works on any hexahedral mesh with arbitrary face di-
visions. The major contribution of this work is a clean
and intuitive formulation of this problem and a general-
ization of several well-known triangulation algorithms
[2, 3] allowing us to triangulate any hexahedra into five
or six tetrahedra, except in an exceptional, degenerate
case where we use twelve tetrahedra.

2. BACKGROUND

2.1 Hexahedral Triangulation

The decomposition of any polyhedra into other simpler
polyhedra has been studied for centuries. Despite its
longevity, the problem is difficult and even in the case
of decomposition into tetrahedra, it is known that
tetrahedralization is NP-hard [4]. These decomposition
problems of arbitrary geometric complexes have yielded
a rich body of theoretical results that have provided
existence conditions on decompositions and bounds on
the minimum number of required tetrahedra [5, 6].

On the practical side, several algorithms have been de-
veloped to perform these subdivisions, but all of these
are oblivious to the orientations of the face splits. This,
however, becomes a problem when the orientations do
not match and merging affects split orientations. For
instance, in the commonly used marching tetrahedra
algorithm [1], each cube is split into six irregular tetra-
hedra by cutting the cube in half three times, where
this division takes place by cutting diagonally through
each of the three pairs of opposing faces. In this way,
the resulting tetrahedra all share one of the main di-
agonals of the cube. An obvious limitation of this
algorithm, however, is that the cuts are predetermined:
that is, we are restricted to select cuts with matching



orientations of opposite pairs.

It is evident that the case of non-matching orientations
is significant. Indeed, the theoretical justification we
provide for our algorithm has been explored in several
other works. The most notable ones include the use
of the region-face-graph or RF-graph to study subdi-
visions of three-dimensional complexes [7, 8]. These
works were primarily in the context of combining tetra-
hedral mesh into other polyhedra, and underscore the
importance of arbitrary tetrahedral subdivisions. In-
cidentally, [7] mentions that when using the common
algorithms with a predefined set of face cuts, the asso-
ciated hexahedral triangulation fails to detect all the
potential hexahedra in a tetrahedral mesh, and the per-
centage of missed potential hexahedra may be signifi-
cant and even reach 5% of the overall mesh. The graphs
themselves have several nice properties including the
fact that the RF graph corresponding to hexahedra-
tetrahedra decomposition is planar. Indeed, in the case
of hexahedra-tetrahedra decompositions, these repre-
sentations mostly match the arguments we develop,
but the works themselves merely specified these subdi-
visions and did not explicitly provide an algorithm for
generating them. In fact, the case of subdivisions in
the case of non-matching orientations was not known.

2.2 Prism Decomposition

In order to specify the decomposition of arbitrary hex-
ahedra, we first start by discussing the prism decom-
position procedure we employ in the first three of our
cases. This decomposition is well-known and we choose
the framework specified by [9] where they provide an
algorithm for triangulating a prism by choosing face
cuts carefully. In particular, we first define rising (R)
and falling (F) cuts (Fig. 1). The cuts (R) and (F)
simply depend on whether the split edge is rising or
falling as we travel along the extruded prism face in a
counterclockwise manner.

Figure 1: An instance of (left) a rising (R) cut and
(right) a falling (F) cut.

We now claim that the only degenerate cases corre-
spond to instances when all the face cuts are assigned
the same orientations, namely RRR or FFF (Fig. 2).
Note that any other configuration with at least one
non-matching orientation guarantees that the face cuts
meet at some vertex. Thus, these degenerate config-

Figure 2: The degenerate cases: RRR cuts (left) and
FFF cuts (right).

urations definitively characterize the impossibility of
triangulating the prism:

Proposition 1. In a tetrahedral decomposition of a
prism, it is evident that at least two (exterior) face cuts
must meet at some vertex.

Proof. We demonstrate this by examining the triangles
of the prism. Consider a tetrahedral decomposition
T of a prism P . Let T be a tetrahedron in T , and
let u, v, and x be the vertices of the triangular face
of P—which must be part of a tetrahedron—that is
adjacent to T . Let s, the summit of the tetrahedron, be
the vertex of T that is opposite to this face, as shown in
Figure 3. Since x can have only three original incident

u

x

v

s

Figure 3: A tetrahedron T adjacent to a triangular
face of the prism P .

edges, it follows that u and v must share the three
(exterior) face cuts between them corresponding to the
three tetrahedra in the triangulation. This means that
at least two of these face cuts must meet at a common
vertex, which is what the proposition states.

For any of the cuts that are not degenerate (Fig. 4),
a canonical division into three tetrahedra is possible.
Combinatorially, this yields six different ways of trian-
gulating a prism.

The issue due to Proposition 1 is “fixed” by [9] by look-
ing at the neighboring prisms and changing their con-
figurations to transform these into the non-degenerate
cases. We consider a similar strategy for cubes as well,
but as we will see, this may not be possible for some
global mesh configurations.



Figure 4: A valid configuration for prism decomposi-
tion.

3. GENERAL HEX-TO-TET: A GENERAL
ALGORITHM FOR

TETRAHEDRALIZING A
HEXAHEDRAL COMPLEX

3.1 Generalizing Prism Decomposition to
Cubes

Before discussing the generalization of prism decompo-
sition to cubes, we need to clarify some terminology.
Recall that the marching tetrahedra algorithm involves
partitioning a cube into six irregular tetrahedra by
making three cuts along shared diagonals of opposing
faces, resulting in the division of the cube into halves
three times [1]. We call this shared diagonal the main
diagonal. Further, we extend the notion of rising and
falling cuts to cubes as follows. As in the case of prisms,
we label the orientation of an external face cut as rising
(R) or falling (F) by traversing along the extruded face
in a counterclockwise manner.

Now, a trivial observation that any cube can be divided
into two prisms by simply cutting across a diagonal
plane allows us to partially reduce arbitrary tetrahe-
dron decomposition of a cube to a decomposition of
prisms. Consequently, we can separately triangulate
each prism with the main diagonal split serving as a
face cut for both prisms. Recall that our main goal
was to allow the user to arbitrarily select the face cuts
across the six faces; our only freedom being able to
choose the main diagonal. We claim that this proce-
dure always works for cases where up to three cuts
have been predetermined. For more than three pre-
determined cuts, the procedure works if the cuts are
lined up accordingly.

For up to three predetermined cuts, we can use the
prism decomposition method without running into the
degenerate cases from Section 2.2 as we will always
have at least two outside face cuts to choose from. We
can choose these cuts in such a way that, along with
the main diagonal, these cuts guarantee that we get
two cuts that meet at a vertex in each of the prisms,
utilizing Proposition 1.

Obviously, solving this case-by-case does not necessarily
mean that we obtain a general algorithm for the entire
mesh as the cases only correspond to a single hexahe-
dron. However, for simplicity, we will first specify this
case-by-case below, and present the main algorithm
in Section 3.4. Further, for the sake of exposition, we
represent an arbitrary hexahedral element as a cube
since they are topologically the same.

3.1.1 Zero or One Predetermined Cut

We simply run the marching tetrahedron algorithm
here. Or, we can choose an arbitrary main diagonal
along with the face cuts in each of the prisms so that
prism decomposition can be performed.

3.1.2 Two Predetermined Cuts

If the two cuts are not opposite to one another, then
we can still run the marching tetrahedron algorithm.
This is also possible if the two opposite cuts are both
falling (F) or both rising (R).

Crucially, even in the case where the two cuts have
opposite orientations, we can choose the main diago-
nal so that its end points meet the endpoints of the
predetermined cuts (Fig. 5).

Figure 5: Two predetermined cuts (green): cutting
with the opposite faces in the same orientation (blue)
yields FFR for both prisms.

3.1.3 Three Predetermined Cuts

Combinatorially, the orientation of these face cuts in-
duce the following three cases that we handle sepa-
rately:

None of the cuts are opposite to one another
In this case, we should be able to select the opposite
cuts for each of the three predetermined cuts. Hence,
we can apply marching tetrahedron to get the canonical
subdivision.

A pair with opposite face cuts with same ori-
entation This is again trivial: we can simply use



marching tetrahedron with one of the pairs having
already been determined.

A pair with opposite face cuts with different ori-
entation This case employs the following procedure
where we want to solve the problem of different orien-
tation by carefully decomposing the cube into prisms
(Fig. 6):

1. Choose the uncut pair and decompose the cube
into prism by cutting this pair to form the diagonal
plane.

2. On whichever prism the third predetermined cut
falls, the main diagonal is cut to avoid the prism
degenerate case(s).

3. The second prism has an uncut external face,
which is again used to avoid the prism degenerate
case(s).

Figure 6: Three predetermined cuts: two of the three
cuts form a pair with opposite orientation. (Left) We
first choose a dividing plane. (Upper-Right) Then, the
red diagonal is chosen to configure the prism with two
external predetermined cuts to FFR. (Lower-Right)
Finally, the blue cut is then picked in the second prism
to avoid the degenerate cases.

3.1.4 Four and Five Predetermined Cuts

Again, we will handle the easy cases first. Also, note
that at least one of the pairs of cuts must be opposite to
one another here (indeed, two of the pairs must be op-
posite to one another in the case of five predetermined
cuts.)

At least one pair opposite of each other with the
same orientation This case is easy as we can choose
such a pair to create the diagonal plane for decomposing
the cube into prisms. If two of the remaining cuts lie
on the same prism, then we use the diagonal cut to
avoid the degenerate case which leaves us with two (or
one) remaining cuts in another prism. If only one cut
is present in any one of the prisms, then again we can
easily avoid RRR/FFF cases.

Only one pair opposite of each other with differ-
ent orientation We can choose one of the adjacent
predetermined cuts and cut across its opposite face
with the same orientation. This allows us to choose a
diagonal plane with one of the resulting prisms contain-
ing two of the predetermined cuts. Here, we can again
use the main diagonal cut to escape the degenerate
case, while the remaining prism has an extra uncut
external face (Fig. 7).

Figure 7: Decomposition of a single pair with different
orientations: (Top) The side opposite to the green cut
is chosen so that two of the predetermined cuts get
isolated in one of the prisms. (Bottom-Left) The red
diagonal is chosen to configure the prism to FFR.
(Bottom-Right) The green cut is then picked to avoid
the degenerate cases.

Both pairs are opposite of one another with
different orientation

Meet at a vertex: If the pairs meet at a vertex
while being in different orientation to their opposite
cuts, then we can simply decompose into prisms using
the remaining uncut pair (we can cut in the same orien-
tation as the remaining determined cut in the five case),
and the resulting prisms are obviously non-degenerate
as the external faces meet at a vertex (Fig. 8).



Figure 8: Decomposition of both pairs meeting at a
vertex with different orientations: This ensures that
we have a pair of opposite uncut faces. (Right) Conse-
quently, we can decompose into prisms and choose the
red diagonal cut to avoid the degenerate case.

None meet at a vertex This is the degenerate
case, where prism decomposition fails. Geometrically,
it is equivalent to having a RRR/FFF case as in
Observation 1 for cubes. Note that the remaining
one/two cuts cannot save this from being degenerate
(Fig. 9).

Figure 9: Degenerate case for a cube with four de-
termined cuts. The case for degenerate case for cubes
with more than four determined cuts is omitted as once
four of the exterior face cuts are degenerate as in the
figure, the remaining face splits cannot save it from
degenerate.

3.1.5 Six Predetermined Cuts

In this case, any two opposite cuts with the same
orientation imply that prism decomposition works. A
procedure can be carried out accordingly as in the
above cases. Again, if any cut is isolated, then the
cube cannot be triangulated as Observation 1 comes
into play.

3.2 Decomposition into Five Tetrahedra

Interestingly, even if prism decomposition fails, if at
least two opposite pairs have different orientation, then
when all pairs meet at (some) vertices to one another,
we have the following five tetrahedral decomposition
(Fig. 10). We recall that the RF graphs from [7] also
contained cases with decomposition intro five tetra-

hedra. This is the concrete manifestation of such a
decomposition.

Figure 10: The five tetrahedral decomposition:
(Right) An implementation of this decomposition can
be done by simply removing the central tetrahedron;
the rest of the four tetrahedra are distributed along
the four corners.

3.3 Solving the Degenerate Cases

As we outlined above, the cubes fail to be triangulated
in the usual way only if one or more cut(s) are isolated.
We claim that this cannot be resolved using one of the
procedures above, and one of the following methods
must be followed:

3.3.1 Flipping Neighboring Cubes

Recall that we had several degrees of freedom when
choosing one of the cuts when decomposing and later
when avoiding the prism degenerate cases. Indeed, the
procedure above is invariant with respect to opposite
face cuts of the same orientation. That is, we have the
following guarantee on the invariance of flipping cuts
of neighboring cubes.

Proposition 2. Changing the orientations of a pair
of opposite face cuts still yields a valid tetrahedral de-
composition into six tetrahedra.

Proof. We want to show that triangulation is invariant
under flipping opposite pairs with the same orientation.
However, this is essentially changing the diagonal plane
that yielded those prisms.

Assume however that after flipping the orientation, one
of the new prism acquires a degenerate configuration
(RRR/FFF). In order for this to happen, we must be
constrained to cut the main diagonal in some orienta-
tion R (respectively F) for one of the prisms with other
cuts having orientations FF (respectively RR). The
main diagonal will then have orientation F (respectively



R), for the other prism, yielding FFF (respectively
RRR). But, this implies that we started with a degen-
erate FFFF/RRRR exterior face cuts, which must
be impossible as this would not have yielded a valid
decomposition before flipping.

In light of Proposition 2, in order to avoid the de-
generate case for four predetermined case, note that
changing the orientation of one of the external face
cuts suffices. Here, we note that recursively carrying
out this flipping of orientation of face cuts may lead to
a ”chain reaction” that may end up changing the entire
mesh. Thus, we only look for these flips in adjacent
cubes and avoid employing this method if the neighbor
of the adjacent cube has predetermined face cuts in
favor of both simplicity and efficiency.

Figure 11: Degenerate case for cubes when flipping
opposite face cuts of adjacent cubes: This is an instance
when flipping fails as all four adjacent cubes’ opposite
faces have cuts with different orientations.

3.3.2 Steiner Points

Sometimes even flipping fails (Fig. 11), and our last
resort is introducing new vertices, called Steiner points,
which presents an easy solution to the above problem as
any number of predetermined cuts can be triangulated
to form 12 tetrahedra [10]: All eight original vertices
are connected to the Steiner point to decompose the
cube into six pyramids (Fig. 12). Any of the face cuts
now yields two tetrahedra.

3.4 The Main Algorithm

We have now handled all the cases with certain number
of predetermined cuts. We note here that it is quite
surprising that the methods used to do this all retain
a certain level of simplicity. Indeed, the key idea is

Figure 12: Steiner points allows decomposition into
twelve tetrahedra at the expense of an additional vertex:
(Left) We first connect each of the vertices with the
Steiner point. (Middle, Right) This yields six pyramids,
which is then cut across to get tetrahedra using the
predetermined cuts (red).

knowing the right combination of methods to apply
in different cases. However, directly translating these
mechanisms into an ad hoc implementation would not
work. Moreover, ignoring the intricacies between the
methods may mean that we sacrifice both paralleliz-
ability and efficiency in terms of additional vertices.
Nevertheless, any attempt at designing an algorithm
has to face the degenerate cases; the simplest coun-
terexample is a hexahedralized torus with four cubes
where the face cuts are configured in a way that forces
the configuration similar to the one from Fig. 11.

This counterexample shows that this remains a non-
trivial problem to arrange all these cases in a way that
allows parallelizability while also ensuring that we use
as few Steiner points as possible. We now present a
succinct version of such an algorithm that achieves
these goals.

Algorithm 1 Hex-to-Tet (A hexahedral mesh M)

1: while there exists a hexahedron H that is un-
marked do

2: N ← number of exterior cut faces of H
3: if N ≥ 4 with two pairs of opposite face cuts

with different orientation then
4: if the two pairs meet at the same vertices

then ▷ Section 3.2.
5: while there exists an uncut face do
6: Cut the face so that the cut meets at

the predetermined cut(s) at some vertex
7: end while
8: else ▷ Section 3.3.
9: Degenerate-Case (H)

10: end if
11: else ▷ Section 3.1
12: Prism-Decomposition (H)

13: end if
14: mark H
15: end while
16: return “Done”



Algorithm 2 Prism-Decomposition (Hexahedron

H)

1: if there does not exist a pair of opposite cuts with
same orientation then

2: Cut one of the uncut pairs in this manner
3: end if
4: Cut across such pair to create a diagonal plane and

two prisms.
5: if there exists a prism with two of the exterior

faces cut then
6: Use the middle diagonal to avoid RRR/FFF
7: end if
8: Cut the remaining uncut faces of the prism to get

valid decompositions

Algorithm 3 Degenerate-Case (A Hexahedral

Mesh M)

1: Get the adjacent cubes of the four faces with each
pair having different opposite orientation

2: if any of the four cuts C form an opposite cut pair
with the same orientation in their adjacent cubes
then ▷ Section 3.3.1

3: H ′ ← neighbor of H that shares the cut C
4: C′ ← face cut in H ′ opposite to C.
5: H ′′ ← neighbor of H ′ that shares the cut C′

6: if H ′′ has not been marked then
7: Flip the orientation of the cut C′

8: end if
9: else ▷ Section 3.3.2

10: Introduce a Steiner point P in H.
11: Link each vertex of H with P using six new

interior edges
12: while there exists an uncut exterior face do
13: Cut the face so that the cut is in the same

orientation as its opposite face
14: end while
15: end if

4. CONCLUSION AND FUTURE WORK

In this paper we presented a general triangulation al-
gorithm for hexahedral meshes. Instead of imposing
restrictions on the input mesh like other existing algo-
rithms do, our algorithm does not depend on a prede-
fined set of face cuts. Further, our algorithm identifies
the number of predetermined face divisions and uses an
extension of prism decomposition algorithm and several
other techniques to decomposition the hexahedra into
tetrahedra. Crucially, we have ensured that our algo-
rithm tries to find all the valid decompositions without
making any assumption on the orientations of the face
splits, before employing additional vertices. Finally,
contrary to previous works, the theoretical framework
we inherited extends well to implementation, and in fu-
ture work, we plan to implement the algorithm above in

the PETSc [11, 12] libraries in order to convert meshes
with tensor product cells to simplicial cells as part of
its DMPlex mesh capabilities [13, 14, 15].
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