
SHRINK WRAP MESH GENERATION USING
MORPHOLOGICAL OPERATORS WITH SELECTED

APPLICATIONS

Vijai Kumar Suriyababu1,‡ Cornelis Vuik1 Matthias Möller1

1Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands,
{v.k.suriyababu,c.vuik,m.moller}@tudelft.nl

‡ Corresponding Author

ABSTRACT

Triangulated meshes discretized from commercial CAD applications often possess a considerable level of complexity.
However, when conducting external aerodynamics simulations at an earlier design stage, these meshes are way too
complex and contain complex features and topological holes. We propose a practical and fast algorithm to shrink
wrap triangulated surfaces with the sole intent of topology and surface simplification. Building upon the concepts
of mathematical morphology and newer advancements in geometry processing, such as generalized winding numbers,
we show that it is possible to build a straightforward and robust algorithm that can guarantee genus-zero surfaces.
Our approach uses a Cartesian background mesh (fixed and adaptive) to approximate an input triangulated surface’s
interior and exterior volume. We use an octree data structure for adaptive mesh refinement. Although we demonstrate
our algorithm exclusively on triangulated meshes, they are equally applicable to general polyhedral meshes. They
are also well suited for handling point clouds (oriented and unoriented), and we show some examples of the same
with some unoriented point clouds. We built our algorithms with a wide variety of applications in mind. However,
we showcase the applicability of our algorithms for aerodynamic simulations, fluid volume extraction, and surface
simplification. We also emphasize the practicality and ease of implementation of the proposed algorithms. We also
compare our algorithms with existing literature.

Keywords: mesh simplification, shrink wrapping, boolean operations, fluid volume extraction

NOMENCLATURE

M Triangulated mesh (or surface)
� Structuring element
�r Structuring element radius
Tl Topological sphere level
! Solid angle for a query point with respect

to an input mesh

1. INTRODUCTION

The shrink-wrapping algorithm can be a helpful tool
for remeshing triangulated (or any polyhedral) sur-
faces. Most algorithms take a volumetric approach to

solve the problem. They work by projecting a vox-
elized approximation of the input surface onto itself.
A few papers in the literature focus on this problem,
and most work is accomplished in the industry. At-
tene et al. [1] gives a very detailed comparison of dif-
ferent mesh repair algorithms. Their review article’s
“Global repair section” gives an excellent overview of
the state-of-the-art algorithms with a Global mesh re-
pair and simplification approach. A key highlight of
this discussion is that all authors take a volumetric
approach to the problem. However, none of these
explicitly solve the problem of shrink-wrapping with
CAE simulations in mind. They are generic mesh sim-
plification approaches, with the primary focus being

110

computer graphics applications. Some notable con-
tributions are from Esteve et al.[2] and Nooruddin et
al.[3], who also take volumetric approaches. Esteve et
al.[2] shrink a discrete membrane to re-mesh surface
meshes and point clouds, whereas Noorudin et al.[3]
take a strict morphological approach to the problem.
One major drawback in their works is a lack of con-
trol over the surface genus. In the case of Noorudin
et al.[2], they oversimplify the meshes in all of the
examples instead of our shrink-wrap mesh simplifica-
tion. They also do not guarantee a manifold mesh as
output, thus rendering their results unsuitable for nu-
merical simulation. Y. K. Lee et al. [4] gave a good
summary of the existing techniques that are tailored to
the problem of shrink-wrapping with engineering ap-
plications in mind. They highlight the e↵ectiveness of
these algorithms in closing gaps and removing interior
parts of complex geometry along with their potential
as remeshing algorithms. They also show that gap
detection and bridging are usually achieved with the
help of poor / coarser voxelization. There is often a
requirement to intersect these voxels with the input
surface mesh, increasing computational costs. Some
algorithms [5] require explicit tolerance values for the
gaps and holes, which could be advantageous in some
applications. However, we explicitly focus on fully au-
tomated genus simplification. Hence, we propose an
algorithm that can inherently close all the gaps in tri-
angulated surfaces and remove all internal structures.
The significant contribution in our work is an e�cient
way of computing genus simplified o↵set surface with
the help of morphological operators. Our algorithms
will guarantee an outcome even in the case of imper-
fect geometries. Imperfections can range from missing
triangles to non-manifold edges or completely sepa-
rated components. We demonstrate the same in our
numerical experiments. We also extend the existing
shrink-wrap algorithm for selective genus control. An
existing semi-heuristic algorithm that we developed [6]
for hole detection is used to control the closing opera-
tions so that only selective holes are closed.

2. MORPHOLOGICAL OPERATORS

Mathematical morphology is a vibrant subject that
finds typical applications in the area of image process-
ing [7]. However, it has been extended to many other
application areas, including three-dimensional geome-
try processing [8]. Broadly, the subject of mathemat-
ical morphology is composed of four operators.

1. Erosion (M ⌫ �)

2. Dilation (M � �)

3. Opening ((M ⌫ �) � �)

4. Closing ((M(��) ⌫ �)

Given a triangulated mesh M, a structuring element
� with a radius of �r, the erosion operator erodes a
surface iteratively for any given number of steps. The
dilation operator does the exact opposite and adds to
the given mesh. Our work is similar to the approach
of Zhen Chen et al. [9] in that they use morphological
operations to compute discrete surface o↵sets. Since
our focus here is a restricted form of mesh and topol-
ogy simplification, we take a lot of freedom to inter-
pret these morphological operators. We also do not
compute exact o↵set surfaces. Instead, we calculate
a simplified/approximated o↵set surface that is only
useful for topological simplification. We also use Oc-
trees to represent all operators, allowing the mesh to
be reused for numerical simulation. Finally, we in-
troduce a topological sphere level parameter similar
to the scaled structuring element radius given by �r

(scaled by the o↵set distance). We encourage reading
upon the work of Silvia Sellán et al. [10] for a more di-
rect interpretation of these operators in the context of
three-dimensional geometry processing. They explore
a surface-only approach that only modifies selective
areas of a surface mesh. However, as they point out,
their work su↵ers from the flaws of surface flows and
isn’t suitable for shrink wrapping applications. In our
work, we open a surface iteratively until the surface
has a spherical topology and then close it by iterative
erosion. We explain the di↵erent morphological oper-
ators in the context of mesh generation in detail in the
subsequent sections.

2.1 Mathematical morphology of surface
meshes

Morphological operators in our present investigation
do not di↵er very much from their image process-
ing counterparts. In image processing, one represents
morphological operators on simple two-dimensional
grids. For example, a binary image can be represented
on a Cartesian mesh with binary mask values (0 and
1). Therefore, the morphological operators in image
processing can be considered as two-dimensional sim-
plification of our morphological operators. First, we
represent a surface mesh in a fixed or adaptively re-
fined Cartesian mesh with binary values to identify the
geometry’s boundary. Then, we perform the morpho-
logical closing operation of this approximated geome-
try followed by surface extraction and projection. One
key di↵erence with our erosion operator is that we do
not erode the geometry beyond its original boundary
to preserve the internal volume. This is clearly shown
in subsequent sections.

Let us consider the dilation and erosion operators on
binary images and their geometric counterparts. Since
other operators such as opening and closing can be
built as a combination of these two, it is enough to

111

understand these two operators.

2.2 Dilation

We first dilate the given image with a square as a struc-
tural element. This is the most natural choice since the
images are represented as pixels. Furthermore, this
approach would only require adjacencies at the edge
level to find neighbours from a computational view-
point. Once the boundary of the image is identified,
one step of dilation becomes a straightforward prob-
lem of finding the neighbouring faces of the border.
The key detail in this approach is that the neighbours
should be chosen in the positive normal direction of
the boundary. Until a required criterion is achieved,
this process can then be repeated for any number of
steps.

Figure 1: Dilation operation on a binary image

This operation remains the same in mesh processing.
As stated earlier, we mark the boundary cells in a
Cartesian mesh. Then the dilation operation for mesh
processing is a natural extension of image processing
to a three-dimensional problem. This operation is ex-
plained in detail with algorithmic workflows for com-
puting a dilated surface from a triangulated mesh.

2.2.1 Erosion

The erosion operator also starts from the boundary of
a given image. First, however, it finds the neighbours
of the border in the negative normal direction. So
these cells would usually be part of the image itself.
A pivotal contrast to the dilation approach is that an
image cannot be eroded infinitely. Since at some point,
the erosion operation reaches a singularity.

In the case of shrink wrapping, erosion operation
should not destroy the internal volume of a surface
mesh. Hence, an erosion operation usually stops at
the boundary of a surface mesh.

2.2.2 Closing

The closing operator combines the dilation and erosion
operation. In the field of computer vision and image

Figure 2: Erosion operation on a binary image

processing, this serves as a tool to close holes (or miss-
ing pixels) in a binary image. We perform the same
operation on three-dimensional data for closing holes
in our algorithms. To provide an easy comparison
towards mesh processing, we have extracted a three-
dimensional surface of the same geometry (by extrud-
ing the contour in the Z direction) and performed the
closing operation on the same. The results for the
same can be seen in figure 4.

The two di↵erences from the image processing ap-
proach are as follows

• We do not erode beyond the boundary of the in-
put geometry

• We project the eroded geometry onto the input
geometry

Figure 3: Closing operation on a binary image (Black
blobs on the left indicate missing pixels). They are
equivalent to holes or missing triangles in a surface
mesh.

It can be observed in figure 4 that a closing opera-
tion on a surface not only closes the holes caused by
missing triangles. It also seals the topological holes
in a mesh. We leverage this benefit for shrink wrap-
ping surface meshes for external aerodynamic simula-
tions. However, the straightforward closing operation
on its own is not suitable since it has no stopping cri-
terion. Therefore, our workflow introduces a series
of algorithms and data structures such as octrees to
use these morphological operators e�ciently for shrink

112

Figure 4: Closing operation on a three dimensional surface. This geometry is equivalent to the two dimensional
binary images in figure 3. Closing operation is performed on the left most geometry and then projected onto the
ground truth.

wrapping surface meshes. We explain these in detail
in the subsequent section.

3. BASIC WORKFLOW

Our algorithm has the following basic components

1. Conversion of Boundary representation(B-Rep)
to a volumetric representation (V-Rep)

2. Computation of signed distance function

3. Dilation of the input surface for a given topolog-
ical sphere level

4. Erode the dilated surface to obtain a topologi-
cally hole-free o↵set surface

5. Iteratively project and smooth the dilated surface

6. Remesh to improve triangle quality (Optional)

We explain these individual components in detail
along with the respective algorithms in the subsequent
sections.

3.1 B-Rep to V-Rep

It was shown earlier that geometry information needs
to be encoded as binary images for e�cient computa-
tion of morphological operators in computer vision ap-
plications. This translates to a boolean value in every
voxel of a Cartesian mesh1 in three dimensions. How-
ever, it would require intersecting the surface mesh
with the Cartesian mesh. This would only work for

1We use the terms Cartesian mesh and octree inter-
changeably throughout the paper. The reader should be
aware that all the computations are performed on an oc-
tree, which we consider a special kind of Cartesian mesh.

watertight surface meshes and lead to some inaccura-
cies in the case of degenerate geometries. Hence, we
do not physically intersect the input geometry with
the Cartesian mesh. Since we only need a scalar field
to distinguish the inside and outside of the geome-
try. The usual workflow for Cartesian mesh generation
starts with a bounding box computation as shown in
figure 5. These can be an axis-aligned or oriented-
bounding box. In either case, the generated Cartesian
mesh would not be very beneficial for morphological
operations. Morphological operators such as erosion
and dilation are applied in successive layers. For ex-
ample, the dilation operator starts from the boundary
of a surface and dilates the surface one layer after an-
other, as shown in figure 1. Since we use a cube or
a voxel as a structuring element, it is easier to per-
form these operations successively if the geometry sits
approximately in the centre of the Cartesian mesh. If
the geometry is moved to the origin of the octree, a di-
lation operation may not completely dilate the entire
surface in a given step. First, the mini ball algorithm
[11] is used to obtain a tightly fitting sphere of an in-
put geometry as shown in figure 6. Then we compute
a bounding box for this sphere with a specified o↵-
set threshold to ensure that our geometry always sits
precisely at the centre of our voxelization. Next, we
refine all the cells inside the tightly fitting sphere as
shown in figure 7. Post refinement, the generalized
winding number approach [12] helps distinguish the
cells inside and outside the geometry. The generalized
winding number algorithm gives a solid angle value at
every vertex in the octree mesh. This value is thresh-
olded to mark the cells in the octree as inside, outside
or boundary cells. This refinement allows us to get a
more accurate surface description during the segmen-
tation process. Spherical refinement also limits the
inside-outside queries to the cells within the sphere.
As a result, we do not need to query the generalized
winding number for cells outside the sphere, thereby

113

saving computational time. Finally, we also ensure
a 2:1 refinement in our octree for all elements in our
workflow. The mesh generation approach referenced
in algorithm 1 can be used for any kind of numerical
simulation irrespective of the rest of the workflow.

Figure 5: Normal bounding box computation (In case
of many geometries, a manual o↵set threshold may be
required for ensuring there are enough layers of mesh
for morphological operations. The threshold might
also be di↵erent for di↵erent directions.)

Figure 6: Spherical bounding box computation (In
most cases, a threshold of 2 or 3 times the size of
the bounding sphere is enough for all morphological
operations. The scaling will be uniform irrespective of
the geometry since only the sphere is scaled and the
bounding box is always a perfect cuboid.

Figure 7: Spherical Refinement

Algorithm 1: B-Rep to V-Rep

Result: Voxelized mesh where every cell has a
scalar associated with it (inside /
outside)

Initialise Surface;
Compute a tight bounding sphere using the mini
ball algorithm and store its radius and centre ;

Calculate the bounding box of the sphere, which
is o↵set at a user-specified distance (2.0 in our
experiments);

Initialize a Cartesian mesh with a specified cell
size or number of cells (64 * 64 * 64 in all of our
experiments);

forall Cells of Cartesian mesh do
if Cell inside bounding sphere then

Mark for refinement;
end
else

Mark for coarsening;
end

end
forall Cells in bounding sphere do

Compute the Generalized winding number
(This indirectly gives us the solid angle for
all the cells in the octree);

end
Mark cells outside bounding sphere as outside
and store this in the respective cells;

forall Cells in bounding sphere do
if Solid angle is higher than 0.9 steradians
(based on our experimental observation)
then

Mark the cell as inside and store this in
the respective cell;

end
else

Mark the cell as outside and store this in
the respective cell;

end

end

3.2 Computation of signed distance func-
tion

It is evident that once the cells of the octree are classi-
fied into inside and outside (using any approach such
as generalized winding numbers in our case), an arti-
ficial signed distance function can be bestowed upon
the voxelization as shown in figure 9. We rely on Gen-
eralized winding numbers since they are swift even on
a CPU only computational environment and are im-
mune to imperfections in the input surface to a large
degree. A brief overview of this approach can be seen
in appendix A. However, for the rest of the algorith-
mic workflow, one only needs to categorize the cells
in the octree as inside or outside cells. These will

114

be used to build an approximate surface boundary
which can be used for morphological operations de-
scribed in the consequent sections. Our experimental
observation has shown that a solid angle value of 0.9
steradians indicates cells inside a surface mesh, and
everything else can be marked as outside. The bound-
ing sphere computed in the mesh generation algorithm
can be used to automatically mark all the cells outside
the sphere as outside cells.

We use the term artificial since we do not compute
the exact distance here. We only use an integer that
indicates a particular voxel’s relative position with its
respective boundary voxel. As will be evident later,
we do not need an exact signed distance field for com-
puting a Genus simplified o↵set surface. A similar
approach has been used by other researchers [13] to
calculate intersection-free o↵set surfaces. We achieve
the same by outward propagation from the zero level
set voxels. This outward propagation is done along the
normal outward direction of the surface mesh. Since
we mark all the cells in the octree as inside or out-
side, zero level set voxels or boundary voxels can be
determined by finding cells that contain faces that are
part of both inside and outside cells. As opposed to
the usual approaches, which intersect the surface mesh
with the octree mesh, our proposed method is highly
computationally e�cient. All the morphological op-
erations are explained with the help of a maple leaf
geometry shown in figure 8.

Figure 8: Maple leaf geometry

Figure 9: Artificial signed distance function of a
maple leaf (Computed using our approach)

3.3 Dilation driven approximated o↵sets

In the previous section, we proposed a straightforward
method to determine the zero level set or boundary
voxels of a given surface mesh inside an octree. We
already established that a dilation operation followed
by an erosion operation performed in a sequence leads
to the morphological closing operation as shown in fig-
ure 3. Our investigation also reveals that one does not
need to dilate the boundary voxels across the entire
voxelization. Instead, we only need to dilate the input
surface until we achieve a spherical topology. Here,
we use a user-specified parameter called “Topologi-
cal sphere level”. This parameter is the only user-
controlled input in the algorithm, and the choice of
topological sphere level dictates the number of out-
ward propagation levels as shown in algorithm 2. The
bigger the hole in the geometry, the larger the topolog-
ical sphere level. E↵ects of di↵erent Topological sphere
levels are clearly shown in the numerical experiments.
For example, the dilated maple leaf geometry can be
seen in figure 10. It is clearly evident that a spherical
topology is achieved after approximately 15 levels.

If complete automation is required from input to pro-
jection, the topological sphere level can be ignored,
and the geometry can be dilated to the maximum level.

3.4 Erosion of dilated o↵set surface

The dilated surface should now have a spherical topol-
ogy, and it needs to be eroded towards the input sur-
face. This process is similar to the dilation except for

115

Figure 10: Dilated Maple leaf geometry with a spher-
ical topology

Algorithm 2: Dilation of the input surface

Result: Dilated surface stored in the voxelized
mesh

Initialize interior cells as seed cells;
Initialize current topological sphere level to 0;
while current level topological sphere level
do

Initialize a newer seeds cells id vector;
forall cells in seed cells do

forall cell neighbours in voxelized mesh do
if Neighbour is outside cell then

Add neighbour to
newer seeds cells id;

end

end
Set newer seeds cells id as seed cells;
Increment current topological sphere level;
if current topological sphere level eq
topological sphere level then

Store these cells as
topological sphere cells;

end

end

end

the marching direction. The number of levels would be
the same as the topological sphere level chosen during
the previous step of the algorithm. Once eroded, this
will give a hole-free approximation of the input geome-
try. Once the surface is eroded to the given “Topolog-
ical Sphere Level”, the operation becomes straightfor-
ward. It is explained in detail in algorithm 3. The
scalar field can be directly eroded until it hits the
boundary voxels. This is where the erosion operation

di↵ers from the erosion operation in computer vision
algorithms. In the case of surface mesh, the geometry
is never eroded beyond the boundary voxels for vol-
ume preservation. This approach is relatively simple
since a manifold mesh can be easily extracted without
the need for any additional algorithms [14].

The o↵set surface is still embedded inside a volumetric
mesh as shown in figure 11, and a surface needs to be
extracted. Due to the artificial nature of the signed
levels in the volumetric mesh, it is easy to distinguish
the region where the genus simplified o↵set meets the
external o↵set surface. Surface extraction becomes a
simple task with this information. This is similar to
the approach proposed for identifying boundary voxels
from inside and outside voxels. The detailed algorithm
for surface extraction is listed in algorithm 4.

Figure 11: Eroded o↵set surface (Unsmoothed &
Hole Free)

Algorithm 3: Erosion of the dilated o↵set surface

Result: Eroded surface stored in the voxelized
mesh

Initialize topological sphere cells as seed cell ids;
forall topological sphere levels do

Initialize a newer seeds cells id vector;
forall cells in seed cells do

forall cell neighbours in voxelized mesh do
if Neighbour is from lower
topological sphere level then

Add neighbour to
newer seeds cells id;

end

end
Set newer seeds cells id as seed cells;

end

end
Final seed cells form the basis for the Genus
simplified o↵set surface;

116

Algorithm 4: Surface Extraction

Result: Genus simplified watertight surface
Initialize topological sphere cells as seed cell ids;
forall topological sphere levels do

Initialize a newer seeds cells id vector;
forall cells in seed cells do

forall cell neighbours in voxelized mesh do
if Neighbour is from lower
topological sphere level then

Add neighbour to
newer seeds cells id;

end

end
Set newer seeds cells id as seed cells;

end

end
Final seed cells form the basis for the Genus
simplified surface;

3.5 Projection and smoothing

The eroded surface needs to be projected onto the in-
put geometry. With practicality in mind, we chose a
point cloud- based approach over direct projection on
the triangulated surface. In realistic industrial geome-
tries, the construction of an AABB tree is costly and
time-consuming and leads to failure in many cases.
Since we chose to allow input meshes that are not per-
fectly two-manifold, the point cloud-based approach
will support a broader range of input meshes, includ-
ing those that are entirely degenerate, as shown in the
later section. We approximate the input geometry as
a uniformly sampled point cloud and then construct
a kD tree [15] on it. We also extended our algorithm
for point cloud due to this projection approach. How-
ever, one can choose a more sophisticated method that
projects directly onto the triangles in the input sur-
face. This might produce erroneous results if the sur-
face mesh is completely degenerate. We experimented
with both a direct projection approach and the one
using point cloud sampling as shown in algorithm 12
and the results were satisfactory for our point cloud
approach.

We can find the nearest neighbour in this point cloud
for every vertex in the eroded surface and move the
vertex to this position. Unfortunately, results do not
look good at this stage, and the mesh seems slightly
tangled. However, our experiments show that a few
cycles of Laplacian smoothing followed by projection
will immediately provide better quality results, as seen
in figure 5.

Our investigation also shows that the geometry can
be double wrapped to achieve better quality results.
In double wrapping, the final result from the first run

Algorithm 5: Projection and Smoothing

Result: Projected and smoothed mesh
Sample a uniform point cloud on the input
surface;

Build a kD tree on the uniformly sampled point
cloud;

forall vertices in the Extracted surface do
Find the nearest vertex in the kD tree and
move the vertex;

end
forall vertices in the projected mesh do

Find one ring neighbourhood;
Average the position of the current vertex
with the vertices from the one ring
neighbourhood ;

end

Figure 12: Projected & Smoothed Mesh

of the algorithm can be passed back onto the same
workflow to produce a better quality approximation.
The mesh at this stage is already analysis suitable. If
required, an optional remeshing step can be included
for improving the mesh quality further. The geome-
try practitioner is not required to follow our heuristic-
based approach. They can choose any remeshing al-
gorithm (commercial or public domain). However, the
proposed algorithms provide satisfactory results in our
investigation.

3.6 Remeshing and quality improvement
(Optional)

This step is entirely optional. The projected surfaces
are well suited for analysis, and we show the same
in numerical experiments for various surface and vol-
umetric PDEs. However, the smoothed surface may
still have a few tangled edges and triangles with lousy
quality. Hence, we propose a heuristic-based remesh-

117

Figure 13: Remeshed and quality improved maple
leaf geometry

ing approach to improve triangle quality quickly. An
overview of the same can be seen in algorithm 6. In
all our numerical experiments, this approach seems to
improve the mesh quality vastly.

Algorithm 6: Remeshing and quality improve-
ment algorithm (Heuristic driven)

Result: Quality improved mesh
Compute the bounding box of the wrapped mesh
and its diagonal length and o↵set the diagonal
length by 0.005 (Based on our experimental
observation);

Remove degenerated triangles;
Split long edges (edges longer than the diagonal
length with our o↵set);

Store the num vertices at this level;
while current num vertices ! =
previous num vertices do

Collapse short edges (threshold of 1e-06);
Remove obtuse triangles (Above 150.0);

end
Resolve self intersections;
Remove duplicated faces;
Remove isolated vertices;

An additional stopping criterion can ensure the ter-
mination of the algorithm. One can also replace this
heuristic with a more sophisticated remeshing algo-
rithm such as the one driven by di↵erent error metrics.
However, we understand that this heuristic-based ap-
proach is not very elegant. One can replace our al-
gorithm with a black-box remeshing algorithm from
libraries like CGAL[16]. Since we produce a genus

zero surface in most cases, spherical parameterization
based remeshing approaches can also be considered an
alternative. However, we found meshes at the projec-
tion stage suitable for numerical simulations. It is not
within the scope of our work to investigate a dedicated
remeshing approach. In fact, for the numerical exper-
iments shown in the subsequent section, we use the
geometries from the projection stage and ignore the
remeshing routine altogether.

4. NUMERICAL EXPERIMENTS

We perform experiments on a wide variety of input
geometries that help underscore the robustness of our
algorithm. We noticed that even in the case of entirely
ill-formed artefacts from industry, we could guarantee
some form of a Genus simplified geometry. A wide
variety of surfaces and their shrink-wrapped counter-
parts are shown in appendix B. In all cases, our al-
gorithm produced a valid two-manifold surface mesh
without any holes, and the Hausdor↵ distance was
within a reasonable range (99% of the vertices are close
to the original mesh).

4.1 E↵ect of topological sphere level

As stated earlier, “Topological sphere level” is the
only parameter in the algorithm. In simpler terms,
this is the number of layers the algorithm needs to
travel along the positive normal direction of an input
surface. It can be increased or decreased depending
on the size of the biggest hole in the geometry. Since
the algorithm is fast, the topological sphere level value
can be chosen even on a trial and error basis. The
algorithm could be allowed to propagate to the maxi-
mum possible level. However, this might significantly
increase the algorithm’s run time, which is entirely
unnecessary in our case. We show some examples of
the same in section 5.2.1 and some of its pleasant side
e↵ects.

4.2 E↵ect on bad quality geometries

We show a car geometry in figure 16 which is missing
most of its bottom. We use a coarser grid to pro-
duce a simplified approximation of the car geometry.
It can be seen that our algorithm produces a tight
wrap even in this case and simplifies the geometry.
Since the o↵set computation does not require an ex-
act segmentation of the geometry boundary, the hole
free o↵set computation works even in such extremely
poor quality geometries. The topological sphere level
can be tuned on a trial and error basis for such ge-
ometries until the complete geometry is wrapped. In
the case of skull geometry shown in figure 14, it has
many non-manifold edges and has many disconnected
components. There is no pre-processing requirement

118

on either of the geometries, and their shrink-wrapped
results are shown in figure 15 a perfect two-manifold
mesh without any leaks.

4.3 Boosting projection quality using ex-
ternal sources

We mentioned earlier that we double wrap the geome-
tries to achieve a better projection quality. This is
primarily due to the geometric structure of morpho-
logical erosion. It leads to a competitive projection
which can be beneficial in many cases. For example,
if the bottom is entirely missing, rather than failing
to close the hole in the bottom, vertices are projected
to the next closest area, which would be the bound-
ary of the bottom hole. This ensures a good priori for
the next wrapping stage. Hence, the double wrapping
stage would provide a better distribution of triangles.
This is an undesirable yet pleasant side e↵ect of the
competitive nature of the projection of the algorithm
to stick to whatever comes first. However, if the geom-
etry practitioner/end-user in the industry would like
to have better conditioning for such holes / even topo-
logical holes, using external sources would help. In
our earlier work [6], we proposed a semi heuristic al-
gorithm to detect topological and geometric cavities in
a triangulated mesh. Just like our present algorithm,
it does not need a perfect two manifold mesh. We
show later in section 5.2 that this can also be useful
for selective Genus closing.

4.4 Runtime analysis

The algorithm proposed in this paper is memory
bound, and memory usage depends entirely on the size
of the octree and the number of triangles in the in-
put mesh. Even though we mentioned the Topological
sphere level as the only parameter in the algorithm,
di↵erent geometric parameters related to octree could
also be tuned towards requirements. All the investi-
gations in the paper are carried out with a fixed ini-
tial grid size of 64 x 64 x 64 and 3 levels of spheri-
cal refinement, and it gives satisfactory results. The
code was implemented in C++ with OpenMP paral-
lelization, and the software is available as a binary (for
Linux) for reproduction. However, the source code is
not available due to commercial interests. All the re-
sults were obtained on a laptop with a 12 core Intel
Core i7 CPU with 64 gigabytes of RAM. The program
runtime (in minutes) versus the number of triangles in
the input mesh is shown in figure 17. Our algorithm
can scale linearly with the increasing number of tri-
angles. The largest triangulation in our investigation
had 23 million triangles, and the algorithm converged
to a manifold surface in under 10 minutes.

5. APPLICATIONS AND VARIANTS

5.1 Surface PDE

Surface-based finite element methods[17] and Bound-
ary element methods (BEM) have gained a lot of mo-
mentum in recent years among the geometry process-
ing and engineering research community in general.
Our goal here is to show the shrink-wrapped geome-
tries suitability for surface PDE computations on stan-
dard benchmark problems. For the first example, we
obtain selective eigenmodes of the Laplace equation
(using Laplace Beltrami operator) based on the work
of Vallet, B et al. [18]. For the second example, we
solve for Geodesic distance using the heat method on
our shrink-wrapped geometries. There are numerous
PDE’s and applications besides the ones shown in our
investigation. We make no e↵ort to suggest that we
modified or improved the methodology in either of
these examples. We only use these as an example to
show that our geometries are suitable for analysis.

5.1.1 Eigenmode decomposition of the
Laplace equation

Eigenmode decomposition of the Laplace equation[18]
can be helpful to represent functions on surfaces. It
is most useful in real-time deformation problems. We
use the famous Laplace-Beltrami operator to obtain its
eigen decomposition on shrink-wrapped geometries. A
generalized eigenvalue problem is of the form.

Ax = �Bx (1)

Here we use Laplace-Beltrami operator L for A and
use per vertex mass matrix M of the shrink-wrapped
surface as B. The Eigen mode functions can then be
represented as follows[18]:

f =
nX

i=1

ai�i (2)

where ai represents the scalar coe�cients and �i rep-
resents the Eigen functions which satisy ��i = �i�i.
Hence, we end up with an equation as follows

L�i = �iM�i (3)

For low-frequency modes, it produces smooth and
slowly changing functions on the shrink-wrapped
mesh. For a more thorough understanding of the the-
ory of manifold harmonics, it is best to refer to Vallet,
B et al. [18]. We only chose Eigen decomposition as an
example problem for showcasing the analysis suitabil-
ity of our shrink-wrapped surfaces, and a detailed ex-
planation of the underlying theory is beyond the scope

119

Figure 14: A human skull geometry with atleast 15 non-manifold edges and many disconnected components. Various
defects in a skull geometry (gaps, disconnected tooth, non-manifold edges and holes) are highlighted. It also includes
the bottom view of the skull which is entirely deformed.

of our work. We solve for the first three Eigenmodes
on a shrink-wrapped surface.

5.1.2 Geodesic distance (Heat method)

Geodesic distance has numerous applications in ge-
ometry processing and physics-driven simulations.
We calculate the geodesic distance using the heat
method[19] on our shrink-wrapped meshes. Geodesic
distance contours at di↵erent point sources show a
smooth transition of the heat contours across the sur-

face. Furthermore, there is no noticeable noise any-
where in the scalar field, proving the algorithm’s ro-
bustness in producing simulation capable meshes.

5.2 Selective Genus Closing

Almost all of the shrink wrapping algorithms are ei-
ther used as remeshing (i.e. preserve the genus of the
input mesh) or surface simplification algorithms (i.e.
turn the input mesh into a topological sphere or Genus
zero). However, there are scenarios where an indus-

120

(a) Wrapped (Front View) (b) Wrapped (Bottom View)

Figure 15: Wrapped skull geometry (Watertight geometry with a genus zero)

(a) (b)

(c)

Figure 16: Bad quality geometries shrink wrapped (Car with hole) - Input mesh along with wrapped output mesh.
It can be observed that the bottom of the car is completely closed.

trial practitioner is only interested in closing selective
holes. We could not find any other works that directly
address this problem. We propose two ways to do this

in our paper.

• Implicit Genus control

121

Figure 17: Run time comparison for increasing num-
ber of triangles

• Explicit Genus control

5.2.1 Implicit Genus control

In this case, no additional algorithms are required.
However, to achieve the necessary genus, it can be an
iterative process. We leverage the topological sphere
level’s ability to control the genus implicitly. A lower
value for the topological sphere level usually leads to
incomplete closing of the geometry. This can be a de-
sirable side e↵ect in the case of selective Genus control.
We have an example geometry in figure 20 below with
a huge topological hole in the top and a smaller one in
the bottom. The e↵ects of di↵erent topological sphere
levels are shown in the figure 21. It can be observed
that a value of 50 yields a Genus zero surface; how-
ever, at a level 10, only the smallest hole in the mesh
is closed.

5.2.2 Explicit Genus control

Explicit Genus control requires prior information
about the topological holes in the mesh. Therefore,
we use our topological hole detection algorithm to ac-
complish the same. In this case, topological hole infor-
mation is extracted from the hole detection algorithm,
and this information is used as a boundary condition in
the dilation stage. The hole detection algorithm would
provide the centre, and the radius of the holes and the
desired hole radius can be given as a criterion. The
radius criterion is only suitable for circular holes. If
the geometry also has non-circular holes, hole surface
patches from the algorithm can be used to compute
the surface area of individual holes. This can be used
as a further filtering criterion. Then the faces which
are part of the desired holes are not di↵used into the

(a) Mode 1

(b) Mode 2

(c) Mode 3

Figure 18: First 3 Eigen modes of a shrink wrapped
mesh

volume, thus preserving the structure. The algorithm
2 would have to be modified for Explicit Genus con-
trol, and it can be seen in algorithm 7

As explained earlier, the dilation process happens layer
by layer. Therefore, to achieve selective genus control,
one would have to ignore the blacklisted boundary cells
for the dilation process.

122

(a) Side

(b) Top

(c) Bottom

Figure 19: Geodesic distance computed on shrink
wrapped meshes at di↵erent sources using Heat
method

5.3 Fluid Volume Extraction

Fluid volume extraction is yet another excellent appli-
cation of our shrink wrapping algorithm. If the goal is
to generate the fluid volume or topological holes in a
geometry, simple boolean operations help extract these
volumes. There are practical di�culties in extracting
topological holes in a geometry (multiple holes) since

(a) Bigger hole

(b) Smaller hole

Figure 20: An example geometry with a big hole on
top and a small hole at the bottom

there will be a lot of noise to sift through. However,
suppose the industrial practitioner is interested in ex-
tracting a single fluid volume like a fluid volume of an
interior of a car. In that case, it is possible to auto-
mate the process entirely. Once we have a Genus zero
shrink-wrapped surface, a straightforward algorithm
can be laid out with the following steps

1. Subtract the genus zero shrink wrapped geometry
from the input geometry

2. Split the result based on connectivity and com-
pute the component volumes

3. Largest volume geometry is the fluid volume

We did not implement any of the boolean operations
for this algorithm and used the existing functionalities
from CGAL[16].

Smoothed particle hydrodynamics (SPH) is a meshless
method requiring a volumetric point distribution for
numerical simulation. In example 1, we show a partial
car in figure 22 that has been shrink-wrapped, and its

123

(a) Level 10 (top)

(b) Level 10 (bottom)

(c) Level 50

Figure 21: Shrink wrapped geometry for di↵erent
topological sphere levels

fluid volume has been extracted for a smoother particle
hydrodynamic simulation.

In the second example, we show a case for raspberry
pi, and its shrink-wrapped geometry and the subse-
quent fluid volume in figure 23. Again, it can be seen
that our algorithm produces a very clean fluid volume.
The results can be further de-noised to turn them into
developable surfaces.

5.4 External aerodynamic simulation

One of the primary focuses of our investigation is ex-
ternal aerodynamic simulations. Since they do not re-
quire all the internal components of a geometry, a sim-
plified geometry can be considered during early proto-
typing. We ran the RANS simulations on a generic
shrink wrapped car geometry using OpenFoam[20].
The car geometry was meshed using the snappy-
HexMesh tool from OpenFoam with a base refinement
of 10 cells in all three directions. We considered the

Algorithm 7: Dilation of the input surface (with
Genus control)

Result: Dilated surface stored in the voxelized
mesh

Detect holes using hole detection algorithm;
Mark the cells that intersect with the holes and
mark them as blacklisted cells;

Initialize interior cells as seed cells;
Ensure that the blacklisted cells are removed
from the initial seed cells;

Initialize current topological sphere level to 0;
while current level topological sphere level
do

Initialize a newer seeds cells id vector;
forall cells in seed cells do

forall cell neighbours in voxelized mesh do
if Neighbour is outside cell then

Add neighbour to
newer seeds cells id;

end

end
Set newer seeds cells id as seed cells;
Increment current topological sphere level;
if current topological sphere level eq
topological sphere level then

Store these cells as
topological sphere cells;

end

end

end

entire car geometry for numerical simulation without
using any symmetry boundary conditions. We used a
steady-state incompressible SIMPLE solver for solving
the Reynolds Averaged Navier Stokes equation with a
k-! SST turbulence model. A velocity inlet with a
velocity of 20 ms was used as the boundary condi-
tion. The shrink-wrapped geometry produces physi-
cally consistent results, as shown in the figure 24. We
have not made a rigorous mathematical analysis or
experimental verification for these simulations. We
only performed this simulation to show the suitability
of shrink-wrapped geometries for computational fluid
dynamic simulations.

6. COMPARISON AGAINST SIMILAR
APPROACHES

Many recent papers in geometry processing use deep
learning-based approaches to solve geometric prob-
lems. One such recent article is Point2Mesh[21] where
the authors shrink wrap an oriented point cloud based
on self-similarity. Their algorithm is built on mesh-
based convolutional neural networks and similar algo-
rithms found in computer vision. We extended our

124

(a) Wrapped Car

(b) Car fluid volume

Figure 22: A Partial car geometry that has been
shrink wrapped and its fluid volume extracted as a vol-
umetric point cloud. Volumetric point clouds are oth-
erwise considered as particle distributions for mesh-
less methods like Smoothed particle hydrodynamics
method.

shrink wrapping algorithm for point clouds to make a
fair comparison. Since we rely on generalized wind-
ing numbers for inside-outside segmentation, there is
a straightforward extension to point clouds. Usually,
this is done by computing point areas using a Voronoi
diagram[12]. However, we found that such a complex
approximation is not always required. We compute a
series of local triangulations and consistently ensure
their orientation using a greedy approach. Hence, our
algorithm does not require an oriented point cloud.
This modification ensures that we do not have to mod-
ify the rest of our shrink wrapping algorithm. Once
the inside-outside segmentation is done in the octree,
the rest of the algorithm remains the same. We chose
the same geometries as the authors, and we found that
we produce similar quality results in most cases. While
we provided a variety of heuristics to avoid this in a
surface mesh-based approach, we did not thoroughly
investigate the same for point clouds since it was be-
yond the scope of our work.

An observation can be made that our algorithm com-
plements the authors’ work nicely. If our algorithm
is considered an initial priori, it improves the con-

(a) Raspberry pi case geometry

(b) Wrapped Geometry

(c) Fluid volume

Figure 23: A raspberry pi case and its fluid volume

vergence speed of Point2Mesh algorithm. For exam-

125

Figure 24: External aerodynamic simulation of a
generic car model (shrink wrapped)

ple, their algorithm relies on an initial mesh computed
based on a convex hull approach and converges to a
ground truth based on self-similarity. However, our
algorithm’s mesh before the projection stage serves as
a better priori. It also converges the Point2Mesh[21]
algorithm in a fraction of the time. It can also be no-
ticed that their approach is not meant for mechanical
parts, and features found in CAD geometries cannot
be preserved without significant modifications. Our
goal is to produce genus-zero surfaces for aerodynamic
simulations. We optionally provide variants that allow
various levels of control over the genus of the wrapped
surface. However, their approach is strictly a surface
construction approach and does not consistently pro-
duce zero surfaces. It can only be achieved by stopping
the algorithm halfway; the reconstruction might not
be accurate globally in such cases, and a projection
might be required.

7. LIMITATIONS

Since the proposed algorithms are built on top of mor-
phological operators, they inherit the drawbacks of
mathematical morphology. In concave regions, the
erosion stops once it hits the closest triangle in the
mesh. This leads to over closing of specific features in
the mesh. However, since the primary application for
our algorithms is external aerodynamic simulations,
these do not make a massive di↵erence in the macro
scale. There are scenarios, however, where the algo-
rithm can significantly alter the geometry. The tech-
niques listed in section 4.3 can alleviate this problem
to a large extent. However, no algorithmic guarantees
can be made here.

8. CONCLUSION

We presented a practical algorithm that can perform
Genus simplified shrink wrapping for polyhedral sur-
faces with the help of morphological operators. We
also show that these algorithms extend easily for point
clouds. One can implement the algorithms proposed in

this paper in the same mesh used for numerical simu-
lation, thereby avoiding another expensive volumetric
mesh generation process. The algorithms also run at a
linear runtime and are not heavily CPU bound. Fur-
thermore, user-defined constraints and additional in-
teractivity could lead to further improvements in the
output quality of the algorithm. Finally, our fluid vol-
ume extraction variant of the algorithm can signifi-
cantly benefit industrial fluid dynamic practitioners.

ACKNOWLEDGEMENTS

Österreichische Forschungsförderungsgesellschaft has
funded this research under an industrial Ph.D. grant
titled “HIOMESH”.

References

[1] Attene M., Campen M., Kobbelt L.
“Polygon Mesh Repairing: An Appli-
cation Perspective.” ACM Comput.
Surv., vol. 45, no. 2, Mar. 2013. URL
https://doi.org/10.1145/2431211.2431214

[2] Esteve J., Brunet P., Vinacau A. “Approximation
of a Variable Density Cloud of Points by Shrink-
ing a Discrete Membrane.” Computer Graphics
Forum, vol. 24, no. 4, 791–807, 2005

[3] Nooruddin F., Turk G. “Simplification and re-
pair of polygonal models using volumetric tech-
niques.” IEEE Transactions on Visualization and
Computer Graphics, vol. 9, no. 2, 191–205, 2003

[4] Lee Y.K., Lim C.K., Ghazialam H., Vardhan H.,
Eklund E. “Surface Mesh Generation for Dirty
Geometries by Shrink Wrapping using Cartesian
Grid Approach.” P.P. Pébay, editor, Proceedings
of the 15th International Meshing Roundtable, pp.
393–410. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2006

[5] Wang Z.J., Srinivasan K. “An adaptive Carte-
sian grid generation method for ‘Dirty’ geome-
try.” International Journal for Numerical Meth-
ods in Fluids, vol. 39, no. 8, 703–717, 2002

[6] Vijai Kumar S., Vuik C. “A Simple and Fast Hole
Detection Algorithm for Triangulated Surfaces.”
Journal of Computing and Information Science
in Engineering, vol. 21, no. 4, 02 2021. URL
https://doi.org/10.1115/1.4049030. 044502

[7] Najman L., Talbot H. Introduction to
Mathematical Morphology, chap. 1, pp. 1–
33. John Wiley & Sons, Ltd, 2013. URL
https://doi.org/10.1002/9781118600788.ch1

126

Figure 25: Few point cloud geometries from Point2Mesh[21] along with its output. It can be noticed that our wrap
algorithm produces equally smooth results except for a few artefacts created as a result of morphological operators.

[8] Jeulin D. Analysis and Modeling of 3D
Microstructures, chap. 19, pp. 421–444.
John Wiley & Sons, Ltd, 2013. URL
https://doi.org/10.1002/9781118600788.ch19

[9] Chen Z., Panozzo D., Dumas J. “Half-Space
Power Diagrams and Discrete Surface O↵sets.”
IEEE Transactions on Visualization and Com-
puter Graphics, vol. 26, no. 10, 2970–2981, 2020

[10] Sellán S., Kesten J., Sheng A.Y., Jacobson
A. “Opening and Closing Surfaces.” ACM
Trans. Graph., vol. 39, no. 6, Nov. 2020. URL
https://doi.org/10.1145/3414685.3417778

[11] Gärtner B. “Fast and Robust Smallest Enclosing
Balls.” Proceedings of the 7th Annual European
Symposium on Algorithms, ESA ’99, pp. 325–338.
Springer-Verlag, London, UK, UK, 1999

[12] Barill G., Dickson N., Schmidt R., Levin D.I.,
Jacobson A. “Fast Winding Numbers for Soups
and Clouds.” ACM Transactions on Graphics,
2018

[13] Liu S., Wang C.C.L. “Fast Intersection-Free O↵-
set Surface Generation From Freeform Models
With Triangular Meshes.” IEEE Transactions
on Automation Science and Engineering, vol. 8,
no. 2, 347–360, 2011

[14] Lorensen W.E., Cline H.E. “Marching Cubes: A
High Resolution 3D Surface Construction Algo-
rithm.” Proceedings of the 14th Annual Confer-
ence on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’87, p. 163–169. Association
for Computing Machinery, New York, NY, USA,
1987

[15] Blanco J.L., Rai P.K. “nanoflann: a C++
header-only fork of FLANN, a library for
Nearest Neighbor (NN) with KD-trees.”
https://github.com/jlblancoc/nanoflann,
2014

[16] The CGAL Project. CGAL User
and Reference Manual. CGAL Edi-
torial Board, 5.3 edn., 2021. URL
https://doc.cgal.org/5.3/Manual/packages.html

127

[17] Alexa M., Wardetzky M. “Discrete Lapla-
cians on General Polygonal Meshes.” ACM
Trans. Graph., vol. 30, no. 4, Jul. 2011. URL
https://doi.org/10.1145/2010324.1964997

[18] Vallet B., Lévy B. “Spectral Geometry Process-
ing with Manifold Harmonics.” Computer Graph-
ics Forum, vol. 27, no. 2, 251–260, 2008. URL
https://doi.org/b24vx4

[19] Crane K., Weischedel C., Wardetzky M. “The
Heat Method for Distance Computation.” Com-
mun. ACM, vol. 60, no. 11, 90–99, Oct. 2017.
URL http://doi.acm.org/10.1145/3131280

[20] Foundation T.O. “OpenFOAM
v8 User Guide.”, 2021. URL
https://cfd.direct/openfoam/user-guide

[21] Hanocka R., Metzer G., Giryes R.,
Cohen-Or D. “Point2Mesh: A Self-Prior
for Deformable Meshes.” ACM Trans.
Graph., vol. 39, no. 4, jul 2020. URL
https://doi.org/10.1145/3386569.3392415

[22] Jacobson A., Kavan L., Sorkine-Hornung O. “Ro-
bust Inside-Outside Segmentation Using Gener-
alized Winding Numbers.” ACM Trans. Graph.,
vol. 32, no. 4, Jul. 2013

[23] Carrier J., Greengard L., Rokhlin V. “A
Fast Adaptive Multipole Algorithm for Parti-
cle Simulations.” SIAM J. Sci. Stat. Com-
put., vol. 9, no. 4, 669–686, Jul. 1988. URL
https://doi.org/10.1137/0909044

APPENDIX A: GENERALIZED WINDING
NUMBER BASED SOLID ANGLE FOR

SURFACE SEGMENTATION

We rely on a classical di↵erential geometry idea called
winding numbers, which uses solid angles for surface
segmentation. For a given surface S, for a query point
p, the solid angle is the signed surface area of the
projection of S onto the unit sphere centred at p as
shown in figure 26. We rely on its definition in discrete
setting[22].

!(p) = 2 ⇤ tan�1

✓
det([abc])

abc+ (a.b)c+ (b.c)a+ (c.a)b

◆

Triangle = {vi, vj , vk}
a = vi � p,b = vj � p, c = vk � p

a = kak
b = kbk
c = kck

(4)

Figure 26: Solid angle of a query point

Given this relation for solid angle given by !(p), we
can compute winding number as follows

w(p) =
PnTriangles

n=1

1
4⇡

!f (p)

For every query point, the direct implementation w(p)
would require the contribution of all triangles in the
surface mesh. Since this would yield a solution with
time complexity of O(n2), we rely on the work of
Gavin Barill et al[12]. They proposed a fast multi-
pole method[23] style implementation that uses direct
computation for triangles near the query point and
approximates the result everywhere else, making it a
O(log(n)) algorithm.

APPENDIX B: VARIOUS INPUT
GEOMETRIES AND THEIR SHRINK

WRAPPED RESULTS

We show a few geometries and their shrink-wrapped
results. The results shown below are shrink-wrapped
with a topological sphere level of 15. In all the
cases shown below, our algorithm could produce a
genus zero surface consistently. It also creates a two-
manifold mesh suitable for external aerodynamics or
finite element analysis simulations.

128

Figure 27: A variety of geometries and their shrink wrapped results.

129

