
ESTIMATING THE NUMBER OF SIMILARITY CLASSES

FOR MARKED BISECTION IN GENERAL DIMENSIONS

Guillem Belda-Ferŕın
1

Eloi Ruiz-Gironés
1

Xevi Roca
1,2

1Computer Applications in Science and Engineering,
Barcelona Supercomputing Center - BSC, 08034 Barcelona, Spain

2Corresponding author: xevi.roca@bsc.es

ABSTRACT

To measure the stability of a marked bisection method, we estimate in general dimensions an upper bound of the
number of generated similarity classes. Moreover, to understand the cyclic similarity structure, we estimate the
number of uniform refinements required to generate all the similarity classes. We first prove that switching to the
newest vertex bisection after n uniform refinements is equivalent to switching after n− 2 uniform refinements. Then,
we obtain the similarity bound, a bound that we use to derive the number of uniform refinements required to generate
all the similarity classes. Although the similarity bound is not tight, the results show that it estimates the magnitude
of the expected number of classes. We also show the ratio of the number of similarity classes for marked bisection
and newest vertex bisection. Because this ratio grows exponentially with the dimension, we conclude that marked
bisection is suitable for low-dimensional applications.

Keywords: adaption, local bisection, n-dimensional bisection, similarity classes

1. INTRODUCTION

In adaptive n-dimensional refinement, conformal sim-
plicial meshes must be locally modified. One system-
atic modification for arbitrary dimensions is to bisect
a set of selected simplices. This operation splits each
simplex by introducing a new vertex on a previously
selected refinement edge. Then, this new vertex is
connected to the original vertices to define two new
simplices. To ensure that the mesh is still conformal,
the bisection has to select additional refinement edges
on a surrounding conformal closure.

In n-dimensional bisection, the edge selection is com-
monly based on choosing the longest edge [1–4],
the newest vertex [5–10], or using marked bisection
[11–13]. Although all these edge selections are well-
suited for adaptation, marked n-dimensional bisection
has shown to be suitable for local refinement of un-
structured simplicial meshes of three or more dimen-
sions [11–13].

Moreover, on unstructured meshes, marked bisection
enforces a key advantage for n-simplicial adaption.
That is, successive refinement leads to a fair number of
simplex similarity classes [11–13]. Two simplices be-
long to the same similarity class if the first one can be
transformed into the second one using uniform scal-
ings, rotations, reflections, and translations. That is,
both simplices have the same shape, but different sizes,
alignments, orientations, and positions. As a conse-
quence, both simplices have the same shape quality.
Since the number of similarity classes is bounded, so
is the minimum mesh quality, and therefore, the bisec-
tion method is stable.

To understand this stability advantage, we overview
the structure of marked bisection. These methods fea-
ture a first stage performing a specific-purpose bisec-
tion for marked simplices. This marked bisection en-
forces that after a few initial steps, one can switch
independently on each element to another stage fea-
turing Maubach’s newest vertex bisection [7]. The



number of initial bisection steps is comparable with
the spatial dimension. Hence, these steps are respon-
sible for a reasonable increase in the total number of
similarity classes.

Estimating the number of similarity classes is key to
assess the quality of a marked bisection method. This
is so because this number indicates a priori the mini-
mum mesh quality under successive mesh refinement.
If the number of classes is smaller, the minimum qual-
ity tends to be higher. In the 3D case, there is a
tight bound on the number of similarity classes [11].
However, still missing is an estimation of the number
of similarity classes generated under successive refine-
ment in arbitrary dimensions.

Accordingly, the main contribution of this work is to
estimate in arbitrary dimensions an upper bound of
the number of similarity classes obtained with a con-
formal marked bisection method. Moreover, to under-
stand the cyclic structure of the minimum quality, we
estimate the number of uniform refinements required
to generate all the similarity classes. In particular,
we will analyze the number of similarity classes and
the number of iterations to obtain them when bisect-
ing simplices with the algorithm presented in [13]. To
estimate an upper bound of the number of similarity
classes in the worst case, we consider a general sim-
plex without any special symmetry. Note that sim-
plices featuring specific symmetries feature a smaller
number of similarity classes. Thus, the corresponding
estimates are not upper bounds for the worst case.

To estimate the number of similarity classes, we use
two ingredients. First, the maximum number of simi-
larity classes for the newest vertex bisection [11]. Sec-
ond, for marked bisection, we deduce that switching
after n refinements to newest vertex with Maubach tag
equal to n is equivalent to switching after n−2 refine-
ments to tag equal to 2. Using our estimate, we derive
the number of uniform refinements required to gener-
ate all the similarity classes. The results are devised
to check how tight is the estimation of the number of
similarity classes.

For marked bisection, the number of similarity classes
has not been estimated for a general simplex in arbi-
trary dimensions. Alternatively, existing works esti-
mate the number of similarity classes for longest edge
bisection [14, 15]. For general shapes, the work [14]
bounds the number of similarity classes for longest-
edge bisection in two dimensions. For general dimen-
sions, the work [15] numerically computes the num-
ber of similarity classes for longest-edge bisection for
the equilateral simplex. In our work, we estimate the
number of similarity classes for marked bisection and
a general simplex in arbitrary dimensions.

The rest of the paper is structured as follows. In Sec-

tion 2, we introduce the preliminary notation and con-
cepts. In Section 3, we summarize the used marked
bisection. In Section 4, we provide an upper bound
to the number of similarity classes. In Section 5, we
deduce a lower bound of the number of uniform refine-
ments to obtain all the similarity classes. In Section
6, we show several examples. Finally, in Section 7, we
present the concluding remarks of this work.

2. PRELIMINARIES

We proceed to introduce the necessary notation and
concepts. Specifically, we introduce the preliminaries
related simplicial meshes, conformity, and bisection
methods. Then, to summarize the marked bisection
algorithm [13], we introduce the notion of multi-id to
provide a unique identifier to the mid-vertices, and the
selection of the bisection edge in a consistent manner.

2.1 Simplicial meshes, conformity, and bi-
section

A simplex is the convex hull of n+1 points p0, . . . , pn ∈
R

n that do not lie in the same hyperplane. We denote
a simplex as Ã = conv(p0, . . . , pn). We identify each
point pi with a unique integer identifier vi that we
refer as vertex. Thus, a simplex is composed of n + 1
vertices and we denote it as Ã = (v0, . . . , vn) where vi
is the identifier of point pi. We have an application Π
that maps each identifier vi to the corresponding point
pi.

Given a simplex Ã, a k-entity is a sub-simplex com-
posed of k + 1 vertices of Ã, for 0 f k f n − 1. We
say that a 1-entity is an edge and an (n−1)-entity is a
face. The number of k-entities contained in a simplex
Ã is

�

n+ 1

k + 1

�

.

Particularly, the number of edges and faces of Ã is
�

n+ 1

2

�

=
n(n+ 1)

2
,

�

n+ 1

n

�

= n,

respectively. We associate each face of a simplex Ã to
its opposite vertex in Ã. Specifically, the opposite face
to vi is

»i = (v0, v1, . . . , vi−1, vi+1, . . . , vn).

We say that two simplices Ã1 and Ã2 are neighbors if
they share a face.

We define the bisection of a simplex as the operation
that splits a simplex by introducing a new vertex on
the selected refinement edge, see Figure 1. Then, the
vertices not lying on this refinement edge are con-
nected to the new vertex. These connections deter-
mine two new simplices.



Figure 1: Bisection of a tetrahedron.

Algorithm 1 Refining a subset of a mesh.

input: Mesh T, SimplicesSet S ¢ T
output: ConformalMarkedMesh T2

1: function refineMesh(T, S)
2: T1 = markMesh(T)
3: T2 = localRefine(T1,S)
4: return T2

5: end function

2.2 Marked bisection

To perform the bisection process, we adapt to the
n-dimensional case the recursive refine-to-conformity
scheme proposed in [11]. The marked bisection
method, Algorithm 1, starts by marking the initial un-
structured conformal mesh and then applies a local re-
finement procedure to a set of simplices of the marked
mesh. To do it so, we need to specify a conformal
marking procedure for simplices to obtain a marked
mesh T1. Using this marked mesh, the local refine-
ment procedure, Algorithm 9, first refines a set of sim-
plices, then calls a recursive refine-to-conformity strat-
egy, and finally renumbers the mesh. The refine-to-
conformity strategy, Algorithm 10, terminates when
successive bisection leads to a conformal mesh. Both
algorithms use marked bisection to refine a set of el-
ements, see Algorithm 11. See more details of the
involved algorithms in Appendix A.

2.3 Unique mid-vertex identifiers

We use multi-ids to uniquely identify the new vertices
that are created during the bisection process. A multi-
id is a sorted list of vertices, v = [v1, . . . , vk], where
v1 f v2 f . . . f vk. A simplex that contains multi-ids
is denoted as Ã = (v0, . . . ,vn).

When creating a new vertex after bisecting and edge,
we generate a multi-id for the new vertex. The new
multi-id is the combination of the multi-ids of the edge
vertices, v0 and v1. In particular, the resulting multi-
id is created by merging and sorting the the multi-ids
of v0 and v1. We remark that the ids can appear more
than once after generating a new multi-id.

2.4 Consistent bisection edge

For all mesh entities shared by different mesh ele-
ments, we must ensure that these entities have the

same bisection edge on all those elements. To this
end, we base this selection on a strict total order of
the mesh edges. The main idea is to order the edges
from the longest one to the shortest one, and use a
tie-breaking rule for the edges with the same length.
Specifically, we define the consistent bisection edge of
a simplex as the longest edge with the lowest global
index.

A shared edge between two simplices may have a dif-
ferent order of vertices, which can induce different re-
sults when computing the edge length from different
elements. To avoid these discrepancies, we first or-
der the edge vertices according to the vertex ordering.
Then, we compute the length of the edge using the
ordered vertices.

To define a strict total order of edges, when two edges
have the same length, we need a tie-breaking rule. To
this end, we use a lexicographic order for the global
edges in terms of the order of the vertices.

2.5 Similarity classes

Two simplices Ã1 and Ã2 are similar if there exists
an affine mapping F (x) = ¼Ax + b for ¼ ∈ R, an
orthonormal matrix A, and F (Ã1) = Ã2. Because sim-
ilarity is an equivalence relation, all the simplices that
are similar between them form a similarity class.

Although similar simplices may have different sizes,
alignments, orientations, or positions, they have the
same shape. Therefore, all the simplices in a similar-
ity class have the same shape quality. In Figure 2, we
show the obtained similarity classes by refining a tri-
angle. The initial triangle defines the first similarity
class, Figure 2(a). In the first bisection step, Figure
2(b), we obtain two additional similarity classes. The
next uniform refinement obtains an additional simi-
larity class and repeats the initial similarity class, see
Figure 2(c). Finally, when bisecting the triangles of
the fourth similarity class, we obtain the second and
third similarity classes, see Figure 2(d).

3. MARKED BISECTION IN GENERAL
DIMENSIONS

Following, we summarize an n-dimensional marked
bisection algorithm [13]. First, we detail the co-
dimensional marking process, which is based on the
consistent bisection edge of a simplex. Then, we de-
fine the three stages of the bisection process.

3.1 Co-dimensional marking process

We detail the codimensional marking process for a
simplex, in which the resulting mark is a bisection
tree. The bisection tree is computed by traversing



1

(a)

2 3

(b)

4 4

1 1

(c)

1 1

2

2

3

3

(d)

Figure 2: Similarity classes of a triangle obtained by bisection: (a) initial triangle; (b) one uniform refinement; (c)
two uniform refinements; and (d) further refinements do not increase similarity classes.

Algorithm 2 Mark a k-simplex.

input: k-Simplex Ã
output: BisectionTree t
1: function stageOneTree(Ã)
2: e = consistentBisectionEdge(Ã)
3: if dimÃ = 1 then

4: t = tree(node = e)
5: else

6: ([v1], [v2]) = e
7: »1 = oppositeFace(Ã, [v1])
8: »2 = oppositeFace(Ã, [v2])
9: t1 = stageOneTree(»1)

10: t2 = stageOneTree(»2)
11: t = tree(node = e, left = t1, right = t2)
12: end if

13: return t
14: end function

the sub-entities of the simplex in a recursive manner
and selecting the consistent bisection edge of each sub-
simplex, see Algorithm 2. The resulting bisection tree
has height n, and the tree nodes of level i correspond
to the consistent bisection edges of sub-simplices of
co-dimension i (dimension n− i).

Next, we detail the codimensional marking process for
a single simplex, Algorithm 2. Since the codimensio-
nal marking process is the first step of the mesh re-
finement algorithm, the length of the multi-ids of all
simplices is one. The input of the function is a simplex
Ã = ([v0], . . . , [vn]) and the output is the correspond-
ing bisection tree. First, we obtain the consistent bi-
section edge, e, of the simplex, see Line 2. If Ã is an
edge, this corresponds to the base case of the recursion
and we return a tree with only the root node. Oth-
erwise, we obtain the opposite faces of the vertices of
the bisection edge, see Lines 7–8. Then, we recursively
call the marking process algorithm for the faces »1 and
»2, and we obtain the corresponding trees t1 and t2,
see Lines 9–10. Finally, we build the bisection tree t
with the bisection edge as root node and the trees t1
and t2 as left and right branches, see Line 11.

Algorithm 3 Bisection of a marked simplex Ä.

input: MarkedSimplex Ä
output: MarkedSimplex Ä1, MarkedSimplex Ä2
1: function bisectSimplex(Ä)
2: l = level(Ä)
3: if l < n− 1 then

4: Ä = TreeSimplex(Ä)
5: Ä1, Ä2 = bisectStageOne(Ä)
6: Ä1, Ä2 = MarkedSimplex(Ä1, Ä2)
7: else if l = n− 1 then

8: Ä = TreeSimplex(Ä)
9: µ1, µ2 = bisectCastToMaubach(Ä)

10: Ä1, Ä2 = MarkedSimplex(µ1, µ2)
11: else

12: µ = MaubachSimplex(Ä)
13: µ1, µ2 = bisectMaubach(µ)
14: Ä1, Ä2 = MarkedSimplex(µ1, µ2)
15: end if

16: return Ä1, Ä2
17: end function

Algorithm 4 Bisect a marked tree-simplex.

input: TreeSimplex Ä
output: TreeSimplex Ä1, TreeSimplex Ä2
1: function bisectStageOne(Ä)
2: (Ã, »̄, t, l) = Ä
3: e = root(t) ▷ Bisection edge
4: Ã1, »̄1, Ã2, »̄2 = bisectTreeSimplex(Ã, »̄, e, l)
5: t1 = left(t); t2 = right(t) ▷ Bisect tree
6: l1 = l + 1; l2 = l + 1 ▷ Bisect level
7: Ä1 = (Ã1, »̄1, t1, l1)
8: Ä2 = (Ã2, »̄2, t2, l2)
9: return Ä1, Ä2

10: end function

3.2 First bisection stage: tree simplices

In the first stage, we bisect the simplices using the bi-
section trees computed with the codimensional mark-
ing process. The first stage is used in the first n − 2
bisection steps. Moreover, during the refinement pro-
cess we store the new mid-vertices into »̄. Thus, in
the second stage, we are able to reorder the generated
simplices and, in the third stage, use newest vertex
bisection. To this end, Algorithms 4 and 5 detail the



Algorithm 5 Bisect a tree-simplex.

input: Simplex Ã, l-List »̄, Edge e, Level l
output: Simplex Ã1, (l + 1)-List »̄1, Simplex Ã2,

(l + 1)-List »̄2

1: function bisectTreeSimplex(Ã, »̄, e, l)
2: (v0,v1, . . . ,vn) = Ã
3: ([v1,l−1, v2,l−1], . . . , [v1,0, v2,0]) = »̄
4: ([v1,l ], [v2,l ]) = e
5: [v1,l , v2,l ] = midVertex([v1,l ], [v2,l ])
6: (i1, i2) = simplexVertices(Ã, e)
7: Ã1 = (v0, . . . ,vi2−1, [v1,l, v2,l],vi2+1, . . . ,vn)
8: Ã2 = (v0, . . . ,vi1−1, [v1,l, v2,l],vi1+1, . . . ,vn)
9: »̄1 = ([v1,l , v2,l ], [v1,l−1, v2,l−1] . . . , [v1,0, v2,0])

10: »̄2 = ([v1,l , v2,l ], [v1,l−1, v2,l−1] . . . , [v1,0, v2,0])
11: return Ã1, »̄1, Ã2, »̄2

12: end function

Algorithm 6 Bisect to Maubach

input: TreeSimplex Ä
output: MaubachSimplex µ1, MaubachSimplex µ2

1: function bisectToMaubach(Ä)
2: (Ã, Ã̄, t, l) = Ä
3: e = root(t)
4: Ã1, »̄1, Ã2, »̄2 = bisectTreeSimplex(Ã, »̄, e, l)
5: Ã̄1, Ã̄2 = castToMaubach(e, »̄1, »̄2)
6: d1 = n; d2 = n
7: l1 = l + 1; l2 = l + 1
8: µ1 = (Ã̄1, d1, l1)
9: µ2 = (Ã̄2, d2, l2)

10: return µ1, µ2

11: end function

bisection process of a tree simplex in the first stage.

3.3 Second bisection stage: casting to
Maubach

We next detail the second stage of the bisection
method for simplices, a stage that is used when the
descendant level of a tree-simplex is l = n − 1. In
this stage, after bisecting a tree simplex, we reorder
the vertices of the bisected simplices in order to apply
newest vertex bisection in the third stage. This pro-
cess is explained in Algorithms 6 and 7, in which a tree
simplex, Ä, is bisected into two Maubach simplices, µ1

and µ2.

3.4 Third stage: Maubach’s bisection

Finally, we detail the third stage of the bisection
method for simplices, which used when the descendant
level of a Maubach simplex, µ, is l g n. In this stage,
we use Maubach’s algorithm to favor the conformity,
finiteness, stability, and locality properties. We rein-
terpret Maubach’s algorithm using tagged simplices

Algorithm 7 Cast to Maubach.

input: Edge e, n-List »̄1, n-List »̄2

output: n-Simplex Ã̄1, n-Simplex Ã̄2

1: function castToMaubach(e, »̄1, »̄2)
2: ([v1,n−1], [v2,n−1]) = e
3: ([v1,n−1, v2,n−1], . . . , [v1,0, v2,0]) = »̄1

4: ([v1,n−1, v2,n−1], . . . , [v1,0, v2,0]) = »̄2

5: Ã̄1 = ([v1,n−1], [v1,n−1, v2,n−1], . . . , [v1,0, v2,0])
6: Ã̄2 = ([v2,n−1], [v1,n−1, v2,n−1], . . . , [v1,0, v2,0])
7: return Ã̄1, Ã̄2

8: end function

Algorithm 8 Adapted Maubach’s algorithm.

input: MaubachSimplex µ
output: MaubachSimplex µ1, MaubachSimplex µ2

1: function bisectMaubach(µ)
2: ((v0,v1, . . . ,vn), d, l) = µ
3: w = midVertex(v0,vd)
4: Ã̄1 = (v0, . . . ,vd−1,w,vd+1, . . . ,vn)
5: Ã̄2 = (v1, . . . ,vd,w,vd+1, . . . ,vn)

6: Set d′ =

 

d − 1, d > 1
n, d = 1

7: d1 = d′; d2 = d′

8: l1 = l + 1; l2 = l + 1
9: µ1 = (Ã̄1, d1, l1)

10: µ2 = (Ã̄2, d2, l2)
11: return µ1, µ2

12: end function

and multi-ids in Algorithm 8.

4. ESTIMATION OF THE NUMBER OF
SIMILARITY CLASSES

We estimate an upper bound of the number of simi-
larity classes obtained with marked bisection, and we
show that this number is sub-optimal. That is, it is
greater than the number of similarity classes obtained
using newest vertex bisection.

Lemma 4.1 (Newest vertex bisection for triangu-
lar meshes). The marked bisection is equivalent to
Maubach’s bisection for 2-simplices.

Proof. The co-dimensional marking process generates
three possible bisection trees for 2-simplices. Those



([vi1 ], [vi2 ])

([vi0 ], [vi1 ]) ([vi0 ], [vi2 ])

(a)

([vi0 ], [vi2 ])

([vi0 ], [vi1 ]) ([vi1 ], [vi2 ])

(b)

([vi0 ], [vi1 ])

([vi0 ], [vi2 ]) ([vi1 ], [vi2 ])

(c)

Figure 3: The three possible bisection trees ti
corresponding to the consistent bisection edges (a)
([vi1 ], [vi2 ]), (b) ([vi0 ], [vi2 ]), and (c) ([vi0 ], [vi1 ]).

bisection trees are

([v1], [v2])

([v0], [v1]) ([v0], [v2]) ,

([v0], [v2])

([v0], [v1]) ([v1], [v2]) ,

([v0], [v1])

([v0], [v2]) ([v1], [v2]) .

These trees are equivalent to the obtained ones
when applying Maubach’s method to the triangles
([v1], [v0], [v2]), ([v0], [v1], [v2]), and ([v0], [v2], [v1]),
with Maubach tag d = 2 and bisection level l = 0.
Therefore, for triangular meshes the presented marked
bisection algorithm is equivalent to Maubach’s algo-
rithm.

Proposition 4.1 (Tagging with d = 2 after step
n− 2). Let Ã be a simplex marked with the co-dimen-
sional marking process, and consider the mesh Qσ

n−2

obtained after n− 2 uniform refinements with marked
bisection. Then, we can map a tree-simplex Ä of Qσ

n−2

to a Maubach simplex µ with descendant level l = n−2
and tag d = 2.

Proof. Let Ã0 be a simplex marked with the co-di-
mensional marking process and Qσ0

n−1 be the mesh ob-
tained after n − 2 uniform marked bisection refine-
ments. Let Ä ∈ Qσ0

n−2 be a tree-simplex of the form

Ä = (Ã, »̄, t, l = n − 2). After applying n − 2 uniform
refinements with marked bisection, we know that Ã is
composed of 3 original vertices and n−2 multivertices.
That is,

Ã = {[vi0 ], [vi1 ], [vi2 ], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]}.

Since the bisection tree t of Ã is composed of vertices
[vi0 ], [vi1 ], and [vi2 ], that define a triangle, its bisection
tree is equivalent to the bisection tree of a triangle. By
Lemma 4.1, t is equivalent to the bisection tree of a
tagged triangle. Thus, t is one of the bisection trees
depicted in Figure 3.

If we map the tree-simplex Ä corresponding to the sim-
plex Ã to a Maubach simplex µ = (Ã̄, l = n−2, d = 2),
we have that there are three possible simplices Ã̄, il-
lustrated in Equation (1):

([vi1 ], [vi0 ], [vi2 ], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]), (1a)

([vi0 ], [vi1 ], [vi2 ], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]), (1b)

([vi0 ], [vi2 ], [vi1 ], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]). (1c)

We recall that we sorted the vertices [vi0 ], [vi1 ], and
[vi2 ] according to the tagged triangles of the proof
of Lemma 4.1. Thus, we have that the simplices of
Equations (1a)–(1c) correspond to the bisection trees
depicted in Figures 3(a)–3(c).

Then, it only remains to check that if we apply two
uniform tagged-bisection steps to any simplex of Equa-
tion (1), the obtained Maubach simplices are equal to
the Maubach simplex obtained after n uniform refine-
ments with marked bisection.

For the sake of simplicity, we only perform the rea-
soning for the simplex in Equation (1a). Thus, let
µ = (Ã̄, l = n − 2, d = 2) be a Maubach simplex,
where Ã̄ is defined in Equation (1a). Performing the
first Maubach’s bisection step, we obtain two children
µ1 = (Ã̄1, l = n−1, d = 1) and µ2 = (Ã̄2, l = n−1, d =
1), where

Ã̄1 = ([vi1 ], [vi0 ], [vi1 , vi2 ],

[v1,n−3, v2,n−3], [v1,n−4, v2,n−4], . . . , [v1,0, v2,0]),

Ã̄2 = ([vi0 ], [vi2 ], [vi1 , vi2 ],

[v1,n−3, v2,n−3], [v1,n−4, v2,n−4], . . . , [v1,0, v2,0]),

According to Maubach’s algorithm, the bisection edge
of level l = n− 2 is ([vi1 ], [vi2 ]). This bisection edge is
the same as the consistent bisection edge according to
the bisection tree in Figure 3(a). Therefore, we have
that [vi1 , vi2 ] = [v1,n−2, v2,n−2] and that this tagged
bisection step is the same as the one performed using



marked bisection. We substitute the new multivertex
in Ã̄1 and Ã̄2 to obtain

Ã̄1 = ([vi1 ], [vi0 ], [v1,n−2, v2,n−2],

[v1,n−3, v2,n−3], . . . , [v1,0, v2,0]),

Ã̄2 = ([vi0 ], [vi2 ], [v1,n−2, v2,n−2],

[v1,n−3, v2,n−3], . . . , [v1,0, v2,0]).

Again, for the sake of simplicity, we only perform a
tagged bisection on simplex µ1, since the same argu-
ment can be applied to simplex µ2. We have that the
result of Maubach’s bisection on µ1 are the simplices
µ1,1 = (Ã̄1,1, l = n, d = n) and µ1,2 = (Ã̄1,2, l = n, d =
n), where

Ã̄1,1 = ([vi1 ], [vi0 , vi1 ], [v1,n−2, v2,n−2], . . . , [v1,0, v2,0]),
Ã̄1,2 = ([vi0 ], [vi0 , vi1 ], [v1,n−2, v2,n−2], . . . , [v1,0, v2,0])

According to Maubach’s tagged bisection, the bisec-
tion edge of level l = n − 1 is ([vi0 ], [vi1 ]). Again,
this bisection edge is the same as the consistent bisec-
tion edge according the bisection tree in Figure 3(a).
Therefore, we have that [vi0 , vi1 ] = [v1,n−1, v2,n−1].

Analogously, the bisection edge of level l = n − 1 is
([vi0 ], [vi1 ]). Therefore, by susbtituting the new mul-
tivertex in both children, we obtain

Ã̄1,1 = ([vi1 ], [v1,n−1, v2,n−1],

[v1,n−2, v2,n−2], . . . , [v1,0, v2,0]),

Ã̄1,2 = ([vi0 ], [v1,n−1, v2,n−1],

[v1,n−2, v2,n−2], . . . , [v1,0, v2,0]).

After performing the mapping to Maubach process at
the end of the second stage, we obtain that [vi0 ] =
[v1,n−1] and [vi1 ] = [v2,n−1]. Therefore, the obtained
simplices are the same that the ones obtained after n
uniform refinements with marked bisection. That is,
Ã̄1,1 and Ã̄1,2 are equal to the simplices obtain at Lines
5 and 6 of Algorithm 7, respectively.

The same argument can be applied when bisecting
the simplex µ2, and also the rest of the simplices in
Equation (1). Therefore, we have proved that the sim-
plices obtained at level l = n − 2 can be mapped to
Maubach’s simplices of tag d = 2.

Now, we can state the theorem for the upper bound
Sn over the similarity classes generated by the marked
bisection algorithm. To do that, we consider uniform
refinements in order to generate the maximum number
of simplices per iteration. Thus, let Qσ

0 = Ã and

Qσ
k = bisectSimplices(Qσ

k−1,Q
σ
k−1)

the obtained mesh after performing k uniform refine-
ments, a mesh Qσ

i that is composed of # (Qσ
i ) = 2i

simplices. Considering all the meshes Qσ
0 , . . .Q

σ
k , we

have at most

k
�

i=0

#(Qσ
i ) =

k
�

i=0

2i = 2k+1 − 1 (2)

different simplices.

Theorem 4.1 (Number of similarity classes for
marked bisection). Let Ã be a simplex marked with
the co-dimensional marking process. Assume that
from iteration k, the bisection process is equivalent to
Maubach’s bisection. Then, the number of similarity
classes generated by the marked bisection method is at
most

Sn = (2k − 1) + 2kMn,

where Mn = nn!2n−2 is the maximum number of sim-
ilarity classes of newest vertex bisection.

Proof. Let Ã be a simplex marked with the co-dimen-
sional marking process. Consider k uniform refine-
ments with marked bisection such that further refine-
ments of marked bisection are equivalent to Maubach’s
bisection. By Equation (2), the number of similarity
classes generated from iteration 0 to k− 1 is, at most,
2k − 1. Since the number of simplices of Qσ

k is 2k,
the number of simplices generated using Maubach’s
algorithm is 2kMn, where Mn is a bound of simi-
larity classes of Maubach’s algorithm, see Theorem
4.5 of [11]. Finally, summing the two values we ob-
tain that the number of similarity classes is at most
Sn = (2k − 1) + 2kMn, as we wanted to see.

Corollary 4.1.1. In the presented marked bisection,
k is at most n−2, and the number of similarity classes
is at most

Sn = (2n−2−1)+2n−2Mn = (2n−2−1)+2n−2nn!2n−2.

Proof. By Proposition 4.1, at iteration n − 2 we can
map all the simplices of Qσ

n−2 to Maubach simplices
with descendant level l = n− 2 and tag d = 2. There-
fore, by Theorem 4.1, the number of similarity classes
generated by the marked bisection algorithm is at most

Sn = (2n−2 − 1) + 2n−2Mn.

As a consequence of Corollary 4.1.1, the additional
number of similarity classes obtained with marked bi-
section may grow exponentially with the dimension.
Therefore, marked bisection is only suitable for lower
dimensions, when the additional number of similarity
classes is also small.



5. NUMBER OF UNIFORM
REFINEMENTS TO OBTAIN ALL

THE SIMILARITY CLASSES

To understand the cyclic structure of the similarity
classes, we want to calculate the minimum number of
uniform refinements required to generate all the simi-
larity classes with the proposed marked bisection. To
this end, we first compute the number of uniform re-
finements to obtain all similarity classes with newest
vertex bisection.

Newest vertex bisection generates at most Mn =
nn!2n−2 similarity classes, see Theorem 4.5 of [11]. We
remark that the number of generated similarity classes
is an upper bound and therefore, for some simplices
we can obtain less similarity classes than Mn. Thus,
in the case that the method generates Mn similarity
classes, it needs to refine at least Kn times uniformly
to generate all of them, where Kn holds that

2Kn+1 − 1 g Mn = nn!2n−2.

Thus, Kn has to fulfill that

2Kn+1 g 1 + nn!2n−2.

Applying logarithms in both sides, we obtain that

Kn g +log2(1 + nn!2n−2), − 1.

Theorem 5.1 (Number of uniform refinements to ob-
tain all similarity classes). Let Ã be a simplex marked
with the co-dimensional marking process. Assume that
from iteration k, the bisection process is equivalent to
Maubach’s bisection. Then, the minimum number of
uniform refinements to obtain all the similarity classes
in marked bisection is

In = k +Kn.

Proof. The first k uniform refinements are performed
using marked bisection. Then, the following refine-
ments are performed using newest vertex bisection.
Thus, from the refinement k + 1 onward, all the sim-
plices are bisected using newest vertex bisection. To
generate all the similarity classes of this simplices we
need at least Kn uniform refinements. Therefore, to
generate all the similarity classes of the initial simplex
we need at least In = k+Kn uniform refinements

Corollary 5.1.1. In the presented marked bisection, k
is at most n−2, and therefore, the minimum number of
uniform refinements to obtain all the similarity classes
is

In = n− 2 +Kn.

Proof. By Proposition 4.1, at bisection level n− 2 we
can map the obtained simplices to Maubach simplices

with tag d = n. Therefore, by Theorem 5.1, and using
k is at most n − 2, the minimum number of uniform
refinements to obtain all the similarity classes is

In = n− 2 +Kn.

As a consequence of Corollary 5.1.1, we see that to
obtain all the similarity classes, we first need to bi-
sect the simplices until the bisection process is driven
by newest vertex bisection. Then, we need to perform
the required number of iterations to obtain all the sim-
ilarity classes of newest vertex bisection. In the case
of the presented marked bisection, the first stages are
performed in the first n− 2 iterations.

6. EXAMPLES

We present an example in which we compute the num-
ber of similarity classes of different simplices and com-
pare the obtained number with our upper bound. We
have computed the shape quality of the mesh using
the expression

n det(S)2/n

tr(StS)
,

where S is the Jacobian of the affine mapping between
the ideal equilateral simplex and the physical simplex
[16, 17].

All the results have been obtained on a MacBook Pro
with one dual-core Intel Core i5 CPU, with a clock fre-
quency of 2.7GHz, and a total memory of 16GBytes.
As a proof of concept, a mesh refiner has been fully
developed in Julia 1.4. The Julia prototype code is
sequential (one execution thread), corresponding to
the implementation of the method summarized in this
work.

6.1 Number of similarity classes

In this example, we show the number of similarity
classes obtained with the marked bisection algorithm
for different simplices and dimension. To this end, we
uniformly refine an equilateral simplex, a Cartesian
simplex, a Kuhn simplex, and an irregular simplex for
dimensions two, three, four, and five. The equilat-
eral simplex has all its edges of the same length, the
Cartesian simplex has vertices determined by the ori-
gin and the canonical vectors, the Kuhn simplex is
one of the simplices obtained after dividing a hyper-
cube with Coxeter-Freudenthal-Kuhn algorithm, and
the irregular simplex has all of its edges with different
lengths.

We numerically predict the number of similarity
classes using the quality of the simplices as a proxy.



(a) (b) (c) (d)

Figure 4: Three-dimensional simplices considered in example 1: (a) equilateral; (b) Cartesian; (c) Khun; and (d)
irregular.

Table 1: Number of generated similarity classes by marked bisection.

Dimension Equilateral Cartesian Kuhn Irregular Sn Mn Sn/Mn

2 3 1 1 4 4 4 1.00
3 17 17 3 69 73 36 2.02
4 52 45 4 1119 1539 384 4.01
5 185 301 5 32979 38407 4800 8.00

Table 2: Number of uniform refinements to generate all the similarity classes.

Dimension Equilateral Cartesian Kuhn Irregular In Kn In −Kn

2 2 2 2 2 2 2 0
3 7 7 2 7 6 5 1
4 10 10 3 13 10 8 2
5 15 18 4 18 15 12 3

Specifically, we assign an obtained shape quality to
a similarity class. With this idea, we uniformly re-
fine the initial simplices and their descendants until
the bisection process does not generate more similar-
ity classes.

Table 1 shows the number of obtained similarity
classes for each case. The equilateral and Cartesian
simplex have fewer similarity classes than Sn. That
is because they have geometric symmetries, and thus
marked bisection generates less similarity classes than
Sn. On the other hand, the Kuhn simplex is the
one that generates the minimum number of similarity
classes. That is because marked bisection achieves its
optimal number of similarity classes with structured
meshes, which are fully composed of Khun simplices.
Finally, the irregular simplex generates the maximum
number of similarity classes due to its lack of symme-
try. That is, it generates the highest number of sim-
ilarity classes in comparison with the other simplices
but does not achieves the maximum number of simi-
larity classes. As the dimension increases, the number
of similarity classes also increases in all the cases.

Table 2 shows the number of uniform refinements per-
formed to generate the similarity classes of Table 1,
and the a lower bound over the number of uniform re-
finements to generate Sn similarity classes. We see
that the equilateral, the Cartesian, and the irregu-

lar simplices are equal or exceed the number of min-
imum uniform refinements to generate the similarity
classes of Table 1. Moreover, the number of uniform
refinements of the equilateral and Cartesian simplices
is smaller than the irregular simplex for 4D and 5D.
For the Kuhn simplex, we can see that the number of
uniform refinements to achieve the generated number
of similarity classes is n, except in the 2D case. This is
so because the initial simplex is the unique similarity
class. Generally, when the number of similarity classes
becomes larger, we need to perform more uniform re-
finements to generate them.

In all the cases, the estimated and the obtained num-
ber of similarity classes are similar. Note that the
predicted number of similarity classes for marked bi-
section is larger that the number of similarity classes
of newest vertex bisection. Moreover, the ratio of sim-
ilarity classes between marked bisection and newest
vertex bisection grows exponentially with the dimen-
sion. While we obtain the same number of similarity
classes for dimension two, there is a factor of eight for
dimension five. The difference between the number
of bisection steps to obtain all the similarity classes
in marked bisection and newest vertex bisection grows
linearly with the dimension.



7. CONCLUDING REMARKS

To measure the stability of marked bisection, we have
estimated in general dimensions an upper bound of the
number of obtained similarity classes. Moreover, to
understand the cyclic structure of similarity, we have
estimated the number of uniform refinements required
to generate all the similarity classes. These estimates
facilitate comparing marked bisection with the newest
vertex bisection.

This comparison is key because the newest vertex bi-
section is the optimal reference for the number of gen-
erated similarity classes. First, we compare the ratio
of the number of similarity classes between marked bi-
section and the newest vertex bisection. This ratio
grows exponentially with the dimension as O(2n−2).
Second, we compare the difference between the corre-
sponding numbers of uniform refinements required to
generate all the classes. This difference grows linearly
with the dimension as n− 2.

According to the scalings, we conclude that when lower
is the dimension more suitable is marked bisection for
local refinement of unstructured meshes. We also con-
clude that marked bisection is still the right choice
for unstructured meshes. The scalings seem to favor
the newest vertex bisection, but it has not been yet
guaranteed for unstructured meshes.

Although the two estimates are not tight, our results
show that they match the magnitudes and scalings
with the dimension. To tighten the bounds, we only
need to improve the similarity bound because the num-
ber of iterations depends on the former bound. Ac-
cordingly, we have planned to improve the similarity
bound by accounting for the possible simplicial sym-
metries that may arise during the first refinements of
marked bisection.

In perspective, the derived scalings further motivate
the need to guarantee the newest vertex bisection for
local refinement on unstructured meshes. In high-
dimensional applications, the reduced number of simi-
larity classes of the newest vertex bisection will lead to
higher mesh quality and quicker starts of the similarity
cycles.

8. ACKNOWLEDGEMENTS

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme un-
der grant agreement No 715546. This work has also
received funding from the Generalitat de Catalunya
under grant number 2017 SGR 1731. The work of
Xevi Roca has been partially supported by the Span-
ish Ministerio de Economı́a y Competitividad under
the personal grant agreement RYC-2015-01633.

Algorithm 9 Local refinement of a marked mesh.

input: ConformalMarkedMesh T and SimplicesSet

S ¢ T
output: ConformalMarkedMesh T ′

1: function localRefine(T, S)
2: T̄ = bisectSimplices(T,S)
3: T ′ = refineToConformity(T̄)
4: T0 = renumberMesh(T ′)
5: return T0

6: end function

Algorithm 10 Refine-to-conformity a marked mesh.

input: MarkedMesh T
output: MarkedMesh T ′ without hanging vertices
1: function refineToConformity(T )
2: S = getNonConformalSimplices(T)
3: if S ≠ ∅ then

4: T̄ = bisectSimplices(T,S)
5: T ′ = refineToConformity(T̄)
6: else

7: T ′ = T
8: end if

9: return T ′

10: end function

Algorithm 11 Bisect a set of simplices.

input: MarkedMesh T, SimplicesSet S
output: MarkedMesh T1

1: function bisectSimplices(T, S)
2: T1 = ∅
3: for Ä ∈ T do

4: if Ä ∈ S then

5: Ä1, Ä2 = bisectSimplex(Ä)
6: T1 = T1 ∪ Ä1
7: T1 = T1 ∪ Ä2
8: else

9: T1 = T1 ∪ Ä
10: end if

11: end for

12: return T1

13: end function

A. ALGORITHMS

In this appendix, we declare the necessary algorithms
to implement a marked bisection method, as seen in
Section 2.2. Using the conformingly-marked mesh,
the local refinement procedure, Algorithm 9, first re-
fines a set of simplices, then calls a recursive refine-to-
conformity strategy, and finally renumbers the mesh.
The refine-to-conformity strategy, Algorithm 10, ter-
minates when successive bisection leads to a conformal
mesh. Both algorithms use marked bisection to refine
a set of elements, see Algorithm 11.



References

[1] Rivara M.C. “Algorithms for refining triangular
grids suitable for adaptive and multigrid tech-
niques.” International Journal for Numerical
Methods in Engineering, vol. 20, no. 4, 745–756,
1984

[2] Rivara M.C. “Local modification of meshes for
adaptive and/or multigrid finite-element meth-
ods.” Journal of Computational and Applied
Mathematics, vol. 36, no. 1, 79–89, 1991. Spe-
cial Issue on Adaptive Methods

[3] Plaza A., Carey G.F. “Local refinement of simpli-
cial grids based on the skeleton.” Applied Numer-
ical Mathematics, vol. 32, no. 2, 195–218, 2000

[4] Plaza A., Rivara M.C. “Mesh Refinement Based
on the 8-Tetrahedra Longest-Edge Partition.”
Proceedings of the 12th International Meshing
Roundtable, pp. 67–78. 2003

[5] Mitchell W.F. “Adaptive refinement for arbitrary
finite-element spaces with hierarchical bases.”
Journal of Computational and Applied Mathe-
matics, vol. 36, no. 1, 65–78, 1991. Special Issue
on Adaptive Methods

[6] Kossaczký I. “A recursive approach to local mesh
refinement in two and three dimensions.” Jour-
nal of Computational and Applied Mathematics,
vol. 55, no. 3, 275–288, 1994

[7] Maubach J.M. “Local Bisection Refinement for
N -Simplicial Grids Generated by Reflection.”
SIAM Journal on Scientific Computing, vol. 16,
no. 1, 210–227, 1995

[8] Maubach J.M. “The efficient location of neigh-
bors for locally refined n-simplicial grids.” 5th
International Meshing Roundable, vol. 4, no. 6,
137–153, 1996

[9] Traxler C.T. “An algorithm for adaptive mesh
refinement in n dimensions.” Computing, vol. 59,
no. 2, 115–137, 1997

[10] Belda-Ferŕın G., Ruiz-Gironés E., Roca X. “Bi-
secting with optimal similarity bound on 3D un-
structured conformal meshes.” 2022 SIAM In-
ternational Meshing Roundtable (IMR), Virtual
Conference. Zenodo, 2021

[11] Arnold D.N., Mukherjee A., Pouly L. “Locally
Adapted Tetrahedral Meshes Using Bisection.”
SIAM Journal on Scientific Computing, vol. 22,
no. 2, 431–448, 2000

[12] Belda-Ferŕın G., Gargallo-Peiró A., Roca X. “Lo-
cal Bisection for Conformal Refinement of Un-
structured 4D Simplicial Meshes.” 27th Interna-
tional Meshing Roundtable, vol. 127, pp. 229–247.
Springer International Publishing, 2019

[13] Belda-Ferŕın G., Ruiz-Gironés E., Gargallo-Peiró
A., Roca X. “Conformal Marked Bisection for
Local Refinement of n-Dimensional Unstructured
Simplicial Meshes.” Computer-Aided Design, p.
103419, 2022

[14] Gutierrez C., Gutierrez F., Rivara M.C. “Com-
plexity of the bisection method.” Theoretical
Computer Science, vol. 382, no. 2, 131–138, 2007

[15] Aparicio G., Casado L.G., Hendrix E.M., G-Tóth
B., Garcia I. “On the minimum number of sim-
plex shapes in longest edge bisection refinement of
a regular n-simplex.” Informatica, vol. 26, no. 1,
17–32, 2015

[16] Knupp P.M. “Algebraic Mesh Quality Metrics.”
SIAM Journal on Scientific Computing, vol. 23,
no. 1, 193–218, 2001

[17] Liu A., Joe B. “On the Shape of Tetrahedra from
Bisection.” Mathematics of Computation, vol. 63,
no. 207, 141–154, 1994


