
INCREMENTAL DECOMPOSITION FOR HEX-MESHING IN CAD USING
VIRTUAL TOPOLOGY

Benoit Lecallard1, Trevor T. Robinson1, Cecil G. Armstrong1, Declan C. Nolan1, Harsha
Ramesh2

1Queen’s University Belfast, Belfast, United Kingdom. b.lecallard@qub.ac.uk
2Rolls-Royce plc, Derby, United Kingdom Harsha.Ramesh@rolls-royce.com

ABSTRACT

This paper presents methods for preparing a geometry model for finite element mesh generation in a Mechanical Computer-Aided
Design (MCAD) environment. It works by creating a new representation of the model through the application of virtual topology
operators. The resulting “analysis topology” description is used to abstract the analysis model, enabling automated tools and experts
to apply an incremental strategy to decompose the model for meshing, without modifying the original CAD model. This work also
demonstrated how virtual topology enables the integration of multiple model decomposition tools to expand the capabilities of the
hosting CAD environment, providing support for more meshing strategies and more freedom in how they are applied, while
bridging the gap between the CAD and analysis models. Herein, the virtual topology operators used to decompose the model are
checked and propagated based on the required mesh constraints to ensure the resulting mesh is conformal at the interfaces. Finally,
the methods required to decompose the original CAD model using the analysis topology description and “virtual geometry curves”
are presented, enabling downstream automation of the mesh.

Keywords: mesh generation, analysis topology, virtual topology, CAD

1. INTRODUCTION AND RELATED WORK

Generating a good quality mesh is a major bottleneck in most
finite element analysis workflows. The generation of high-
quality hexahedral (Hex) element meshes remains a highly
skilled and user intensive task, which often requires the use
of dedicated CAE packages into which the original CAD
geometry needs to be transferred from the CAD
environment. Hex elements are preferred over alternatives
(e.g. tetrahedral elements) when simulating highly non-
linear events, using explicit analysis codes and for accurate
contact capture between deformable bodies. A
comprehensive survey by Sarrate et al. [1] highlights a wide
range of approaches to hex meshing, as well as the benefits
of using this element type. Decomposition-based approaches
are widely used and involve partitioning the geometry of the
model to be meshed into sub-regions with specific
topological and shape characteristics which can be meshed
using hex-meshing algorithms like mapping and sweeping.

With decomposition and meshing accounting for more than
50% of the time taken for the entire simulation task [2],
automating aspects of the hex meshing task is a well-
researched ambition. Whilst the push toward fully automated

hex-mesh generation for arbitrary domains has yet to yield a
generic solution, it has resulted in many automated tools that
are applicable to specific classes of geometry. These tools
use either divide and conquer paradigms to recursively
extract simple regions [3]–[6], or use intermediate constructs
to capture the flow of elements and identify partitions [7]–
[10]. An extension of this is to apply the same divide and
conquer paradigms in an integrated incremental
decomposition workflow, where simpler tools alleviate the
task of the more complex and computationally expensive
ones. While analysts would greatly benefit from combining
existing tools, their integration is challenging as standards
for geometry exchange are not tailored for analysis models.
Dedicated meshing packages such as CUBIT[11] already
integrate various automated methods, but still resort to the
judgment of the user to select the best partitioning strategy.
These packages are also limited by the need to transfer the
geometry from a CAD environment, and the difficulty to add
additional decomposition methods. The shortcomings of
fully automatic tools are also recognized in [12], where the
benefits of semi-automated decomposition workflows are
demonstrated using a manual sketch-based decomposition
method enhanced by geometric reasoning [13].

49

When a model is decomposed into sub-regions, a conformal
mesh is required at the interfaces to successfully connect
their respective meshes. The constraints of conformal hex
meshing and structured mesh implications are reviewed by
Blacker [14]. Previous work on generating conformal
meshes using sweeping is described in [15] and [16]. Even
though both are mesh-based methods tailored for one type of
decomposition, they highlight the importance of interface
management for conformal meshing.

The benefit of using virtual topology for pre-processing a
model for meshing has been presented by Sheffer et al. [17].
The concept involves creating virtual topology entities by
applying virtual topology operators to the entities in the
original CAD model, which are therefore based upon but do
not alter the underlying CAD definition. To date it has
mostly been used for correcting minor “defects” (e.g. to
merge a sliver face with a larger adjacent face), with
implementations focused on the final steps of the analysis
model preparation process. Extending the use of virtual
topology to the entire pre-processing stages would facilitate
the integration of different automated tools, as the need to
exchange geometry (e.g. decomposed CAD) and/or pre-
processing operations (e.g. split operation) is replaced by the
need to exchange virtual topology operations. White [4] used
virtual decomposition to automate hex mesh generation,
where surface nodes of an initial mesh are reassigned to a
virtual sub-region.

More recently, Tierney et al. used virtual topology operators
to generate an “analysis topology” based on the outputs of a
decomposition algorithm [18]. The concept of analysis
topology enables to streamline pre-processing tasks, by
adding flexibility to the decomposition while exposing all
the necessary information to manage interfaces and
automate decomposition and meshing. However, the
implementation in that work was limited by the need to edit
automated tools to work using virtual topology, and the a-
posteriori identification of meshing strategies preventing
further decomposition in the absence of a mechanism to
maintain a conformal mesh at interfaces. Finally, generating
a mesh from a virtually decomposed model requires either
new meshing tools or robust geometrical decomposition
capabilities for compatibility with existing meshing tools.

This work builds on the analysis topology concept to enable
incremental decomposition of CAD models for automatic
hex meshing. The main contributions include introducing a
method to integrate virtual topology with both existing tools
and manual operations and a method to manage and exploit
meshing strategies to propagate splits automatically. Finally,
a method to ensure that the virtual topology decomposition
can be applied geometrically for compatibility with
downstream meshing is presented.

2. INCREMENTAL DECOMPOSITION FOR
MESHING

Incrementally decomposing a model for meshing involves
identifying and extracting individual regions of the geometry
to which known meshing algorithms can be applied. Once a
meshing strategy has been identified for each sub-region of
the domain, each can be meshed in a piecewise manner.

2.1 Structured meshing requirements

The quality of a hex mesh is directly related to the geometry
of its elements and their connectivity. In a regular mesh each
interior node should connect exactly 4 quad elements or 8
hex elements. To accommodate complex shapes while
retaining the quality of individual elements, nodes must
sometimes connect an irregular number of elements, which
introduces “singularities” into the structure of the mesh.

Figure 1. Mesh singularities.

Definition: A mesh singularity is a collection of one or
more irregular nodes. It can be either positive (more than the
regular number of connected elements), or negative (less
than the regular number of connected elements), as shown in
Figure 1.

Quad (2D) and hex (3D) meshing algorithms impose strict
requirements on the presence of singularities, which in turn
impose constraints on the shapes that can be processed, as
the number of singularities is directly linked to the shape.
These requirements are as follows:

• Mapping (quad): The mesh is generated by mapping
the template of a unit square onto a local surface
parametrization [19]. As such, no singularities will
occur and the face must be 4-sided. It also implies that
opposite pairs of edges need to have the same number
of divisions. A sub-mapping variant is also possible
for non-rectangular faces where all the edges can be
grouped into two sets of opposite groups.

• Paving (quad): The mesh is generated by inserting
rows of quad elements from the boundaries towards
the interior [20]. There are no specific requirements
on the structure of the mesh and singularities can be
present. This means there is no constraint on the shape
of the face. However, the algorithm may introduce
pairs of singularities that cancel each other. It also
requires that the sum of division numbers on each loop
of edges must be even.

• Mapping (Hex): The mesh is generated by mapping
the template of a unit cube on the local i-j-k
parametrization. This requires the shape to have a
cube-like topology, with 6 logical faces and 12 logical
edges, and no singularities can be present. It implies
that all bounding faces are mapped meshed, with the
associated constraints on singularities and edges
divisions.

• Sweeping (hex): Hex elements are generated by
sweeping quad elements on a source face to a target
face. This means all lateral faces (so-called wall
faces) connecting the source and the target have
mapped mesh structures, and hence no singularities
can exist on wall faces. Also, corresponding edges at
opposite ends of the sweep must have the same
number of divisions. There is no mesh structure
requirement on the source face, which can be either

50

mapped or paved, and therefore singularities can be
channeled from the source to target face.

This work focuses on two types of shapes suitable for hex
meshing with these algorithms:

• Block shapes, with a cube-like topology that can be
map (Hex) meshed with 6 faces mappable (quad).

• Sweepable shapes, with a loop of mappable (quad)
wall faces in the sweep direction.

Directly identifying a block decomposition for an arbitrary
geometry is difficult, as there should be no singularities in
the blocks. This means all singularities need to be located at
the edges bounding the interfaces between blocks.
Sweepable regions are less constraining as they can
accommodate singularities along the sweep direction and are
therefore easier to identify. There is a strong correlation
between the two types, as a block can be swept meshed in
any of three directions, and sweepable regions can have a
mappable source face and therefore satisfy block constraints.
It is therefore easier to identify first a semi-structured mesh
by identifying sweepable regions, and then decomposing
their source faces to constrain the singularities and achieve a
more structured block decomposition.

2.2 Reasoners

Manually identifying and extracting block and sweepable
regions can be a very tedious task for geometries which
include many details. Various automated tools or reasoners
have been developed to facilitate this task by extracting
regions based on specific geometric and topological
characteristics. These characteristics define in turn a
meshing strategy which specifies how the regions should be
meshed. This information is required as the type of the shape
(block or sweepable) does not contain sizing information and
can change.

Definition: A decomposition reasoner refers to an
algorithm that queries the model to identify regions that can
be assigned a specific hex-meshing strategy and provides the
topological and geometrical information to create the
partitioning entities necessary to extract such regions.

Definition: A meshing strategy describes the type of
element (e.g. Hex or Mixed-Tet) along with sizing
information, symmetries and anisotropic element shape
metric properties of the region.

The simplest reasoners are tools that identify regions that are
already blocks or are sweepable, by checking that the
topology and geometry match the requirements of that
region type (described previously). Other reasoners use
shape properties such as concavities and symmetries to help
breaking down a model into simpler regions. For example,
aero-engine models are mostly axisymmetric with cyclic
patterns that repeat around the circumference. Using a
dedicated reasoner based on [21], axisymmetric regions and
regions that can be meshed using cyclic symmetries can be
identified. The associated meshing strategy stores any
repetition pattern, to ensure a compatible mesh between each
occurrence. Other reasoners exploit local anisotropy of the
shapes to identify sweepable regions. For example, thin-
walled regions with two large dimensions compared to the

third can be meshed by applying a mesh to a larger face and
sweeping through the small thickness. A thin-sheet reasoner
based on Sun’s implementation [22] identifies and extracts
thin regions by manipulating pairs of opposing faces from
the CAD geometry. The associated meshing strategy stores
the aspect ratio of the shape and the thickness, which can
then be used to infer a target element size as described in
[23]. Similarly, truss-like structures, or models which have
had their thin-sheet regions removed, can have many long
regions with a nearly constant cross-section topology, that
are also appropriate for hex-meshing by sweeping. These
can be identified by a long-slender reasoner that processes
loops of nearly parallel long edges, as described by Sun [5].
These reasoners can greatly reduce the number of DOFs of
the mesh, as the anisotropy of the region can be used to
stretch the hex elements and reduce their number. More
complex decomposition reasoners can also make use of other
types of information, such as temporary constructs (frame-
fields, medial-object), functional and adjacency information
if available, or AI methods.

Each reasoner has its strengths and weaknesses in terms of
speed, accuracy and class of shapes supported. More than
one may be required to achieve a full hex mesh for a complex
shape. Therefore, an efficient incremental decomposition
workflow requires the integration of a diverse range of
decomposition reasoners. To be of maximum benefit these
need to work in any order, without any dependencies on the
preceding reasoners or the package where the CAD model is
hosted. Preparing a CAD model for meshing can also include
de-featuring and dimensional reduction operations, which
can be identified and applied using dedicated automated
reasoners which are not covered in this paper.

2.3 Challenges

Since many meshing workflows start from a geometry that
has been created in a feature-based CAD environment, and
to maintain the associativity with the design history in the
model, the ability to decompose the model for meshing
within the CAD system is an attractive solution. However,
there are several challenges to doing so, primarily because
CAD packages have not been developed for the purposes of
decomposing a model for meshing.

First, creating a split operation in CAD may create
unexpected geometrical defects such as sliver faces and
result in non-watertight models due to trimming errors [24].
Secondly, automating the decomposition and downstream
meshing requires a robust tracking of B-Rep entities, which
is challenging due to persistent naming issues inherent to
CAD packages [25]. Then, incrementally decomposing the
CAD model will append a sequence of split operations to the
feature tree of the model, and any edit further up in the tree
may produce unexpected results further down, including the
splits. Finally, most commercial CAD environments rely on
a manifold boundary representation scheme, meaning that
two bodies cannot share a same face, edge or vertex. Hence,
two identical faces are created within the CAD system at the
interface between two bodies after a split operation.

Even when a CAD system is used to help prepare a geometry
model for meshing, a transfer to a dedicated CAE package is
usually still required for meshing. After doing so the

51

decomposition will be converted to a non-manifold
representation which ensures the resulting mesh is
conformal at interfaces between regions. It is therefore
important to ensure that incremental decomposition will
produce a usable collection of bodies that can be re-
assembled in a CAE package for meshing.

Another challenge comes from the incremental
decomposition principle itself. Identifying simple regions
first means all of the complexity of the meshing task will be
pushed to the last regions of the geometry to be processed.
This can become problematic as these regions may harbor
complex arrangements of singularities. Where these exit
through an interface, they make any hex meshing strategy in
connected regions invalid. Therefore, special care must be
taken when chaining reasoners, as structure modification can
propagate throughout the decomposition.

2.4 Proposed workflow

Since most of the challenges of incrementally decomposing
a model in CAD come from the application of the successive
split operations, the idea in this work is to identify regions to
which a known meshing strategy can be applied, store the
required partitioning strategy, and then query the
partitioning strategy to identify the next regions to process.
This is enabled by virtual topology split operators that will
topologically partition the model without altering the CAD
representation, as described in the next section. Each region
in the model for which a meshing strategy has not yet been
identified is classed a “residual region”. Eventually, once all
the reasoning is done and a suitable virtual topology
decomposition is available, the model can be decomposed
within the CAD system to be used for meshing. Should any
residual regions remain at the end of the process a tet-mesh
can be applied to them, with a layer of pyramid elements at
interfaces with hex-meshed regions, to produce a mixed
mesh. To be successful, this workflow requires a simple way
of integrating existing reasoners with virtual topology, so
they can identify suitable regions in presence of virtual
topology and define virtual topology splits. The meshing
strategies identified by the reasoners need to be robustly
managed to remain valid after further decomposition of
neighbor regions. Finally, the ability to robustly convert a
virtual decomposition into a CAD decomposition is required
to ensure the virtual decomposition is usable.

3. ANALYSIS TOPOLOGY

3.1 Virtual topology

Virtual topology uncouples the topological representation of
a model from its geometrical representation in the B-Rep
scheme [17], allowing manipulation of the topology without
having to alter the underlying geometry of the model. It
defines a set of entities and operators to carry out the
operations associated with model pre-processing for
meshing, and to formalize the relationships with the original
host model.

Virtual topology entities do not require an explicit geometric
definition and instead use a geometric definition inferred
from their host entities, or which can be related to simple

geometrical constructs (e.g. line between two points, least-
square fitted surface, etc.). These are illustrated in Figure 2
(a), and include:

• Parasite entities: entities that do not exist in the
topology of the original CAD model, but lie on an
entity from the original CAD model of higher
dimension (e.g., an edge lying on the face it splits).

• Subset entities: subsets of host entities that are split by
a topological entity of lower dimension (e.g., faces
obtained by partitioning a host face with a parasite
edge).

• Superset entities: a superset of host entities that are
merged together by ignoring their common boundary
entities.

• Orphan entities: an entity without a host one
dimension higher, and from which no geometry
description can be inherited (i.e., an edge through
volume).

Figure 2. (a) virtual topology entities created after
virtual decomposition and (b) equivalent geometric
decomposition and meshing strategies.

Virtual topology operators relevant for an incremental
decomposition workflow are the virtual topology split,
where a host entity is split into several subsets by parasite
entities, and the virtual topology merge where several
entities of the same dimension are merged into a single
superset by ignoring their common boundary entities.

3.2 Abstracting the analysis model

Definition: The analysis model is a transformed version of
the design model that exists within a CAE environment, to
which mesh, boundary conditions and loads are applied.

Implementing the decomposition in the CAD system using
virtual topology operators means that only a topological
description of the analysis model is created, known as the
analysis topology.

Definition: The analysis topology is a representation of the
boundary topology of the analysis model.

In this work, the analysis topology is a non-manifold cellular
model, which means that all interfaces between cells are
known and are considered cells in their own right. Meshing
strategies can be attached to cells. The analysis topology is
initialized by extracting the topological representation of the
B-Rep from the original design model. It is external to any
CAD package and can represent topological relationships
not supported in many CAD environments, but which are
required for conformal meshing. It is therefore capable of
acting as the interface between different CAD and CAE

52

packages. However, while the analysis topology can be used
to represent the topology of the model to be meshed, it does
not contain sufficient information to be used for reasoning.
To address this issue, “virtual geometry” is introduced.

Definition: virtual geometry entities are geometric
representations of virtual entities that co-exist in the
modelling space of the design model, but are not associated
with its B-Rep.

Virtual geometry entities are used to perform geometric tests
on the analysis topology and to visualize the virtual volume
cells. Virtual geometry curves (in red in Figure 2 (a)) are
combined with the existing edges of the CAD model that
have not been virtually edited to define a wireframe
representation of the volume cells. These curves help store
the partitioning intent of decomposition reasoners and avoid
deleting and re-creating curves. Whenever the actual CAD
decomposition is required, virtual geometry curves are used
to define virtual geometry surfaces that can partition the
CAD model to generate the equivalent analysis model,
Figure 2 (b).

3.3 Reasoning on the analysis topology

The use of an analysis topology implies that the current
decomposition state of a model is not explicitly available and
cannot be directly queried or decomposed. Additional steps
are required to adapt the decomposition reasoners, which
depend on the ability to integrate a reasoner. Figure 3 shows
the integration of 6 different types of reasoners to interact
with the analysis topology

 3.3.1 Queries

Reasoners that are fully integrated with virtual topology can
directly query the analysis topology. Geometrical queries are
achieved by inheriting the geometric definition of host
entities or by querying virtual geometry curves if no
geometry is linked. Reasoners for extracting thin-sheets,
long-slender and axisymmetric regions have been fully
integrated with virtual topology, as described in [26]. Other
reasoners that are not integrated with virtual topology
require an explicit geometry description to work with, as
modifying their implementation to work with virtual

topology might be tedious, or not even possible. In that case,
there is no need to commit the entire decomposition, only the
subset regions of interest can be temporarily extracted from
the CAD model, as detailed in section 5.1. The temporary
region can then be processed in either another CAD session
of the native CAD environment, or a different CAD
environment after STEP export.

In the situation where a user wants to manually insert
partitions by applying CAD split operations, an explicit
geometry is also extracted. It is then enriched with interface
and mesh singularity information from neighbors, to help the
user understand the flow of elements and constraints
stemming from the meshing strategies of neighbor regions.
(see Figure 13 (c)).

 3.3.2 Parasite wireframe

In the absence of any standard for exchanging virtual
topology partitions (though one could easily be defined), the
concept of a parasite wireframe is introduced to integrate the
output of different reasoners, or manual intervention, around
a common format. The purpose is to collect the minimal
information required for applying virtual topology split
operators that cannot be recovered by reasoning, to
accompany the transfer of the geometry as a STEP file.

Definition: A parasite wireframe is a collection of vertices,
curves and loops of curves that represent virtual topology
parasite vertices, parasite edges and parasite faces
respectively.

Additional information can also be included to reduce
processing time, such as host entity information for each
vertex and curve to establish the link with the model to
decompose, the bounded/bounding relationship between
vertices and curves and which operation can be used to re-
create a face from the loop of curves (e.g., swept surface, fill
surface). Since the objective is to apply a virtual topology
split, and the final position of the nodes on these faces may
eventually depend on a mesh smoothing algorithm, the exact
geometry of the partition is not required. Hence, transferring
the CAD curves only is sufficient and it is more flexible to
transfer the scaffold required to define the cut faces than the
cut faces themselves.

Figure 3. Integration of different reasoners with virtual topology.

53

 3.3.3 Output processing

Reasoners that are already fully integrated with virtual
topology directly define virtual topology splits and produce the
necessary virtual geometry curves. For other reasoners, with
some level of scripting available, defining a simple parasite
wireframe is straightforward. It can then be transferred back to
the CAD session of the original CAD model and processed to
define virtual topology splits. The curves contained in the
parasite wireframe can be used directly as virtual geometry
curves or can be reconstructed to get a better fitting with the
CAD model. A user can also directly specify a parasite
wireframe, although it can be tedious as the curves forming a
loop of a face need to be grouped manually.

For reasoners that only output a CAD decomposition, or after
the user is done splitting the region of interest, the dumb
blocking that results is converted into a parasite wireframe
using an automated routine. It first queries all the edges and
faces of each block, to identify and match coincident entities
stemming from the manifold nature of the splits. Then entities
are classified as existing, subset or parasite entities by
comparing them with the entities of the region of interest
before splitting, that are matching the analysis topology. Only
parasite entities are kept to define the parasite wireframe and
their host entity is also recorded. This parasite wireframe is
then transferred to the original CAD environment to define the
virtual topology splits.

4. SPLIT PROPAGATION

In the analysis topology, each face of each body has its own
meshing strategy assigned, which is inferred from the meshing
strategy of the parent body or bodies in the case of an interface.
Whenever the topology of a face is modified to accommodate
imprints, either to decompose the face or because of further
decomposing neighbor regions sharing the interface, the flow
of elements or the net number of singularities on the face may
change. This implies that decomposing a body to extract hex-
meshable regions can invalidate the meshing strategies
previously identified on adjacent regions. As a result, special
care must be taken to maintain meshing strategies as the model
is incrementally decomposed.

4.1 Imprints and interfaces

Each face of the analysis topology is assigned one of the
following meshing strategies:

• unstructured triangular mesh: this only exists on or

between residual regions.

• unstructured quad mesh (e.g., paved): on source and

target faces of sweepable regions.

• structured quad mesh (e.g., mapped): faces of block

regions, walls of sweepable regions.

Unless it is an interface with a hex meshed region, there is no

limitation on partitioning the faces of residual regions. In the

case of source and target faces, singularities can be channeled,

therefore there is no limitation on partitioning these faces.

However, doing so may transform a simple one-to-one sweep

into a many-to-many sweep that is not supported by many

meshing tools. The condition on mapped interfaces is the most

stringent, as it implies that the result of a split/imprint on the

face must be a collection of faces with the same mappable

properties. Otherwise, the sweepable/block strategy of the

bodies will become invalid and reprocessing will be needed.

The validity of an imprint on mapped interfaces is assessed by
checking how it modifies the flow of elements associated with
the interfaces. The direction of the flow of elements is only
modified by the introduction of negative or positive
singularities on the face, which either stem from a subset with
a non-null net singularity number, or from the topology of the
imprint itself. Figure 4 shows various imprints on a wall face
of a swept region (which must be 4 sided). The imprints in
Figure 4 (a), (b) and (c) do not perturb the flow of elements
from top to bottom and left to right, so they are valid, and the
body bounded by the face is still sweepable. The imprints in
Figure 4 (d) introduce two triangular faces that would require
negative singularities (in blue). In Figure 4 (e), while all the
subset faces are 4 sided, the connectivity of the imprints
introduce a negative singularity that redirects part of the top-
down flow of elements to the left. Figure 4 (f) is inconclusive
when considering the bottom subset as a logical rectangle, as
all the subsets have 4 corners and are mappable.

Figure 4. Valid imprints (a-c) do not modify the mesh
flow, (d-e) introduce singularities making the sweep
invalid, and (f) is inconclusive.

Even if all the imprints on all individual wall faces are valid
and only result in mappable faces, sweepable regions require
that the wall faces form a loop of mappable faces. This
introduces an additional constraint on the flow of elements,
which is assessed by solving the mapping constraint on the
number of elements. In Figure 5, two mappable faces forming
a loop receiving valid imprints are laid flat. In Figure 5 (a),
solving the equality constraint on opposite edges yields
Ne2=Ne5=0 (where Ne# is the number of element edges on
edge e#) which implies that the loop cannot be meshed unless
the imprints are moved. On the other hand, the configuration
in Figure 5 (b) is valid, but will result in elements being
stretched on e3 and compressed on e4.

Figure 5. Loop of mappable faces with (a) invalid and
(b) valid edge division balancing.

54

Block topology is a special case of sweepable regions with 3
pairs of opposite faces resulting in 3 possible sweeping axes,
and all faces mappable. Therefore, the same approach for
checking invalid imprints can be used. The only difference is
that some invalid imprints can be handled by reclassifying the
shape type from block to sweepable, provided there is still a
loop of valid mappable faces.

If the imprints are valid, the decomposition of the face or
volume can go ahead. If the face is an interface the question of
the propagation of the split arises. For single imprints on wall
faces aligned with the sweep as shown in Figure 4 (a), there is
no need to propagate the imprint as all the wall faces of the
sweep remain 4-sided.

4.2 Aligned split

The process of splitting a sweepable region by propagating
imprints along the sweep direction is illustrated in Figure 6 (a),
where a sweepable body has had its source face imprinted to
match quad meshing requirements (in this case, imprints have
been created by mid-point decomposition reasoner applied to
the face). A new parasite wireframe is created to store the split
information. The curves of the imprint are added along with
their host face, and vertices are processed to identify host
curves and merge coinciding ones. Wall edges are discretized
and are used to trace discretized curves aligned with the sweep
on wall faces and inside the volume, as shown in Figure 6 (b).
Curves that are lying on a wall face are re-projected if an
explicit surface is available, and all the curves are added to the
parasite wireframe. Finally, the curves matching the imprint
curves on the opposite target face are created by joining the
last points of the newly created curves to match the topology
of the imprint. This completes the parasite wireframe with one
loop of curves identified for each imprint, producing 3 parasite
faces, as shown in Figure 6 (c). The resulting analysis topology
after virtual topology split and the equivalent geometric
decomposition are shown in Figure 6 (d) and (e) respectively,
with three simple sweepable regions without imprint
generated.

Figure 6. Imprints on the source face are propagated
along the sweep direction to create virtual parasite
faces splitting the sweepable region into 3 parallel
sweepable regions.

4.3 Perpendicular split

Since sweepable regions are defined by a loop of mappable
wall faces around the sweep direction, the propagation of
imprints that are perpendicular to the sweep direction is
achieved by exploiting mapping constraints to trace loops of

curves. The resulting curves partition the loop of wall faces
into two or more loops of mappable faces, effectively splitting
the original sweep region into a chain of sweepable regions, as
described in Figure 7. As for the propagation of aligned splits,
a new parasite wireframe is first created and the imprint curves
on wall faces (Figure 7 (a)) are added. Then, all coincident
vertices are merged, and the parameter of each vertex lying on
a wall edge is extracted. These parametric values are clustered
within a tolerance range and new vertices are created for each
cluster on wall edges without a vertex using the mean value of
the cluster. In Figure 7 (b), vertices with parameters !" and !#
are clustered, and a new vertex with parameter !$ is created.
Once all vertices are created, the loop of wall edges is
traversed for each cluster, and vertices without existing
parasite curves are joined by tracing a new curve on the wall
face. The resulting loop of curves are added to the parasite
wireframe and used to define a parasite face, as shown in
Figure 7 (c). The resulting analysis topology after virtual
topology split and the equivalent geometric decomposition are
shown in Figure 7 (d) and (e) respectively, with a chain of two
simple sweepable regions without imprint generated. This
algorithm enables processing of multiple imprints on multiple
wall faces and to propagate cuts on wall edges only.

Figure 7. Perpendicular imprint on a wall face is
traced around the loop of mappable wall faces to
create a virtual parasite face splitting the sweepable
region into 2 stacked sweepable regions.

4.4 Identifying propagation order

As the model is incrementally decomposed, the number of hex
meshable regions increases throughout the process and their
interaction becomes more complex. Since propagating
imprints to partition sweepable bodies also produces new
imprints on adjacent bodies, special care must be taken when
propagating splits. If the meshing strategies assigned result in
a valid mesh, propagating the imprints following the meshing
constraints will also produce a valid mesh. As such, the order
in which imprints are propagated in the sweep direction and
perpendicular to it does not matter. However, since imprints
on source faces can modify the number or position of
singularity lines, it is better to propagate aligned splits first, to
ensure proper channeling of the singularities.

In Figure 8 (a), the model is decomposed into one thin region
and 4 sweeps. The source face of one sweepable region is
decomposed resulting in the imprints in Figure 8 (b), which are
first propagated to split the region (Figure 8 (c)) introducing
both perpendicular and aligned imprints on neighbor sweeps.
The imprints on the source faces are processed first (Figure 8
(d)), followed by the lateral propagation (Figure 8 (e)).

55

Eventually, the last sweep has compatible imprints on both its
wall face and source face, which are propagated in the sweep
direction, Figure 8 (f)).

Figure 8. Imprints on the source face (b) are first
propagated to the connected sweepable body (c)
resulting in new imprints on neighbor regions that
are recursively propagated (d-f) until no more splits
can be found on sweepable bodies.

In some cases, additional meshing constraints stemming from
symmetry properties and patterning can arise, where not only
the topology but also that actual geometry must be matching
between faces to reconnect everything. This is handled by
applying the symmetry/patterning transform to the imprint
curves before propagating them, to ensure they are correctly
located.

5. DECOMPOSITION IN CAD

Once the incremental decomposition is complete with all the
splits correctly propagated, and when no more hex meshable
regions can be identified, the virtual volume cells can be
extracted to generate a meshable analysis model. Rather than
trying to apply a sequence of split operations matching the
virtual topology operators applied, the model is decomposed
by querying and using all the interfaces between bodies as
cutting faces. This provides a more flexible way of partitioning
the model that does not rely on the history of the
decomposition process, while allowing a single region to be
extracted in the model without having to perform the entire
decomposition.

The final analysis model must be contained within a non-
manifold CAE environment to ensure a conformal mesh is
created at interfaces. The partitioning of the geometry can
either be applied in a CAD environment or a CAE
environment. In the first case, the virtual geometry curves are
used to create the cutting surfaces, and the final blocking is
exported to the destination meshing environment. In the
second, virtual geometry entities are exported, and the model
is decomposed by applying split operations through an API.

If the geometry decomposition is performed in a non-manifold
environment the process is straightforward, and the topology
of the resulting analysis model will exactly match the analysis
topology. If the decomposition is carried out in a manifold
CAD environment, the limitations from the manifold
representation and the split capabilities of the CAD engine
must be taken into consideration.

5.1 Split ordering

Extracting all the subset regions identified in a single split
operation has a high chance of failing in current tools, even for
reasonably simple splits such as decomposing a cube into 8
octants (Figure 9 (a) and (b)). For this reason, an incremental
decomposition approach is preferred, extracting regions of
interest one after the other. This however produces
intermediate bodies that can exhibit invalid non-manifold
touch configurations even though all the final extracted bodies
would be valid manifolds. In Figure 9 (c), if the green octant
is removed first, extracting the yellow octant would create a
non-manifold edge on the intermediate body (in translucent
grey), hence the extraction would fail. Similarly, in Figure 9
(d), extracting the green octant first followed by the blue would
create a non-manifold vertex on the intermediate volume.

Figure 9. Invalid manifold condition on the
intermediate body for different extraction order.

This issue is eliminated by prescribing a decomposition order
that avoids invalid intermediate volumes and maintains the
manifold condition at all times. The process starts by querying
all the internal vertex and concave edge neighborhoods to
initialize the list of connected volumes. If the neighborhood is
complete, e.g., a vertex is fully surrounded by geometry, any
touching body can be removed. If the neighborhood is
incomplete, e.g., a concave edge, the touching faces that are
not interfaces define a front, and only bodies bounded by faces
on that front are valid candidates for extraction. For each
volume to be removed, the relevant neighborhoods are
checked to ensure no touching condition will be created. If the
extraction is valid the body is added to the decomposition
sequence and the neighborhoods are updated. Else the
candidate bodies are re-ordered before the current bodies and
assessed in turn.

While this process results in a propagation of the partitioning
front from the boundary, it also enables the extraction of a
single region, by identifying the minimal number of regions
that must be extracted first where the extraction would create
an invalid intermediate volume. It also reduces the number of
intermediate bodies, as these are difficult to manipulate since
they do not match any volume cells in the analysis topology.

5.2 Cut definition

Once the order in which the regions need to be extracted is
known, the sequence of split operations and cutting geometry
required to perform the decomposition need to be generated.
The cutting geometry is inferred from the interfaces between
bodies recorded in the analysis topology. Virtual geometry
curves are combined with the existing edges bounding each
interface to generate a face by fitting a surface through the
curves (in effect a fill surface operation). The resulting cutting
faces are then clustered to match each successive split
operation. This is achieved by querying all the interfaces of the

56

body to extract and removing the ones that have already been
used. Adjacent faces with coincident edges are sewn together
within each cluster.

 shows the decomposition process for the model in Figure 9
(b). The first row shows the decomposition order identified,
while the second row shows the different clusters of cutting
faces generated for each split operation associated with this
order. The third row shows the anticipated results from the
incremental splitting, with all intermediate bodies being valid
manifold representation in CAD.

Figure 10. Cluster of faces identified for the
extraction sequence. The intermediate body at each
step is a valid manifold model.

5.3 Subset mapping

Figure 11. Persistent naming issue on edges.

When automatically applying the sequence of split operations
in a CAD package, special care must be taken at each step to
identify which bodies need to be split and to remap entities on
the subset corresponding to the region to extract. The
remapping consists in matching the B-Rep entities that have
been generated by the split operation with their topological
analogue that already exists in the analysis topology. This is
critical to ensure downstream automation of meshing but is
made difficult by the way many CAD modelers implement
split operations and how they suffer from the persistent naming
problem. In Figure 11 (b), a common CAD practice is to merge
faces that have the same underlying surface. As a result, the
bold edge e1 is extended to bound the merged face. When the
merged faces are split to recover imprints or to extract the next
region, one subset inherit the attributes of the parent, which
may not match the original entity. In Figure 11 (c), the edge e1
as moved to the right following the split.

When it comes to linking the representation in the CAD system
with the analysis topology description, since the topology of
the region being extracted matches the analysis topology it can
be identified by looking first for the CAD bodies that have the
same topology. If several CAD bodies are identified, the
coordinates of the mid-point of the edges can be used to match

the correct subset. The re-mapping of the new CAD edges and
faces is also recovered by matching the mid-point of edges.

When several intermediate bodies are created after a split, the
host entity information is used to identify which one needs to
be partitioned to extract the next region. All the faces and
edges of the region to extract, that are subsets, are queried to
get the list of host CAD entities. The intermediate CAD body
that has the most matching CAD entities is then identified as
the target for the splitting operation. If this test is not sufficient,
point in volume methods are used to differentiate the bodies

Once all the regions have been extracted and remapped, a
manifold collection of bodies will exist in the CAD
environment, with all the coincident entities (e.g., bodies
sharing a non-manifold interface in the analysis topology now
have coincident faces in CAD) identified and labelled to
automate the conversion to a non-manifold representation
once transferred to a CAE package.

6. RESULTS

The incremental decomposition workflow is demonstrated
within a virtual topology framework built around a relational
database used to store the analysis topology, and the Siemens
NX [27] CAD package, as described in [26]. In addition to
various decomposition reasoners, the framework includes a
meshing strategy reasoner to identify a meshing recipe from
the meshing strategies. It uses integer programming to resolve
mapping constraints and identify edge division numbers
directly on the analysis topology. After the geometric
decomposition is applied, another meshing reasoner is used to
transfer the model to the NX CAE environment, recover the
associativity with the analysis topology by merging coincident
faces, and transfer the meshing recipe to automatically
generate the mesh.

Within the current framework, fully automated workflows
from the CAD model of the design to the mesh are only limited
by the decomposition reasoners available and in identifying in
which order they must be applied. In this work, this decision
is left to the user, who applies the automated decomposition
reasoners one after the other, and can also manually
decompose the regions left by automated reasoners. Once
satisfied with the analysis topology obtained, the user can
adjust the meshing sizing parameters before the model is
automatically decomposed geometrically and meshed. Further
details on the virtual topology framework and automatic
meshing are available in [26], and will be presented in a future
paper.

6.1 Boss plate

Figure 12 presents different decompositions for a simple
model of a plate with a boss that has fillets that introduce mesh
singularities. All models are first processed using the thin-
sheet decomposition reasoner, followed by a reasoner that
identifies sweepable regions that are embedded in thin-sheets.
In Figure 12 (a), a mid-point subdivision [28] reasoner is
applied, resulting in a block decomposition but with all
singularities meeting at the body mid-point. In Figure 12 (b),
the residual is exported to CADFix [29] to use a reasoner based
on the medial object.

57

Figure 12. Different decompositions and meshes
obtained for various combinations of decomposition
reasoners and manual intervention.

Figure 13. (a) Crescendo vane model, (b) result of
automated decomposition, (c) residual for manual
processing, (d) manual split converted to virtual split
and (e-f) resulting automated mesh.

In Figure 12 (c), the user has specified a cutting plane to create
two sweepable regions that channel the two singularity lines.
In Figure 12 (d), 4 cutting planes are manually specified to
extract sweepable regions, followed by automatic mid-point
subdivision of the source faces to constrain the location of the
singularity lines. In Figure 12 (e), the same manual
decomposition is used but cube-shaped sweeps are re-
classified as blocks, resulting in a full blocking of the residual.

6.2 Crescendo vane

Figure 13 shows the manual processing of a vane geometry to
achieve a full hex mesh. After extracting symmetries and
applying thin-sheet and long-slender tools (Figure 13 (b)), a
complex residual region is left at the root of the leading edge.
This is extracted (Figure 13 (c)) and manually partitioned into
three sweepable regions, one to channel the singularity lines
from the left and right long-slender regions, one to channel the
singularity coming from the sharp leading edge, and one in
between to channel the singularity coming from the yellow
triangular face through the thickness. The operation is then
converted into virtual splits resulting in Figure 13 (d), and the
model can be automatically decomposed and meshed as seen
in Figure 13 (e) and (f).

7. DISCUSSION

The robustness of the incremental decomposition based on
virtual topology depends on several aspects. The robustness of
the decomposition reasoners is not critical, as checks are

carried out after the regions have been extracted to ensure they
are suitable for hex meshing. Failed reasoners can either be re-
applied with different parameters or another reasoner can be
used. As a result, prototype reasoners can be added without
jeopardizing the entire decomposition process. The variety of
decomposition reasoners available is more important, as some
reasoners might define hex-meshing strategies resulting in
poor element quality, and regions that are not covered by any
reasoner will either need manual decomposition or receive a
tet mesh. The current limitation comes from the ability to apply
virtual topology split operations, as the workflow requires the
application of many operations successively and any failed
operation will make any subsequent split invalid.

Beyond facilitating the integration of the different tools,
having a pre-processing workflow based on virtual topology
makes this approach compatible with traditional applications
of virtual topology for de-featuring and geometry clean-up.
The update of the decomposition is also made simpler. Sub-
regions can be recombined by the virtual topology merge
operator without rolling back the entire decomposition (e.g.
the decomposition in Figure 12 (a) can be obtained from the
one in Figure 12 (b)). The constraints associated with the
meshing strategies can also be used to automatically propagate
CAD design updates to the decomposition [30].

One can argue that using virtual geometry curves and
extracting explicit regions for some reasoners is incompatible
with the notion of virtual topology. Even simple geometries
can result in complex block decompositions (see Figure 14 (a))
and inferring cutting geometry solely from the topological

58

requirements would create skewed angles and potentially
inverted geometry that are easily avoided using virtual
geometry curves. Extracting temporary geometric regions is
the only realistic way currently available for a user to interact
with the analysis topology and allows integration of a wide
range of off-the-shelf tools within a given CAD environment.

Figure 14. (a) Fully blocked model and (b) mesh file
generated directly from CAD using virtual entities.

The analysis topology is essential to maintain the meshing
strategies at interfaces in manifold environment and ensure
that the final decomposition is suitable for meshing. Meshing
strategies translate downstream meshing constraints into
constraints on the decomposition that are available from within
a CAD environment. The process of propagating imprints and
decomposing source faces of sweepable regions may create
more subset regions than necessary for achieving a good
quality hex mesh, but this results in sub-regions that are
simpler to mesh and compatible with a wider range of meshing
tools. Eventually, a model that has been fully decomposed into
block regions is in itself a very coarse hex mesh. It can be
refined and meshed directly from the virtual decomposition in
CAD, without having to commit the geometric decomposition
and transfer to a CAE environment. In Figure 14 (b), all edges
are discretized as per the meshing recipe and nodal positions
on surface and inside the volume are identified using
transfinite interpolation [31], before being written to a Nastran
deck input file to define a mesh. On the other hand, sweepable
regions with paved source faces can accommodate pair of
singularities that cancel each other, redirecting the flow of the
elements. This offers more freedom for node location and
avoids the propagation of small element size from small details
to the entire mesh.

Automatically propagating imprints is also beneficial for semi-
automated decompositions workflows, as automatic partition
of neighbor regions reduces the amount of work for the
operator. Manual intervention can also unlock regions that are
suitable for automatic processing, hence the impact of user
input is maximized and no time is wasted carrying out
repetitive decomposition tasks.

8. CONCLUSION

A method to integrate various automated decomposition
reasoners in a single incremental decomposition workflow has
been presented. All the split operations are applied using

virtual topology to build an analysis topology that stores and
maintains interface information and meshing strategies. This
analysis topology along with virtual geometry curves are used
to abstract the actual analysis model, enabling reasoners and
manual users to operate on a model that is equivalent to the
analysis model before it is created. Each reasoner identifies
and extracts sweepable and block regions, and the meshing
strategies associated with each region are used to propagate
splits across interfaces to ensure everything remains hex-
meshable. With all the necessary information for mesh
automation available, the CAD model is decomposed to create
an analysis model that can be exported to a meshing tool.

9. FUTURE WORK

Future research directions include:

• Extending the range of decomposition reasoners, in
particular frame-field based methods that also focus on
the handling of singularity lines.

• Integrating automatic de-featuring reasoners to remove
small fillets and holes using virtual topology.

• Further investigating virtual topology meshing
capabilities, including sub-mapping and paving.

AKNOWLEDGMENTS

The authors wish to acknowledge the financial support
provided by Innovate UK through the COLIBRI (ref 113296)
project. We also thank Rolls-Royce for permission to publish
this paper.

REFERENCES

[1] J. Sarrate, E. Ruiz-Gironés, and X. Roca,
“Unstructured and Semi-Structured Hexahedral Mesh
Generation Methods,” Comput. Technol. Rev., vol.
10, pp. 35–64, 2014.

[2] S. J. Owen et al., “An Immersive Topology
Environment for Meshing,” in Proceedings of the
16th International Meshing Roundtable, Berlin,
Heidelberg: Springer, 2008, pp. 553–577.

[3] Y. Lu, R. Gadh, and T. J. Tautges, “Feature based hex
meshing methodology: feature recognition and
volume decomposition,” Comput. Des., vol. 33, no. 3,
pp. 221–232, Mar. 2001, doi: 10.1016/S0010-
4485(00)00122-6.

[4] D. White, L. Mingwu, and S. Benzley, “Automated
hexahedral mesh generation by virtual
decomposition,” in Proceedings of the 4th
International Meshing Roundtable, 1995, pp. 165–
176.

[5] L. Sun, C. M. Tierney, C. G. Armstrong, and T. T.
Robinson, “An enhanced approach to automatic
decomposition of thin-walled components for
hexahedral-dominant meshing,” Eng. Comput., vol.
34, no. 3, pp. 431–447, Nov. 2018, doi:
10.1007/s00366-017-0550-x.

59

[6] H. Wu, S. Gao, R. Wang, and J. Chen, “Fuzzy
clustering based pseudo-swept volume
decomposition for hexahedral meshing,” Comput.
Des., vol. 96, pp. 42–58, Mar. 2018, doi:
10.1016/J.CAD.2017.10.001.

[7] X. Roca and J. Sarrate, “Local dual contributions:
Representing dual surfaces for block meshing,” Int. J.
Numer. Mehtods Eng., vol. 83, pp. 709–740, 2010,
doi: 10.1002/nme.2852.

[8] N. Kowalski, F. Ledoux, M. L. Staten, and S. J.
Owen, “Fun sheet matching: towards automatic block
decomposition for hexahedral meshes,” Eng.
Comput., vol. 28, no. 3, pp. 241–253, Jul. 2012, doi:
10.1007/s00366-010-0207-5.

[9] R. Wang, C. Shen, J. Chen, H. Wu, and S. Gao,
“Sheet operation based block decomposition of solid
models for hex meshing,” Comput. Des., vol. 85, pp.
123–137, Apr. 2017, doi:
10.1016/J.CAD.2016.07.016.

[10] M. A. Price and C. G. Armstrong, “Hexahedral Mesh
Generation by Medial Surface Subdivision: Part II.
Solids with Flat and Concave Edges,” Int. J. Numer.
Methods Eng., vol. 40, no. 1, pp. 111–136, 1997.

[11] “Sandia National Laboratories: index.”
https://cubit.sandia.gov/ (accessed Aug. 03, 2021).

[12] J. H.-C. Lu, W. R. Quadros, and K. Shimada,
“Evaluation of user-guided semi-automatic
decomposition tool for hexahedral mesh generation,”
J. Comput. Des. Eng., vol. 4, no. 4, pp. 330–338, Oct.
2017, doi: 10.1016/J.JCDE.2017.05.001.

[13] J. H.-C. Lu, I. Song, W. R. Quadros, and K. Shimada,
“Volumetric Decomposition via Medial Object and
Pen-Based User Interface for Hexahedral Mesh
Generation,” Proc. 20th Int. Meshing Roundtable,
IMR 2011, pp. 179–196, 2011, doi: 10.1007/978-3-
642-24734-7_10.

[14] T. Blacker, “Automated Conformal Hexahedral
Meshing Constraints, Challenges and Opportunities,”
Eng. Comput., vol. 17, no. 3, pp. 201–210, Oct. 2001,
doi: 10.1007/PL00013384.

[15] K. Miyoshi and T. Blacker, “Hexahedral Mesh
Generation Using Multi-Axis Cooper Algorithm
Cubit Mesh Generation,” in Proceedings of the 9th
International Meshing Roundtable, 2000, pp. 89–97.

[16] H. Wu, S. Gao, R. Wang, and M. Ding, “A global
approach to multi-axis swept mesh generation,”
Procedia Eng., vol. 203, pp. 414–426, Jan. 2017, doi:
10.1016/J.PROENG.2017.09.817.

[17] A. Sheffer, M. Bercovier, T. Blacker, and J. Clemets,
“Virtual Topology Operators for Meshing,” Int. J.
Comput. Geom. Appl., vol. 10, no. 03, pp. 309–331,
Jun. 2000, doi: 10.1142/s0218195900000188.

[18] C. M. Tierney, L. Sun, T. T. Robinson, and C. G.
Armstrong, “Using virtual topology operations to
generate analysis topology,” Comput. Des., vol. 85,

pp. 154–167, 2017, doi: 10.1016/j.cad.2016.07.015.

[19] K. Ho-Le, “Finite element mesh generation methods:
a review and classification,” Comput. Des., vol. 20,
no. 1, pp. 27–38, 1988, doi: 10.1016/0010-
4485(88)90138-8.

[20] T. D. Blacker and M. B. Stephenson, “Paving: A new
approach to automated quadrilateral mesh
generation,” Int. J. Numer. Methods Eng., vol. 32, no.
4, pp. 811–847, 1991, doi: 10.1002/nme.1620320410.

[21] C. M. Tierney et al., “Efficient Symmetry-Based
Decomposition for Meshing Quasi-Axisymmetric
Assemblies,” Comput. Des. Appl., vol. 16, no. 3, pp.
478–495, 2019, doi: 10.14733/cadaps.2019.478-495.

[22] L. Sun, C. M. Tierney, C. G. Armstrong, and T. T.
Robinson, “Decomposing complex thin-walled CAD
models for hexahedral-dominant meshing,” Comput.
Aided Des., vol. 103, pp. 118–131, Dec. 2018, doi:
10.1016/j.cad.2017.11.004.

[23] B. Lecallard et al., “Automatic Hexahedral-Dominant
Meshing for Decomposed Geometries of Complex
Components,” Comput. Des. Appl., vol. 16, no. 5, pp.
846–863, 2019, doi: 10.14733/cadaps.2019.846-863.

[24] N. J. Taylor and R. Haimes, “Geometry modelling:
Underlying concepts and requirements for
computational simulation (invited),” 2018 Fluid Dyn.
Conf., 2018, doi: 10.2514/6.2018-3402.

[25] J. Kripac, “A mechanism for persistently naming
topological entities in history-based parametric solid
models,” Comput. Des., vol. 29, no. 2, pp. 113–122,
Feb. 1997, doi: 10.1016/S0010-4485(96)00040-1.

[26] B. Lecallard, “Virtual topology based hex-dominant
meshing and re-meshing,” PhD thesis, Queen’s
University Belfast, 2020.

[27] “NX | Siemens Digital Industries Software.”
https://www.plm.automation.siemens.com/global/fr/
products/nx/ (accessed Aug. 03, 2021).

[28] T. S. Li, C. G. Armstrong, and R. M. McKeag, “Quad
mesh generation for k-sided faces and hex mesh
generation for trivalent polyhedra,” Finite Elem.
Anal. Des., vol. 26, no. 4, pp. 279–301, Aug. 1997,
doi: 10.1016/S0168-874X(96)00085-6.

[29] “ITI - International TechneGroup | CADfix.”
https://www.iti-global.com/cadfix (accessed Mar. 06,
2019).

[30] B. Lecallard, C. M. Tierney, T. T. Robinson, C. G.
Armstrong, D. C. Nolan, and A. E. Sansom,
“Updating and Re-meshing Virtually Decomposed
Models,” in Proceedings of the 28th International
Meshing Roundtable, 2019, pp. 50–67.

[31] L. E. Eriksson, “Generation of Boundary-
Conforming Grids Around Wing-Body
Configurations Using Transfinite Interpolation,”
Aiaa J., vol. 20, no. 10, pp. 1313–1320, 1982, doi:
10.2514/3.7980.

60

