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ABSTRACT

This paper describes an e�cient strategy to visualize polygons and polyhedra using OpenGL 4 flexibility. Such
meshes o↵er flexibility as the number of vertices and faces are arbitrary. Dual meshes are examples of polygonal
and polyhedral meshes. We give explanations on how polygons and polyhedra can e�ciently be stored in mesh
files. Algorithms to tessellate polygons into triangles are described. Many examples and comparisons with another
visualization software show that our methodology is e�cient (about 40 times faster than ParaView). Interactivity is
also ensured with post-processing tools such as picking and cut planes.
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1. INTRODUCTION

The design of e�cient meshing techniques or the devel-
opments of new numerical schemes requires the ability
to quickly load, visualize and inspect meshes and so-
lutions. The e�ciency is bounded by what we can see
and should be possible on classic laptops and work-
stations. This process becomes critical when non lin-
ear elements are used. This is the case for polygonal
meshes where a few e↵ective rendering techniques ex-
ist.

The goal of numerical simulations is to predict the
behavior of physical phenomenons without using pro-
totypes or experimentations. Many domains are in-
volved such as Computational Fluid Dynamic, acous-
tics, electromagnetism, or biomedical. In general, the
numerical simulations pipeline is composed of a mesh
generation step [1], then a problem is numerically
solved with the help of this mesh and finally a nu-
merical solution is obtained. All along the process,
visualization is needed to check and validate the mesh
and the solution, and give tools to analyze the results.
The choice of the elements types in the mesh depends

on the type of equations studied or on the solver. The
most common elements are triangles and quadrilat-
erals for surfaces and tetrahedra and hexahedra for
volumes but prisms or pyramids are sometimes used,
especially when hybrid meshes are involved. Unlike
the latter elements, one interest to use polygonal (for
surfaces) and polyhedral (for volumes) meshes is the
flexibility as elements have an arbitrary number of ver-
tices. Figure 1 shows examples of such meshes.

Only a few commercial meshers and simulation pack-
ages such as Simcenter StarCCM+ [2] or OpenFOAM [3]
handle generic polygons and polyhedra. There has
been little works on generation of polygonal and poly-
hedral meshes [4, 5, 6], some of them are generated
as the dual of tetrahedral meshes. Other works focus
on the construction of finite element interpolants on
polygonal and polyhedral meshes [7, 8, 9, 10, 11, 12].

However, many visualization software programs do not
handle polygons and when it is the case, the interac-
tivity is often limited. It is also the case when high-
order elements and solutions are considered. There
are two main strategies: ray-casting with possibly
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Figure 1: Examples of meshes composed of polygons
only (top) and polygons and polyhedra (bottom). The
number of vertices is not constant by element.

volume visualization and low-order remeshing. The
first approach is ray-casting with volume visualization
[13, 14]. A significant limitation of this technique is
the cost and as a consequence it does not compete
with the interactivity of the standard linear rendering
methods. Furthermore, in the case of polygons and
polyhedra, the cell-to-cell connectivity is required to
traverse the mesh and needs lots of memory that is a
limiting factor. The second approach is the low-order
remeshing: the idea is to tessellate each element into
triangles for surfaces or tetrahedra for volumes. Then,
any visualization software is able to render these ele-
ments. For instance, ParaView [15] or VisIt [16] use
this technique to represent polygons and polyhedra.
New mesh visualization software solutions have also
emerged [17, 18, 19, 20, 21, 22].

The goal of this paper is to explain how polygonal and
polyhedral meshes are visualized using OpenGL 4. For
this purpose, many points are detailed such as: stor-
age and I/O, how tessellation of polygons into trian-
gles is done, how post-processing tools like picking,
clip planes is done. The tessellation algorithms pre-
sented in this paper do not add extra vertices in the
tessellation as the aim is to minimize the number of
triangles to maximize the rendering performances. All
works presented in this paper have been developed in
ViZiR 4 that is freely available in its dedicated web

site http://vizir.inria.fr.

The paper is outlined as follows. Section 2 is devoted
to storage and I/O of polygons and polyhedra. Sec-
tion 3 gives a presentation of the OpenGL 4 graphic
pipeline. Section 4 tackles the problem of tessellation
of polygons. Section 5 deals with post-processing tools
and interactivity. Examples are given all along the pa-
per and more complex examples are described in Sec-
tion 6. Comparisons are done in this paper between
ParaView, VisiIt and the current approach.

2. STORAGE AND I/O OF POLYGONS
AND POLYHEDRA

All the results collected in this paper have been gen-
erated with the same laptop: a MacBook Pro with
details given in Table 1.

Hardware Details
CPU Intel Core i7 2.6 GHz 6-core
GPU AMD Radeon Pro Vega 20 4 Gb
Mem 32 Gb of RAM 2400 MHz DDR4
OS Mac

Table 1: Hardware used for testing.

A key to have an e�cient visualization is to be able
to quickly open mesh and solution files. Input and
output are handled by the libMeshb

1 library. The
files follow the GMF format provided by this library.
For instance, the mesh of Lucy (see Fig. 2) with more
than 14 millions vertices and 28 millions triangles (642
Mb) is opened in less than 1.5 seconds.

Figure 2: Rendering of a large mesh of 14M vertices and
28M triangles in 7.5 seconds (total time) on a laptop.

One di�culty to define polygons and polyhedra is that
the number of vertices may be di↵erent for each ele-
ment. It means that the number of vertices and num-
ber of faces for polyhedra must be defined for each el-
ement. In the following, some vocabulary is given and
the storage of polygons and polyhedra is explained.

1https://github.com/LoicMarechal/libMeshb
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• Boundary polygons: polygons that are displayed.
Each element is characterized by an arbitrary
number of vertices and the indices of these ver-
tices. In practice, a list of all boundary polygons
vertices is defined and for each element the begin-
ning index and a reference are given. The number
of vertices is deduced by looking at the index of
beginning of the next element (i.e. the ending in-
dex is the one prior the starting index of the next
element). It allows to access any element inde-
pendently of all the previous polygons and very
quickly.

• Inner polygons: polygons that are not displayed
but are useful to define polyhedra: these poly-
gons are faces of polyhedra. The definition of
these inner polygons is the same as for boundary
polygons: the beginning index of each inner poly-
gon and the list of indices of these inner polygons
vertices are given.

• Polyhedra: polyhedra that are displayed when
intersecting the clip plane. In practice, a list of
all polyhedra’s faces (i.e. inner polygons) is de-
fined and for each element the beginning index
and a reference are given. Following the same
idea than for polygons, the number of faces is de-
duced by looking at the index of beginning of the
next element (i.e. the ending index is the one pre-
ceding the beginning index of the next element)
and each element is accessed very quickly. Note
that in practice, the faces of volume elements are
rendering.

New keywords have been introduced to the libMeshb

library to define these polygons and polyhedra. Fur-
thermore, some functions have been introduced to ease
the access of these data. All vertices are stored only
once and are used to define boundary polygons, inner
polygons and polyhedra. Then, all these elements are
stored separately. This way, only boundary polygons
are taken into account to display surfaces whereas in-
ner polygons and polyhedra are only considered for
cut plane. Information are generally stored in binary
format to be more e�cient but can also be written
in ASCII format. The format follows the libMeshb

library.

3. PRESENTATION OF THE OPENGL 4
GRAPHIC PIPELINE

The OpenGL 4 rendering pipeline can be customized
with up to five di↵erent shader stages (see Fig. 3).
These shaders are GLSL source code files that replace
parts of the OpenGL pipeline. In general, a shader re-
ceives its input via developer-defined input variables,
and the data for those variables come either from the

main OpenGL application or previous pipeline stages
(other stages). Data can also be provided to any
shader using uniform variables or textures [23]. More
details on OpenGL 4 and in particular OpenGL Shad-
ing Language (GLSL) can be found in [23, 24].

Tessellation 
Evaluation 

Shader
xxx.tes

Tessellation 
Control 
Shader
xxx.tcs

Vertex 
Shader
xxx.vs

Fragment 
Shader
xxx.fs

Geometry 
Shader
xxx.gs

If no xxx.tcs 
and no xxx.gs

If no xxx.tcs

Figure 3: Shaders used for the OpenGL graphic pipeline.

Two shaders are enough to define a graphic pipeline,
the vertex shader and the fragment shader. The vertex
shader handles the vertices. The data corresponding
to the vertices positions are tranformed into clip co-
ordinates. The fragment shader determines the color
for each pixel. Many parameters a↵ect the color like
a shading, a solution, an isoline, or a wireframe ren-
dering. For the storage of raw data (like high-order
solutions), textures are used.

Besides these two shaders, a geometry shader can be
added to govern the processing of primitives. It al-
lows to create new geometries on the fly. With this
in mind, it can be preceded by the two tessellation
shaders: the tessellation control shader and the tessel-
lation evaluation shader. They are used to control the
tessellation of the primitives, in other words, in how
many sub-elements the elements should be divided.

OpenGL 4 graphic pipeline flexibility allows to com-
pute on the fly the solution. It leads to a pixel ex-
act rendering when flat elements (of degree one) are
considered regardless of the degree of the solution.
This recent language (GLSL) enables ViZiR 4 to cer-
tify a faithful and interactive depiction. High order
solutions are natively handled by ViZiR 4 on surface
and volume (tetrahedra, pyramids, prisms, hexahedra)
meshes which can naturally be hybrid.

When more complex geometries are considered, curved
elements perform a better approximation of the ge-
ometry. In this case, tessellation shaders occur in
OpenGL pipeline (see [20, 21] for more details on the
shaders pipeline) to tessellate all elements directly on
the GPU. For solutions on such curved elements, al-
most pixel exact rendering is ensured [21].
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4. TESSELLATION OF POLYGONS
INTO TRIANGLES

4.1 Why tessellate polygons into triangles

As explained in Section 3, only the vertex and the frag-
ment shaders are mandatory. For instance, in the case
of triangles (of degree 1), the geometry shader could
be useful for example to compute and display normals
vectors but in many cases, this shader is avoided. The
reason is that the use of this shader is expensive. To
illustrate this cost, a comparison is done on the mesh
of Lucy (28M triangles, see Fig. 2) and is outlined in
Table 2. In the first case, only the vertex and frag-
ment shaders are used, and the number of Frames Per
Second is 28. In the second case, a geometry shader is
added, and does nothing more than pass data through
itself (i.e. the rendering is exactly the same than in
the first case) and the number of Frames Per Second
falls to 6. The rendering of triangles has good per-
formance because only vertex and fragment shaders
are used while additional shaders are necessary for
more complex elements. For this reason, polygons are
tessellated into triangles. However, when High Or-
der elements are displayed, Geometry and Tessellation
shaders should be used as it is the only way to have a
good rendering (done on the GPU) of them.

GLSL pipeline FPS
Vertex + Fragment Shaders 28
Vertex + Geometry + Fragment Shaders 6

Table 2: Comparisons on Lucy mesh (28M triangles) of
FPS when Geometry shader is used or not.

4.2 How to tessellate polygons

We consider only simple polygons, which means poly-
gons with no two non-consecutive edges intersecting,
these polygons are convex or concave. An example of
tessellation used for the rendering is shown in Fig. 4.

Polygons Tessellation

Figure 4: Rendering of polygons (left) and their tessel-
lation into triangles (right) used for the rendering.

4.2.1 Edge visibility

During the creation of the tessellation, the visibility
(i.e. a Boolean) of the 3 edges of each triangle is de-
fined. Indeed, some edges need to be visible as their
correspond to the boundary of a polygon while oth-
ers should not be visible as lying inside the polygon.
Textures are used to send the information on visibility
(booleans) to the fragment shader so that the appro-
priate color can be set according to the position (inside
or on the boundary of the polygon) of the edge.

4.2.2 Definitions of normal by polygon

Normals of elements are important because they are
used in the shading, for instance in Phong model [25].
Usually, the normal is computed for each element and
given to the shaders by textures. To have a smoother
shading, one normal npoly for each polygon is defined.
Let’s first define:

A =
d�2X

i=1

(Pi+2 � P1) ^ (Pi+1 � P1) (1)

where d is the number of vertices of the polygon, Pi

the points of the polygon and ^ the usual vector cross
product. Note that this definition of normal depends
on the choice of the first vertex. Actually, the choice of
the first vertex is not important as it can be modified,
the crucial thing is to keep this definition during the
whole process. Finally, the normal of polygon npoly is
obtained after normalization:

npoly =
A

kAk (2)

Fig. 5 shows a comparison of these two types of nor-
mals (by triangle and by polygon) and the definition of
normal by polygon given by (2) gives a better smooth-
ness of the shading.

4.2.3 A first naive tessellation algo-
rithm

A first naive tessellation algorithm is to create all tri-
angles from one vertex, for instance the first one. The
number of created triangles is d � 2 where d is the
number of vertices of the polygon. This algorithm is
described in Algorithm 1. Fig. 6 shows an example
of use of Algorithm 1 for a very simple 5-sides convex
polygon.

Note that if the polygon is a triangle (3-sides), all the
edges are set to visible. Now, let us consider another
5-sides polygon but which is concave. To do so, the
second point of Fig. 6 is simply moved to become a
concave point as shown in Fig. 7. Algorithm 1 is used,
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Normals by triangle Normals by polygon

Figure 5: Comparison of normals by triangle (left) and
by polygon (right) with a Phong model as shading.

Algorithm 1: A first naive tessellation algorithm

Input: d, pol (list of vertices of size d).
Output: NmbTri (number of triangles), Tri (list

of indices of triangles), VisEdg (edges
visibility)

(1) NmbTri = d - 2 ;
if NmbTri < 1 then

return 0 ;
for i = 1 to NmbTri do

(2) Tri[i][1] = pol [1] ;
(3) Tri[i][2] = pol [i + 1] ;
(4) Tri[i][3] = pol [i + 2] ;
(5) VisEdg [i][1] = 1 ;
(6) VisEdg [i][2] = 0 ;
(7) VisEdg [i][3] = 0 ;

end

(8) VisEdg [1][3] = 1 ; //– First triangle
(9) VisEdg [NmbTri][2] = 1 ; //– Last triangle

//– If only 1 triangle, all edges are visible
if NmbTri == 1 then

(10) VisEdg [0][3] = 1 ;

Figure 6: A 5-sides convex polygon. The naive tessella-
tion algorithm 1 works.

and the same tessellation is constructed but this time
it fails as the polygon is concave. The tessellation does
not span the polygon as the triangle {1, 2, 3} is outside
the polygon.

Figure 7: A 5-sides concave polygon. The naive tessel-
lation algorithm 1 fails.

Fortunately, there is a very simple criterion to know if
a triangle is outside the polygon. Once the tessellation
has been created, it is su�cient to check if all dot
products between the normal of the polygon, defined
by (2), and the normals of triangles are positive. If
all these dot products are positive, no triangle will lie
outside the polygon and algorithm 1 is applied. For the
first case (Fig. 6), this criterion is true while it is false
for the second case (Fig. 7) as the dot product between
the normal of the polygon and the normal of triangle
{1, 2, 3} is negative. Thus, algorithm 1 can not be
applied and a more general tessellation algorithm is
needed.

4.2.4 Choosing a better a starting point
in the naive tessellation algorithm

Algorithm 2 sums up the process to check if algo-
rithm 1 should be used. If only one concave vertex
has been found, the idea is to generate the tessella-
tion from this point: Algorithm 1 is then used with
this point as a starting point. An example is shown in
Fig. 8 with the same concave polygon than for Fig. 7
but this time the tessellation is correct. Note that the
criterion of dot products positiveness is also checked
for every created triangles. Indeed, this new tessella-
tion could be incorrect and in this case, a more general
algorithm described in Section 4.2.5 should be used.

Figure 8: A 5-sides concave polygon. Following algo-
rithm 2, a concave vertex (here vertex 2) has been used
as a starting point to create the tessellation.
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Algorithm 2: Check if the first naive tessellation
algorithm 1 can be used

Input: d, pol (list of vertices of size d).
Compute the normal polygon npoly with eq. (2) ;
Create the tessellation following algorithm 1 ;
NmbVerConcave = 0 ;
for i = 1 to NmbTri do

Compute normal ntri of triangle Tri[i] ;
if ntri · npoly < 0 then

Algorithm 1 can not be used. ;
Update the list of concave vertices ;
NmbVerConcave ++;

end

if NmbVerConcave = 0 then

Tessellation created with algo. 1 is correct.
else if NmbVerConcave = 1 then

Launch algorithm 1 with the concave point as
a starting point to create new tessellation
and check it with algorithm 2.;

else

Too much concave points, another algorithm
is needed (see algorithm 3). ;

end

4.2.5 A general tessellation algorithm

Triangulating a polygon, that is decomposing a poly-
gon into a set of triangles is a problem that have been
investigated for a long time. One of the most famous
method is the ear clipping theorem [26, 27, 28, 29].
The principle is that in each polygon, an ear can be
found and removed from the polygon. The result is a
polygon whose area is smaller. By doing this recur-
sively, a set of triangles is obtained and span all the
polygon. Note that most of ear-clipping algorithms
are for 2D (polygons in a plane) only whereas we are
considering 3D meshes.

Algorithm 3: General tessellation algorithm

Input: d, pol (list of vertices of size d).
(1) Compute the normal polygon npoly with eq. (2) ;
(2) Project all polygon vertices into an orthogonal

plane of the normal polygon ;
(3) while d > 3 do

(4) Find a triangle which is admissible. ;
(5) Update all the lists: add this triangle to the

tessellation, remove this triangle from the
polygon list ;

end

(6) Generate the last triangle with the 3 last points. ;

Algorithm 3 gives the general steps to create a tessel-
lation following the idea of the ear clipping theorem.
All details of this algorithm are described now:

(1) Normals computations. The normal of the
polygon is defined following eq. (2).

(2) Points projections. All vertices of the polygon
are projected on a same plane that is orthogonal to the
normal npoly of the polygon. These projected points
Pi are obtained following:

Pi = Pi � (Pi, npoly)npoly (3)

where Pi denotes the vertex i of the polygon and (., .)
is the usual dot product.

(3) Find an ear. Once a triangle has been found,
the polygon changes, its size becomes smaller as one
vertex is removed from the list of the polygon.

(4) Find an admissible triangle. To find a triangle
that is correct, the idea is to take three consecutive
vertices of the polygon and check if the dot product
between the normal polygon and the normal of the
triangle is positive and that no other projected point
of the polygon lies inside this projected triangle. To
do so, let’s note Pi1 , Pi2 and Pi3 the three consecutive
projected points and Pj another projected point of the
polygon, we define

u = (PjPi1 ^ PjPi2) · npoly

v = (PjPi2 ^ PjPi3) · npoly

w = (PjPi3 ^ PjPi1) · npoly

(4)

where (. ^ .) denotes the usual cross product. Then, if
u, v and w are all positive, the point is inside the trian-
gle. If none of the other projected points Pj lies inside
the triangle {Pi1 Pi2 Pi3}, this triangle is admissible.

(5) Updates. All the lists must be updated. One
more triangle is added in the tessellation, Tri is up-
dated with these three vertices. The visibility of edges
VisEdg is set by looking at the local index of the ver-
tices. Indeed, if the two points of the edge are consec-
utive (or are the first and last vertices of the original
polygon), VisEdg is set to 1, otherwise it is set to 0.
Then, the vertex Pi2 is removed from the list pol of
the polygon and d is decreased by one unit.

(6) Last triangle. Finally, a last triangle is created
with the last three vertices. Tri and VisEdg are up-
dated with the same way than (5).

Figure 9 shows an example of a 7-sides concave poly-
gon handled with algorithm 3.

If the element is ill-defined, for instance not a simple
polygon by with intersected edges, it is possible that
neither algorithm 2 nor algorithm 3 work. In this case,
algorithm 1 can still be applied to generate a tessella-
tion in order to at least be able to see the polygon.

To sum up the tessellation process, algorithm 1 is first
used. If the tessellation is correct according positive-
ness criterion, there is no need to use the other algo-
rithms. If there is only one concave vertex, this point is
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Figure 9: A 3-dimensional 7-sides concave polygon.
With algorithm 3, even a polygon with two concave ver-
tices is handled.

used as a starting point in algorithm 1 and we check if
the tessellation is correct. Otherwise, the most general
tessellation algorithm, algorithm 3 is launched to cre-
ate the tessellation. All these tessellation algorithms
are done in the CPU before the rendering of these tri-
angles by the GPU.

4.3 Solution rendering with a tessellation
of triangles

If a solution has been computed on polygons, a repre-
sentation from a tessellation of triangles might be in-
accurate. For instance, let’s consider a mesh of quadri-
laterals and a solution defined at vertices. Thus, the
solution is Q1-solution on a Q1-quadrilaterals and is
therefore bi-linear as shown in Fig. 10. If a tessellation
of two triangles is generated with a�ne functions on
them is done, an approximation is created and the rep-
resentation in inaccurate (the tessellation in 2 triangles
can be guessed in Fig. 10). Note that the rendering in
both cases is pixel-exact and isolines are displayed to
highlight the linearity or non-linearity of the solution
plotted.

Linear approx. on tri. Q1-sol. on Q1-quad.

Figure 10: Rendering of Q1-solution on Q1-
quadrilaterals (right) and tessellation into triangles with
a�ne representation (left).

5. POST-PROCESSING TOOLS AND
INTERACTIVITY

Many post-processing tools are available to make the
analysis of results possible. Some of them are pre-

sented in this section. Such an interactivity is funda-
mental to develop and validate new algorithms.

5.1 Picking and hiding surfaces by refer-
ence

Any element can be picked to get information. When
an element is picked, it is colored in light blue and
the number of its vertices appear in red as shown
in Fig. 11. More information is printed on the ter-
minal, for example the element picked in Fig. 11:

Polygon (7� s i d e s ) 19793 : [ 2863749
2863755 2863758 2863757 2863759
2863760 2863750] Ref 3

The printed information: the number of vertices
(sides), the index of element, the indices of all vertices
and the reference number of the polygon.

Figure 11: Picking a polygon (in lighe blue).

When a face of a volume element (here a polyhedron)
is picked, all the faces of this volume elements are also
set in light blue as shown in Fig. 12. In the same
way that for polygons, information are printed on the
terminal: the number of faces (inner polygons), the
index of the polyhedron, the list of indices of these
faces and the polyhedron reference. Then, for each
face, the number of vertices and the list of vertices
are printed. Here is an example for an hexahedron:

Polyhedron (6� f a c e s )
952607 : [385682647 385683053 385685045
385685051 385685052 385685053] Ref 0

Face (4� s i d e s ) 1 : [ 69594081
69594078 69581014 69581016]

Face (4� s i d e s ) 2 : [ 69594081
69559331 69559333 69594078]

Face (4� s i d e s ) 3 : [ 69559331
69594081 69581016 69559334]

Face (4� s i d e s ) 4 : [ 69559333
69594078 69581014 69559341]

Face (4� s i d e s ) 5 : [ 69559331
69559333 69559341 69559334]

Face (4� s i d e s ) 6 : [ 69581016
69559334 69559341 69581014]

To inspect meshes, it is interesting to hide some el-
ements. After an element is picked, it is possible to
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Figure 12: Picking a polyhedron (in light blue). Left:
with all elements in the cut plane. Right: the polyhedron
alone.

hide all elements having the same reference id (cor-
responding typically to a patch or a specific part of
the object). An example is shown in Fig. 13 where
the green surface (tire) is hidden to show the elements
behind.

Figure 13: Example of picking (first picture) and hidding
by reference (second picture).

In practice, here are the steps to set the whole element
picked in light blue. A triangle has been picked. The
index of the polygon or polyhedron is known (previ-
ously stored). All triangles belonging to the same ele-
ment (polygon or polyhedron) are added to the picked
list. During the creation of the texture that gives the
rgba (red, green, blue and alpha) of the triangle to the
shaders, if the triangle is in the picked list, its rgb is set
to (0, 1, 1), that is light blue, instead of the color that

should be displayed (for example its reference color or
the usual signature grey). In the fragment shader, if
the color texture is (0, 1, 1), that is light blue, we
know that the triangle has been picked. If it is a poly-
gon (i.e. not a volume element), Fragcolor is set to
(0, 255, 255, 1), so that it will appear in light blue
independently of the shading. Otherwise, the color is
light blue but the shading can be seen as in Fig. 12.

5.2 Clip planes

To visualize polyhedra, clip planes are used. The clip
plane can be defined by its equation. Otherwise, the
clip plane can be translated or rotated with the mouse
from an initial state. Then, all polyhedra belonging
to this cut plane are displayed. In practice, the faces
of these volume elements are rendered. To find if a
polyhedron is intersected by the cut plane, one just
have to look at the sign of all the element vertices in
the cut plane equation ax+by+cz+d, where x, y and
z are the coordinates of the vertex and a, b, c and d the
parameters of the cut plane equation [20, 21]. If some
of them are positive and some others are negative, the
volume element lies in the cut plane. Fig. 14 shows an
example of clip plane.

Figure 14: Examples of rendering without (first picture)
and with (second picture) clip plane.
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6. EXAMPLES AND COMPARISONS

6.1 Comparisons with other visualization
software

Some comparisons are made with ParaView and VisIt.
Several meshes of di↵erent sizes are studied where
the geometry is the car plotted in Fig. 14. The VTK

Unstructured Grid (vtu) format is used in ParaView

and in VisIt. Meshes were converted from CGNS (CFD
General Notation System) to vtu format. The ver-
sions 5.7 of ParaView and 3.2.1 of VisIt are used.
For ViZiR 4, meshes were converted from CGNS to
libMeshb format. Table 3 compares the total render-
ing time that is the time to open the mesh file, add
objects to the scene and render the mesh. Three cases,
similar than Fig. 14, are taken into account. The num-
ber of boundary polygons are 439 170, 1 101 804 and
2 649 542 and the number of triangles created by the
tessellation are respectively 1 705 918, 4 333 706 and
10 505 154 in ViZiR 4. It gives an average of 3.88,
3.93 and 3.96 triangles per polygons and show that
the number of vertices is truly arbitrary with an av-
erage of 6 for each boundary polygon. The ratio are
huge and is explained by the fact that the time to open
the mesh file in ParaView and in VisIt is long and be-
cause a surface reconstruction is done in ParaView and
in VisIt and this step is very expensive. In ViZiR 4,
the surface reconstruction is not done (even if it could
be called) as this information (boundary polygons) is
already in the mesh file. Otherwise, the surface re-
construction can be done in a pre-processing step, and
then should be saved in the mesh. Note that this step
can still be done in the visualization software but is
useless and time-consuming if it has already be stored
in the mesh file.

Case 1 Case 2 Case 3
# vertices 9 600 780 24 551 880 61 321 116

# polygons 439 170 1 101 804 2 649 542
# polyhedra 2 652 618 6 603 843 15 055 285
ViZiR 4 (s) 1.93 4.48 10.98

ParaView (s) 81.7 204.0 505.8
Ratio / ParaView 42.3 45.5 46.1

VisIt (s) 86.9 219.3 582.8
Ratio / VisIt 45.0 48.9 53.1

Table 3: Comparison of total rendering wall time (s)
including mesh files opening.

Table 4 compares the time to generate cut planes. In
ParaView, these cut planes are crinkle clips. VisIt was
not able to generate crinkle clips with these meshes.
Again, the ratio are huge and mainly due to the slow
surface reconstruction done in ParaView.

Fig. 15 shows a comparison of rendering obtained from

Case 1 Case 2 Case 3
# vertices 9 600 780 24 551 880 61 321 116

# polygons 439 170 1 101 804 2 649 542
# polyhedra 2 652 618 6 603 843 15 055 285
ViZiR 4 (s) 0.6 1.4 3.1
ParaView (s) 57.9 147.0 357.9

Ratio 98.1 106.5 114.0

Table 4: Comparison of wall time (s) to generate cut
planes (clip).

ParaView and ViZiR 4. It is clear that the shading in
ParaView is done by triangles while it is done by poly-
gon in ViZiR 4 as explained in Section 4.2.2 and gives
a better smoothness. Note that with VisIt, instead
of the polygons, the triangles (i.e the tessellation) are
displayed.

Figure 15: Comparison of rendering obtained from
ParaView (first picture) and ViZiR 4 (second picture).
In the first case, shading is done by triangle while it is
done by polygon in the second case.

Additional metrics, mesh file size, memory and video
memory used, and the number of frames per second
have been sum up in Table 5 for the 3 same cases
than the previous tables. For ViZiR 4, the format
meshb (binary) from libMeshb is used while the vtu

format is used in ParaView. The mesh size in cgns

format has also been added. Both software programs
have good FPS for all cases and therefore interactive
enough. ParaView needs much more memory espe-
cially during the preparation of the rendering however
requires much less video memory.

Finally, last comparisons have been done with another
CPU-GPU combo: Windows 11-Nvidia. The laptop is
a 6-core i7 3 Ghz with 32 GB of RAM and the graphic
card a Nvidia quadro T1000 (4Gb). Results are very
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Case 1 Case 2 Case 3
Size .meshb (us) 753 M 1.9 G 4.6 G

.vtu ParaView 1.8 G 4.5 G 11 G
.cgns ParaView 1.0 G 2.6 G 6.4 G

FPS (us) 60 60 52
FPS ParaView 58 57 46

RAM (us) 1.59 G 3.91 G 9.47 G
RAM ParaView 2.14 G 4.98 G 12.03 G

Peak RAM ParaView 2.95 G 7.46 G 17.59 G
VRAM (us) 214 M 453 M 1.01 G

VRAM ParaView 182 M 250 M 435 M

Table 5: Comparisons of additional metrics: mesh sizes,
FPS (frames per second), memory RAM and VRAM
(video RAM) for ParaView and ViZiR 4.

similar than Table 3 which is not surprising as the
two laptops have similar features. For the first case,
ViZiR 4 has a total rendering wall time of 1.68 s and
1.37 Gb RAM while ParaView needs 50 s (ratio 30)
and 2.4 Gb of RAM. For the second case, ViZiR 4 has
a total rendering wall time of 4.92 s and 4.67 Gb RAM
while ParaView needs 2 min 17 (ratio 32) and 5.3 Gb
of RAM. In all cases, both programs have very good
frame rates.

6.2 Examples

Dual meshes are implicit supports for many CFD
solvers, for instance the ones based on finite volume
methods. Here we illustrate with Fig. 16, 17 and 18
some rendering to study the di↵erences between adap-
tive meshing techniques. Examples of Fig. 18 come
from the same airplane geometry than Fig. 17 with
a zoom on the wings. Classic mesh adaptation tech-
niques are based on a sequence of local mesh modifica-
tions. These techniques consist in an advancing-point
methods using metric fields. We can see that the dual
patterns are di↵erent.

7. CONCLUSIONS

In this paper, we presented how OpenGL 4 can be
used to visualize polygonal and polyhedral meshes. In
particular, we discussed how the storage in the mesh
file is done. We showed that the use of triangles in the
OpenGL graphic pipeline is the most e�cient as it is
the simplest. For this reason, polygons are tessellated
into triangles. Algorithms and criteria are given to cre-
ate a good tessellation. Many examples show the e�-
ciency of our method and comparisons with ParaView

and VisIt show that ViZiR 4 is much faster.

A first perspective of this work could be to use poly-
gons when capping is done. Indeed, when cut planes
are generated, two modes can be used: cut plane (or

Figure 16: Primal (left) and dual (right) meshes for stan-
dard adaptation (first line), and two metric-aligned tech-
niques (second and third lines).

Figure 17: An example of polyhedral mesh without (first
picture) and with (second picture) clip plane.
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Figure 18: Primal (left) and dual (right) meshes for standard adaptation (top) and metric-aligned adaptation (bottom).

crinkle) when the faces of the volume elements are
shown or capping (or slice), when the intersection of
the volume element with the plane is computed. In
the latter case, when non simplicial elements such as
prisms, pyramids or hexahedra are considered, the in-
tersection is in fact a polygon. At the moment, trian-
gles are used to display the capped elements as shown
in Fig. 19 where the mesh is composed of quadrilater-
als and hexahedra. Another perspective would be to
handle solutions on polygonal and polyhedral meshes.
Finally, as OpenGL 4 is able to handle high-order
elements, one can imagine that high-order polygons,
when and if it will exist, could also be visualized with
OpenGL 4.
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