
ALL-HEX MESHING STRATEGIES FOR DENSELY
PACKED SPHERES

Yu-Hsiang Lan
1

Paul Fischer
1,2,3

Elia Merzari
4

Misun Min
1

1Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, U.S.A.
2Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A.⇤

3Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, U.S.A.
4Department of Nuclear Engineering, Penn State, University Park, PA, U.S.A.

ABSTRACT

We develop an all-hex meshing strategy for the interstitial space in beds of densely packed spheres that is tailored
to turbulent flow simulations based on the spectral element method (SEM). The SEM achieves resolution through
elevated polynomial order N and requires two to three orders of magnitude fewer elements than standard finite
element approaches do. These reduced element counts place stringent requirements on mesh quality and conformity.
Our meshing algorithm is based on a Voronoi decomposition of the sphere centers. Facets of the Voronoi cells are
tessellated into quads that are swept to the sphere surface to generate a high-quality base mesh. Refinements to the
algorithm include edge collapse to remove slivers, node insertion to balance resolution, localized refinement in the
radial direction about each sphere, and mesh optimization. We demonstrate geometries with 102–105 spheres using
⇡ 300 elements per sphere (for three radial layers), along with mesh quality metrics, timings, flow simulations, and
solver performance.

Keywords: all-hex meshing, spectral elements, smoothing, projection, pebble bed reactor

1. INTRODUCTION

We are interested in simulating turbulent flow through
randomly packed spherical beds such as illustrated in
Fig. 1. Spherical beds are common in many indus-
trial processes in chemical engineering [1]. The flow of
coolant through packed beds is of particular interest
in the design of pebble-bed reactors, and researchers
have expressed significant interest in detailed simula-
tions tha can provide insight into heat transfer in new
pebble-bed designs [2]. For simulations that resolve
turbulent eddies in the flow, high-order discretizations
having minimal numerical dissipation and dispersion
provide high accuracy with a relatively small number of
gridpoints, n. The spectral element method (SEM) [3],
which uses local tensor-product bases on curved hexahe-
dral elements, is e�cient, with memory costs scaling as
O(n), independent of local approximation order N (for
n fixed), and computational cost that is only O(nN).
Here, n ⇡ EN3 is the total number of gridpoints for
a mesh comprising E elements. In contrast, p-type
finite element methods exhibit O(EN6) = O(nN3)

⇤Corresponding Author: fischerp@illinois.edu

storage and work complexities, which e↵ectively limit
approximation orders to N 4.

For a given resolution n, the use of high-order elements
with N = 7–15 implies a 300- to 3000-fold reduction
in the number of elements required when compared
with linear finite elements. The SEM meshing task
is thus a challenge. We require high-quality meshes
with relatively few elements. By contrast, tet- or hex-
meshes for linear elements are su�ciently fine-grained
that one can fairly easily repair connections where
needed. Paving/plastering is one all-hex example that
illustrates this approach [4, 5]. For the dense-packed
sphere problem, however, the distance between the
sphere boundaries and the center of the voids is not
large—paved surfaces will quickly collide, and a large
number of elements will be required to conformally
merge the advancing fronts (e.g., [6]).

An alternative all-hex strategy is to tessellate the void
space with tets and to then convert each tet to four
hexes (e.g., [7]). In addition to providing a straight-
forward path to an all-hex mesh, this approach leads
to fairly isotropic elements that result in reasonable

293

Figure 1: Example of turbulent flow in a packed
bed with N = 1568 unit-radius spheres meshed with
E = 524, 386 spectral elements of order N = 7.

iteration counts for the pressure Poisson solve, which
dominates the cost of most incompressible flow sim-
ulations. The tet-to-hex strategy has recently been
pursued by Yuan et al. for packed beds [8]. Unfor-
tunately, the element counts are high. The authors
found that they could only use N = 4 for the target
resolution (n) in their simulations, which is suboptimal
for the SEM where N > 5 is preferred [9].

Here, we propose a meshing algorithm that is based on
a Voronoi decomposition of the sphere centers. Facets
of the Voronoi cells are tessellated into quads that are
swept to the sphere surface to generate a high-quality
base mesh. Refinements to the algorithm include place-
ment of ghost spheres to generate boundary cells, edge
collapse to remove slivers, node insertion to balance
resolution, localized refinement in the radial direction
about each sphere, and mesh optimization.

While the interstitial space in randomly packed spheres
is complex, several features of this problem make it
possible to recast the meshing question into a sequence
of simpler, local, problems, making the overall problem
far more tractable. First, the presence of so many sur-
faces provides a large number of termination points for
a given mesh topology. Such surfaces occlude incident
swept volumes, thus bypassing the need to conformally
merge advancing fronts and yielding considerable sav-
ings in element count. Second, decomposing the do-
main into Voronoi cells defined by the sphere centers
directly localizes the meshing problem in several ways.

Figure 2: A cell at di↵erent meshing stages. From top
to bottom: Voronoi cell, edge-collapsed cell, all-quad
surface, smoothed all-quad surface, and cut-away view
showing swept hex elements.

294

First, we reduce the problem to that of building a mesh
that fills the gap between the facets of the Voronoi cell
and the sphere surface. This process entails tessellat-
ing each Voronoi facet into an all-quad decomposition
and projecting these quads onto the sphere surface.
The convexity of the Voronoi cell and coplanarity of
the facets ensure that this decomposition is possible.
Where desired, refinement in the radial direction is
always possible without disturbing other cells.

Second, tessellation of each Voronoi facet is a local
problem. Because of bilateral symmetry about the
Voronoi facet, tessellation of a facet that is valid for one
sphere will also be valid for the sphere on the opposite
side. We note that facets may have an odd number
of vertices. If, for example, the facet is a triangle,
then the all-quad tessellation will require midside node
subdivision, resulting in the introduction of new nodes
along each edge. To retain the locality of the algorithm,
we introduce midside nodes on each edge of each facet
throughout the domain. With an even number of
vertices thus guaranteed, we can generate all-quad
tessellations of the resulting polygons.

The strategy outlined above forms the essence of the
proposed algorithm, and several of the steps are illus-
trated in Fig. 2. In principle, it will produce a base
mesh with relatively few elements that inherit reason-
able shape qualities from the Voronoi decomposition.
In the following sections we dascribe several impor-
tant modifications to put the method into practice:
We mention these briefly as edge collapse (to remove
small facets); vertex insertion on long edges (to balance
the resolution); facet tessellation and sweeping to the
sphere surface; mesh refinement; mesh smoothing; and
surface projection (to ensure that the final SEM nodal
points are on the sphere surfaces and boundaries while
avoiding mesh entanglement). Save for the last step
and (potentially) the smoothing step, all of the steps
of the algorithm are implemented in Matlab in O(N)
time, where N is the number of spheres. Projection
of the SEM nodal points and mesh smoothing are per-
formed in parallel by using the open source spectral
element code Nek5000.

Throughout, we assume the spheres are not touching.
To avoid a contact singularity the spheres inflate to-
wards their nominal touching radius, we flatten the
surfaces near contact points. It is also relatively sim-
ple to have the spheres in contact with a small fillet
around the contact point. Such an approach is under
development and illustrated in Fig. 10.

Elements of this work were inspired by 2D random
media simulations of Cruz, Patera, and co-workers.
Specifically, in [10], these authors introduce the idea of
a disk-centered Voronoi decomposition for parallelism
and unstructured meshing. In [11], they discuss the

consequences of flattening or bridging touching disks to
avoid the contact singularity. Voronoi decompositions
have been used in many other meshing applications
as well. She↵er et al. [12] describe application of em-
bedded Voronoi graphs to decompose geometries into
sweepable domains. Yan et al. [13] develop e�cient
algorithms for constructing clipped Voronoi diagrams
and applying these to tetrahedral mesh generation.

We organize the paper as follows. In Section 2 we
present algorithmic details. In Section 3 we demon-
strate various pebble meshes, pebble-bed reactor sim-
ulations, and performance on Summit. We conclude
with remarks and discussion in Section 4.

2. ALGORITHM

Our principal objective is to produce all-hex meshes
with roughly 300–400 elements per sphere so that the
required simulation resolution can be realized through
e�cient high-order (e.g., N = 7 to 9) polynomial ap-
proximations that are the foundation of the SEM. The
SEM basis consists of Nth-order Lagrange polynomi-
als based on tensor products of the Gauss–Lobatto–
Legendre (GLL) quadrature points in the reference ele-
ment, ⌦̂ := [�1, 1], which is isoparametrically mapped
to E curvilinear hexahedral (hex) elements. The e↵ec-
tive resolution is n = EN3. With a target value of n re-
quired to resolve the important turbulent length scales,
one can either increase E or increase N . Through
decades of experience, we have found that N = 7 is a
nearly optimal value for Nek5000 because it realizes
high throughput with reasonable element counts and
reasonable timestep sizes [9].

Throughout this article, we will consider the specific
case of a computational domain ⌦ that is a cylinder
of fixed height z = H and radius Rc, minus the space
occupied by N spheres of unit radius, R. Other config-
urations are of course possible, but this geometry will
su�ce to describe the basic approach.

2.1 Voronoi Diagram

The starting point for our algorithm is a user-provided
set of sphere centers, P := {pi}, i = 1, . . . ,N , which
are typically obtained from experiments or from a
discrete element method (DEM). The user may or may
not also provide domain boundary information, which
needs to be verified in any case in order to provide a
precise mesh (i.e., one in which the spheres, with their
nominal radii, actually touch the boundary to within
the prescribed tolerance).1

1We initially identify the cylinder radius, Rc, and cen-
ter, xc = (xc, yc), by solving for the center position that
minimizes the p-norm, kp � xckp, over the set of sphere

295

Figure 3: Void-fraction as a function of sphere radius.

The central element of our meshing scheme is the set
of Voronoi cells that bound each sphere. For spheres
that are near the domain boundary, the Voronoi cells
will extend to infinity unless they are clipped. While
clipped Voronoi algorithms are well established (e.g.,
[13]), we are using the Voronoi utility in Matlab as a
black box. To trim the Voronoi diagram, we augment
P with additional sphere centers outside ⌦, which we
call ghost spheres. To generate this auxiliary set in the
case of a cylindrical domain, we first reflect any point
within a distance �r < 2R of the cylinder wall to a
new position that is at radius Rc +�r along the same
radial coordinate. From this augmented set, we take
each center point that is at a height z < 2R and reflect
it about z = 0. Similarly, we take all points at heights
z > H � 2R and reflect these about z = H. From
this augmented point set, P̄, we generate the Voronoi
cells by calling Matlab’s voronoin function with the
’C-0’ argument to remove redundantly represented
vertices. We subsequently restrict our interest to the
first N cells. We note that the runtime for the Voronoi
decomposition is O(N) except in pathological cases
(e.g., a crystalline lattice).

2.2 Preconditioning the Data

One challenge of meshing packed beds is the prevalence
of point-contact singularities where the spheres touch.
From a flow perspective, the fluid motion is almost
nil in these regions so having the precise geometry
near the contact is not requisite. One can avoid the

centers p. A large value of p (e.g., p=100) approximates the
infinity norm. Two passes are made—one with all sphere
centers, and then one with spheres that are within 2R the
estimated cylinder boundary.

Figure 4: Top: sorted list of neighbor-neighbor dis-
tances for N = 146 to 350K. Bottom: zoom near
�ij = 2.

singularity by slightly reducing the radius, introducing
a flat-spot near the contact point, or introducing a
solid bridge that connects the spheres (e.g., Fig. 10).
The latter approaches were considered in 2D in [11].
For the shrinking case, we consider spheres of radius
r < R, where R is one-half the nominal separation
of the sphere centers. The overall pressure drop is
strongly dependent on void fraction, which in turn is
strongly dependent on r/R, as illustrated in Fig. 3.
We see that at r/R = 0.95, the void fraction is 25%
too large compared with the Vf = 0.359 value for a
vibrated poured bed of spheres. Also shown are the
values for a random-poured bed, Vf = 0.391, and the
hexagonally close-packed (HCP) case, which attains
the minimum possible value of Vf = 0.2595.

Given the sensitivity of the pressure drop to void

296

fraction and ultimately to the sphere radii, it is im-
portant to accurately identify the nominal separa-
tion of the spheres from the given data set, P. Let
�ij := kpi � pjk be the Euclidean separation for all
i-j pairs connected by the Delaunay triangulation of P.
If the data set were perfect, the target radius would
simply be R = Rmin := 1

2 min�ij . However, virtually
all data sets have a distribution in which a handful
of element pairs are closer than others, which implies
that choosing R = Rmin would yield too large of a
separation almost everywhere.

We identify a more robust separation definition as
follows. Sort the list {�ij} in ascending order and plot
these values, as shown in Fig. 4. We expect there to
be a plateau in this sorted list corresponding to the
pairs of spheres that are touching. The cardinality of
{�ij} is O(N), so it makes sense to scale the x-axis
by 1/N so that graphs for di↵erent data sets can be
plotted in the same figure.2 With this scaling, we see
that the ten data sets in Fig. 4 exhibit plateaus on the
interval k/N ⇡ [0, 5]. The cyl146 case, corresponding
to measured experimental data [14], has the least well-
defined plateau. From these collective sets we choose
the value of �ij corresponding to ranking k = 2.5N
as the nominal separation, which we denote as �⇤.
The first step in our algorithm is to rescale the input
geometry by 1

2�
⇤ so that the target radius is R = 1.

This scaling has been applied in Fig. 4.

2.3 Edge Collapse

Despite its provably excellent properties of convexity
with convex planar facets, the Voronoi tessellation may
still contain very thin facets (slivers) that can lead to
poorly conditioned elements. To eliminate these and
to generate a more uniform mesh with a bounded ratio
of the longest to the shortest edge, we first perform
edge collapse on the Voronoi cells. Any edge shorter
than a given tolerance is collapsed, and its two vertices
are fused into one. If after edge collapse the number of
edges on a facet is < 3, the facet is deleted. Subsequent
to edge collapse, we use vertex insertion to ensure that
the longest edge is below a certain threshold.

A risk with edge collapse is that facets lose their pla-
narity and, worse, might not face the sphere that they
are nominally bounding. We take several steps to avoid
this scenario. First, our target edge collapse tolerance
of tol1 = 0.35R is not overly aggressive. Second, we
make several passes through the data, collapsing the
shortest edges first and not allowing a single vertex

2Note that for the HCP case we expect to have 12
connections per sphere (i.e., for each i, there will be
12 nontrivial entries, �ij), with inequality resulting from
spheres at the domain boundary that have fewer than 12
connections to other spheres.

to be moved more than once per pass, even if it is
attached to more than one short edge. With each pass,
we set the tolerance to be tolk = 0.35R(0.6)8�k for
k = 1, . . . , 8, and tolk = 0.35R for k=9 and 10. As
a final precaution, we have the option of revisiting a
neighborhood if at the end of the meshing process the
algorithm produces hexes with inverted Jacobians. In
that case we rerun the algorithm with tighter local
tolerances. In the limit of tol1 = 0 we recover the
provably workable properties of the original Voronoi
tessellation. (We find this corrective step necessary
only for the N = 350K case.) We remark that many of
the challenges in the meshing process come from the
domain boundaries, where the Delaunay triangulation
has relatively long edges. Consequently we typically
set tol1 = 0.25 in the neighborhood of @⌦.

Another issue with edge collapse is that the recon-
structed facet surface will potentially intersect the
sphere that is to be bounded by the facet. To avoid
this situation, we project all points generated during
edge insertion or facet tessellation onto a sphere that
is larger than R0.

2.4 Vertex Insertion

In addition to having short edges (mostly cleaned by
edge collapse), the initial Voronoi decomposition can
yield facets with edges that are longer than desired.
For this reason we insert vertices for edges that are
longer than 0.8R; thus we have a maximum edge-length
ratio of 0.8/0.35. This value is readily adjusted at
construction time and is also adjusted somewhat by
the final mesh smoothing process. For our initial trials,
however, it seems to be a reasonable ratio.

2.5 Facet Tessellation

Amajor part of the algorithm is the all-quad decomposi-
tion of the Voronoi facets. Each facet can be tessellated
into a set of quadrilaterals by first inserting a vertex at
the midpoint of each edge in order to guarantee that
the facet is a polygon with an even number of edges.
Alternatively, one can decompose the facet into quads
and triangles and perform the midside node insertion
at the end. We follow the latter approach.

As illustrated in Fig. 5, our facet tessellation uses a
two-phase divide-and-conquer algorithm to reduce the
number of vertices on each polygon by splitting facets
into smaller polygons. Phase one, illustrated in Fig.
5(a) and (b), begins by clustering sequences of edge
vertices having angles > 155� into edge groups. If the
facet is large (having either many vertices or large area),
we insert a point at the barycenter. Each edge group
having at least one interior vertex angle will connect
one and only one vertex to the barycenter. The selected

297

(a) Group edges (b) Find sections (c) Divide and conquer (d) Quads unsmoothed/smoothed

Figure 5: Facet tessellation steps.

vertex is the one with minimal bias between its adjacent
angles (i.e., as close to a bisector as possible). In the
case of Fig. 5(b) we see that this process subdivides
the facet into two subdomains.

For each subdomain (or for the whole facet if we skip
phase one), we consider sequences of 4 successive ver-
tices to see whether they produce viable quads and
whether the remaining part of the domain meets qual-
ity conditions such as low variance in edge length and
absence of large angles. We also consider finding trian-
gles from successive vertex triplets with similar quality
metrics. With a slight bias toward quads, the quality
indices are compared, and the algorithm chooses the
partition that yields the best quality. In the upper sub-
domain of Fig. 5(c) we see that a triangle is selected
that is nearly equilateral. The algorithm is applied re-
cursively, which yields in this case another triangle and
a quad in the upper subdomain. Applying the same
algorithm to the lower subdomain yields two quads.

From the divide-and-conquer phase, all quads are sub-
divided into four smaller quads and triangles into three
quads, resulting in an initial all-quad tessellation of the
facet, shown in Fig. 5(d), left. Laplacian smoothing is
applied to this decomposition to yield the final result,
shown in Fig. 5(d), right.

We reiterate that, because of edge collapse, the edge
points are typically not planar, and points in the facet
interior are therefore projected onto the original bi-
secting plan to avoid ending up in the sphere interiors.
The full-mesh smoothing step will accommodate any
misshapen elements generated by this projection.

2.6 Sweeping

Once the facets are tessellated, we generate an initial
all-hex mesh by projecting each facet-based quadrilat-
eral onto the sphere(s) that are bounded by the facet,
or onto the domain boundary. To leave room for an
additional thin element layer (“boundary layer”) near
the spheres, we take the initial sphere diameter to be

R0 = 0.8889R. The sweeping is illustrated in Fig. 2. In
this initial phase, however, only one layer of elements
is generated so that an initial mesh smoothing may be
applied at relatively low element counts.

2.7 Mesh Smoothing

The initial all-hex mesh (comprising 33M elements in
the N=350K case), is smoothed by using a combi-
nation of Laplacian smoothing and element-Jacobian
optimization following the strategy outlined in [15, 16].
In addition to the condition-number-based optimiza-
tion function, we add a substantial penalty term for
negative Jacobians. The mesh smoothing thus consists
of two parts: Laplacian smoothing and optimization.
These are alternated over a sequence of ten passes. Be-
cause of the complexity of the objective function, we
execute this phase in parallel, using Nek5000 [15]. We
describe the basic smoothing steps in the sequel.

2.7.1 Laplacian smoothing

Nek5000 has a highly scalable gather-scatter utility,
gslib, which is a stand-alone C library that scales to mil-
lions of ranks. It is the workhorse for all interelement
operations in Nek5000 because it requires no topologi-
cal information other than a global ID for each vertex in
the graph. (There are 8 such vertices for each hex, each
having a unique ID in the global mesh.) The Laplacian
smoother is built on gslib’s vector assembly operation,
which e↵ects a sum and redistribute of values sharing
the same global IDs in the graph. The mathematical
expression for this operation is vL = QQT ṽL, where Q
is a Boolean matrix that maps (copies) global entities
to their local (element-based) counterparts (the FEM
scatter operation) [17].

We begin with a shrinking step. For each element, ⌦e,
we have an isoparametric mapping of the form

x

����
⌦e

= xe(r) =
8X

i=1

xe
i li(r), (1)

298

where r 2 ⌦̂ := [�1, 1]3 and li is the set of cardinal
Lagrange basis functions having nodes at the 8 vertices,
ri, of ⌦̂. For each element we create a new set of
coordinates,

x̃e
j :=

8X

i=1

xe
i li(r̃j), (2)

where r̃j = srj and s = 0.95 is a scale factor. The
new coordinates are thus interpolants of xe

i , interior to
⌦e. On domain boundaries, we set the corresponding
r̃ = (r̃, s̃, t̃) to ±1 as needed, so that the points do not
move normal to the domain surface.

Subsequent to this shrinking step, we apply direct
sti↵ness summation [18] (actually, direct sti↵ness aver-
aging), in which the coordinates of elementwise-shared
vertices are added together and divided by the vertex
multiplicity (i.e., the number of elements that share
that global vertex). We then reproject boundary points
to their corresponding boundary surface since the aver-
aging step may potentially move vertices o↵ of curved
surfaces. This Laplacian smoothing process is fast,
both in serial and in parallel. It can be repeated multi-
ple times for varying values of s. We typically apply it
about ten times in order to even out the element sizes,
particularly on the sphere surfaces.

2.7.2 Optimization smoothing

The second smoothing tool is based on optimization,
following the ideas of Knupp [16, 19, 20] and Mittal
and Fischer [15]. Unlike Laplacian smoothing, it is
more localized and will not tend to redistribute the
resolution. It will, however, ensure locally high-quality
elements.

We define as an objective function the condition number
of the local Jacobian matrix in the Frobenius norm.
For each vertex, xe

i , the local Jacobian matrix is

[Je
i]j,k =

@xj

@rk

����
x=xe

i

, (3)

where x = (x1, x2, x3) is the physical coordinate and
r = (r1, r2, r3) is the reference coordinate. The global
objective function is the average of local functions,

f(x) =
1
E

EX

e

�̃e =
1
E

EX

e

"
1
8

8X

i

(�e
i)

2

#
, (4)

with

�e
i =

1
3

�
||Ji,e||F ||J�1

i,e ||F
�
. (5)

The minimum value of the global objective function
is 1, which is realized when the mesh is a 3D cubic
lattice.

To repair elements that have a negative Jacobian, we
augment �̃e with a penalty term,

�̂e(xe) = �̃e(xe)� ⌧ Je
i /Jmax · {Je

i <✏}(x
e). (6)

We choose ⌧ = 1000E, ✏ = 0.001, and Jmax =
maxi,e J

e
i .

The optimization is solved by the conjugate gradient
method. For each global vertex i, the jth dimension
gradient of the objective function can be computed by

gj(xi) =
EX

e=1

@�̂e

@xj

����
xi

=
X

e2E(xj)

@�̂e

@xj

����
xi

, (7)

where E(xi) is a set of elements sharing the vertex xi.
The last sum can be assembled by QT , the gather (i.e.,
direct-sti↵ness summation) operation in the FEM, such
that g = QT g

L
. This framework allows us to compute

the gradient locally, element-by-element, and to then
gather all local gradients at once.

We approximate the local gradient with a central dif-
ference approximation along the unit vector ej in the
jth dimension,

gei,j ⇡ 1
2h

h
�̂e(xi + hej)� �̂e(xi � hej)

i
, (8)

where the step size h is chosen to be 0.001 times the
shortest edge.

We remark that for large element counts (e.g., E =
105–108), our Matlab version of optimization is slow
because it is di�cult to avoid for loops. We thus
execute the mesh smoothing in Nek5000 since these
routines are already available there [15]. Since the
quality of the initial mesh coming from the Voronoi-
based scheme is already high, we do not have di�culty
with mesh tangling. Nonetheless, this is one area where
our algorithm could be improved by using, for example,
edge-oriented algorithms such as presented in [21, 22].

2.7.3 Boundary smoothing

The mesh smoothing or optimization is constrained
by the boundary condition. For improved mesh qual-
ity, we allow the boundary vertices to slide along the
boundary surfaces. As mentioned earlier, for Laplacian
smoothing, the direction toward the boundary face will
not be shrunk, and points are reprojected onto the
surface after the averaging operator.

As for the optimizer, the full objective function should
include a Lagrange multiplier that would add a penalty
for boundary points moving away from boundary. In
fact, the gradient of the boundary constraints are in the
same direction of the normal vector of the boundary
surface. Therefore, we decompose the gradient at the

299

boundary into normal and tangential components and
have to eliminate the movement only along the normal
direction,

ĝ
e,i

��
@⌦

= g
e,i

��
@⌦

� g
e,i

��
@⌦

· n̂. (9)

To make sure the boundary points are still attaching
on the boundary surface after all of the movement, we
apply the orthogonal projection at each iteration.

2.8 Mesh refinement

The mesh smoothing will produce a valid mesh. At
this stage, in each cell, there is only one layer of ele-
ments between facet and sphere. In order to meet the
requirement for the fluid simulations, the mesh needs
to be refined.

2.8.1 Cell refinement

In each cell, we can arbitrarily refine the element in
the radial direction of the sphere without breaking
the conformality between other cells. Here, we add a
midlayer by splitting the elements into two in the radial
direction. To gradually increase the resolution near
spheres, we split the elements in a ratio of 55% (near
facet) versus 45% (near sphere). This action e↵ectively
doubles the number of elements.

2.8.2 Extrusion

Extrusion is used to generate extra layers of elements
for CFD computations. We typically generate one extra
layer inward to the spheres to resolve the boundary-
layer of the fluid solution near the sphere walls. Sim-
ilarly, we add an extra layer outward on the cylinder
wall. In the flow direction we extrude three layers
toward the bottom of the domain (the flow inlet) and
seven layers for the outflow region on the top. The
single-layer extrusion on the spheres increases the total
number of elements by an additional 1.5⇥ after the
first refinement. As seen in Fig. 2, the resulting mesh
has three layers between the facet and sphere. For
polynomial degree N = 7, this yields about 42 points
between adjacent spheres, which is su�cient for large-
eddy simulation at the target Reynolds numbers based
on the hydraulic diameter.3

2.9 Projection

The final step of the meshing process is to project
the facet quadrilaterals that tessellate the sphere and
boundary surfaces onto their actual locations. This step

3The Reynolds number Re = UDh/⌫ is the flow velocity,
U , nondimensionalized by the hydraulic diameter of the
passageway, Dh, and kinematic viscosity, ⌫ of the fluid.

Figure 6: Enforcement of a gap between Sphere 0
and 1. Any point on the surface of Sphere 0 that
is nominally projected to p is shortened so that its
projected component onto x0–x1 is equal to p̂.

is done inside Nek5000 because it requires projection
of the full set of GLL points onto the target geometry.
Typically, we perform this step in two passes. First,
we project at low-order (N = 2) in order to generate a
hex27 mesh description that can be used as a starting
point for Nek5000. In this phase, we also inflate the
sphere surfaces to the target radius, r < R. Flat spots
are included to enforce a prescribed gap that avoids
contact singularities using the projection algorithm
illustrated in Fig. 6.

3. RESULTS

We have applied the algorithm described in Section 2
to the configurations listed in Table 1. The number of
elements per sphere for the three-layer configuration
yields ⇡300 elements per sphere, including the elements
in the inlet- and exit-flow regions. Figure 7 shows sev-
eral of the corresponding sphere configurations along
with axial-flow velocity distributions. Regions of order
and disorder are evident in the positions of the spheres
along the domain wall for the case N = 44252. Such
ordered packing has a direct influence on the flow con-
ditions near the domain boundary and is an important
consideration for thermal-hydraulics analysis. All of
the cases shown here were run with NekRS (the GPU-
oriented version of Nek5000) using the NVIDIA V100s
on OLCF’s Summit at Oak Ridge National Laboratory.

Table 2 provides a timing breakdown (in seconds) for
the signicant components of the mesher, across the full
spectrum of problems ranging from 62K elements for
N=146 to 99M elements for N=352K. Only the 352K
case needs to be iterated because of a handful of bad
Jacobians in the mesh using the original edge-collapse
tolerance. This iteration likely could be avoided with

300

Figure 7: Pebble meshes and simulations.

Statistics for Several Multisphere Configurations

Case N Source Container E E/N
cyl146 146 Experiment cylinder 62,132 425.56
box1053 1,053 StarCCM+ box 376,828 250.72
cyl1568 1,568 StarCCM+ cylinder 524,386 334.43
cyl3260 3,260 StarCCM+ cylinder 1,121,214 343.93
ann3344 3,344 Project Chrono annulus 1,133,446 338.95
cyl11k 11,145 Project Chrono cylinder 3,575,076 320.78
cyl44k 44,257 Project Chrono cylinder 13,032,440 294.47
cyl49k 49,967 Project Chrono cylinder 14,864,766 297.49
ann127k 127,602 StarCCM+ annulus 39,249,190 307.52
ann350k 352,625 StarCCM+ annulus 98,782,067 280.13

Table 1: List of cases meshed to date including the number of spheres N , the data source, domain shape, number of
elements E, and number of elements per sphere.

Meshing Time Breakdown (sec)
Meshing Step cyl146 cyl1568 ann3344 cyl11k cyl49k ann127k ann350k

IO for Qhull 4.56E-01 1.10E+00 2.64E+00 6.36E+00 1.97E+01 5.13E+01 2.79E+02
Voronoi cells (Qhull) 1.70E-01 4.29E-01 1.07E+00 2.50E+00 8.77E+00 2.12E+01 7.98E+01

Facet generation 1.66E-01 1.51R+00 4.22E+00 1.90E+01 1.77E+02 9.14E+02 4.20E+03
Edge collapse 8.67E-02 2.34E-01 4.53E-01 1.26E+00 5.24E+00 1.30E+01 8.20E+01
Facet/edge clean-up 1.21E+00 6.57E+00 8.66E+00 2.75E+01 1.29E+02 3.47E+02 2.55E+03

Tessellation 1.43E+00 9.76E+00 1.87E+01 6.26E+01 2.84E+02 6.70E+02 1.65E+03
All-quad generation 1.67E-01 7.02E-01 1.34E+00 4.24E+00 1.74E+01 4.61E+01 1.20E+02

All-quad to all-hex 5.64E-02 2.48E-01 5.13E-01 2.42E+00 9.34E+00 2.52E+01 7.97E+01
Extrusion 1 4.99E-01 3.58E+00 8.60E+00 2.11E+01 8.58E+01 3.10E+02 1.63E+03

IO for smoothing 2.42e-01 4.99E+00 4.13E+00 1.30E+01 5.85E+01 1.96E+02 1.12E+03
Mesh smoothing 3.58e+00 4.12E+01 9.95E+01 3.99E+02 7.26E+02 3.19E+03 1.10E+03
(nodes, N) (1, N=1) (1, N=1) (1, N=1) (2, N=1) (4, N=1) (8, N=1) (24, N=1)

Extrusion 2 1.01E+00 5.36E+00 1.08E+01 2.80E+01 1.10E+02 6.72E+02 2.12E+03

IO for projection 1.55E-01 7.71E-01 1.62E+00 5.13E+00 2.19E+01 1.62E+02 4.16E+02
Curve-side projection 4.00E+01 2.10E+02 1.80E+03 1.68E+03 4.20E+03 3.60E+03 7.20E+03
(nodes, N) (1, N=2) (1, N=2) (1, N=2) (2, N=2) (4, N=2) (8, N=2) (600, N=7)

Total 6.53E+01 2.70E+02 1.91E+03 2.04E+03 4.27E+03 1.09E+03 5.10E+04

Table 2: Timing breakdown of meshing measured in seconds. Most steps are performed in serial using Matlab on a
workstation (Intel Xeon E5-2630 v3 @2.40GHz) while the ones performed in parallel are provided with the number of
nodes and the polynomial order N . The smoothing and projection are performed on OLCF/Summit using 42 cores
per node. Note that the case of ann350k required two passes through the entire procedure to adjust the edge-collapse
tolerance.

301

Figure 8: Turbulent flow in an annular packed bed with N = 352625 spheres meshed with E = 98, 782, 067 spectral
elements of order N = 8 (n = 50 billion gridpoints). This NekRS simulation requires 0.233 seconds per step using
27648 V100s on Summit. The average number of pressure iterations per step is 6.

Nek5000 performance comparison between hex and tet-to-hex meshes for 146 pebbles

Mesh Node Core E E/core N n n/core vi pi CFL tstep R
all-hex 16 672 62132 92 7 21311276 3.1713e+04 2.0 5 0.92 0.2954 1

tet-to-hex 16 672 365844 544 4 23414016 3.4842e+04 1.1 17 2.11 0.9251 3.13

Table 3: Nek5000 performance comparison of all-hex and tet-to-hex on Summit (CPU) for N = 146 with Re = 5000.
Simulations were performed for 200 steps with step size �t=8.00E-04. Per-step averages are taken over the last 100
steps. Here, vi and pi represent respective average velocity and pressure iteration counts, and tstep is the average wall
clock time, in seconds. R represents the ratio of all-hex to tet-to-hex for tstep. Characteristic-based BDF2 with 2
substeps is used for timestepping and overlapping-Schwarz smoothing with spectral element multigrid preconditioning
with HYPRE AMG for coarse-grid solve is used for pressure solve. Tolerances for pressure and velocity are 10�4 and
10�6, respectively.

improved smoothing algorithms. For similar reasons,
we perform the final projection and smoothing for the
352K case for the N = 7 (512 points per hex) config-
uration, rather than the standard hex27 used for the
other meshes. We note that the facet generation and
tessellation are bottlenecks because of unavoidable for
loops in the (interpretive-based) Matlab code. Rewrit-
ing these as C-based Mex files would likely alleviate
this bottleneck.

Regarding mesh optimization, we recall that initial
smoothing is applied before refinement, which means
that it is applied to only ⇡ 33M elements for the
N = 352K case of Fig. 8. With 10 outer smoothing
passes, each using 3 Laplacian smoothings followed
by 120 optimization steps (requiring 1100 seconds
on 1,008 CPU cores of Summit), we find signifcant

improvements:

Before optimization:

• 369 elements with negative Jacobians
• min scaled Jacobian = -5.94
• max aspect ratio = 3.63e4
• node spacing: (min, max) = (2.32e-5, 7.49e-1)

After optimization:

• Valid mesh—all Jacobians positive.
• min scaled Jacobian = 1.93e-2
• max aspect ratio = 3.08e1
• node spacing: (min, max) = (4.27e-2, 8.71e-1)

In Table 3 and Fig. 9 we compare the performance
of the all-hex meshing strategy with the tet-to-hex
approach [8] for the N = 146 case. At comparable
resolution n, the all-hex approach has a lower Courant

302

Figure 9: Nek5000 simulation wall time per timestep and pressure iterations for the case of Table 3.

Figure 10: Prototype mesh for contacting spheres. Cut-away view on the left.

number (CFL) for the same timestep size and a lower
wall-clock time per timestep because of the reduction
in pressure iteration counts. The lower CFL implies
that the all-hex approach could use a larger timestep,
thereby further reducing simulation costs.

4. CONCLUSION AND FUTURE
DEVELOPMENTS

We have presented an approach to construction of high-
quality all-hex meshes for the interstitial space in dense-
packed spheres at relatively low element counts. The
algorithm uses an O(N)-complexity Voronoi decom-
position to decouple the problem into local problems
that can be meshed independently. Sliver removal, ver-
tex insertion, automated facet tessellation, and mesh

smoothing are all critical components for generating
production-quality meshes. All issues regarding bound-
ary conditions and projection of the final GLL nodal
points for the SEM onto the sphere are addressed. The
success of the algorithm is demonstrated over a broad
range of mesh sizes, from N = 146 to 352K, with the
largest case corresponding to E = 99 million spectral
elements and n = 50.5 billion grid points.

Overall, the development has satisfied the objective of
allowing us to produce large-scale high-quality meshes
suitable for high-order spectral element simulations of
turbulence in packed beds. In particular, the 352K
case, which corresponds to a full reactor core, takes
only 0.233 seconds per step when running on 4,608
nodes (27,648 V100s), which corresponds to 1.8 million
points per V100. This configuration would require only

303

6 hours to compute a single flow-through time on all
of Summit, implying that parameter studies will be
readily tractable on exascale platforms. The number of
pressure iterations is ⇡6 per step when using a tuned
version of the NekRS multigrid solver. Tuning was
required because the highly compressed elements that
are squeezed between the nominal sphere contact points
lead to ill-conditioning of the Poisson problem.

A future development for our mesher will be to re-
place the flattened spheres at the contact points with
a chamfered bridge of solid material that will join the
spheres and bypass the point-contact singularity, as
illustrated in Fig. 10. Preliminary experience suggests
that elimination of the narrow gap leads to a signifi-
cant reduction in the condition number of the discrete
pressure-Poisson operator and should further improve
runtimes.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, O�ce of Science and O�ce of
Nuclear Energy, under contract DE-AC02-06CH11357.
Programs supporting this research include the DOE
Exascale Computing Project (17-SC-20-SC), Applied
Mathematics Research, and Nuclear Energy Advanced
Modeling and Simulation (NEAMS). This research
used resources of the Oak Ridge Leadership Comput-
ing Facility at Oak Ridge National Laboratory, which
is supported by the O�ce of Science of the U.S. Depart-
ment of Energy under Contract DE-AC05-00OR22725.

References
[1] Kolev N. Packed bed columns: for absorption,

desorption, rectification and direct heat transfer.
Elsevier, 2006

[2] Merzari E., Yuan H., Min M., Shaver D., Ra-
haman R., Shriwise P., Romano P., Talamo A.,
Lan Y., Gaston D., Martineau R., Fischer P.,
Hassan Y. “Cardinal: A lower length-scale multi-
physics simulator for pebble bed reactors.” Nucl.
Tech., American Nuclear Society, 2020

[3] Patera A. “A spectral element method for fluid
dynamics : laminar flow in a channel expansion.”
J. Comp. Phys., vol. 54, 468–488, 1984

[4] Stephenson M.B., Canann S.A., Blacker T.D.
“Plastering: a new approach to automated, 3D
hexahedral mesh generation–Progress Report I.”
Tech. Rep. 89-2192, Sandia National Labs., Albu-
querque, 1992

[5] Cass R., Benzley S., Meyers R., Blacker T. “Gen-
eralized 3-D paving: an automated quadrilateral
surface mesh generation algorithm.” Int. J. for
Num. Meth. in Eng., vol. 39, no. 9, 1475–1489,
1996

[6] Leland R., Melander D., Meyers R., Mitchell S.,
Tautges T. “The Geode Algorithm: Combining
Hex/Tet Plastering, Dicing and Transition Ele-
ments for Automatic, All-Hex Mesh Generation.”
IMR, pp. 515–521. 1998

[7] McDill J., Carmona Garcia A. “Tet-to-Hex Con-
version for Finite Element Analysis.” AIP Confer-
ence Proceedings, vol. 712, pp. 2210–2215. Ameri-
can Institute of Physics, 2004

[8] Yuan H., Yildiz M., Merzari E., Yu Y., Obabko
A., Botha G., Busco G., Hassan Y., Nguyen D.
“Spectral element applications in complex nuclear
reactor geometries: Tet-to-hex meshing.” Nuclear
Engineering and Design, vol. 357, 110422, 2020

[9] Fischer P., Min M., Rathnayake T., Dutta S.,
Kolev T., Dobrev V., Camier J., Kronbichler M.,
Warburton T., Swirydowicz K., Brown J. “Scal-
ability of High-Performance PDE Solvers.” IJH-
PCA, vol. 34, 5, 562–586, 2020

[10] Cruz M.E., Patera A.T. “A parallel Monte Carlo
finite-element procedure for the analyis of multi-
component random media.” J. Num. Meth. Eng.,
vol. 38, 1087–1121, 1995

[11] Cruz M.E., Ghaddar C.K., Patera A.T. “A
variational-bound nip-element method for geomet-
rically sti↵ problems; application to thermal com-
posites and porous media.” Proc: Math. Phys.
Sci, vol. 449, 93–122, 1995

[12] She↵er A., Etzion M., Rappoport A., Bercovier M.
“Hexahedral Mesh Generation using the Embedded
Voronoi Graph.” Engineering with Computers,
vol. 15, no. 3, 248–262, 1999

[13] Yan D.M., Wang W., Lévy B., Liu Y. “E�cient
Computation of 3D Clipped Voronoi Diagram.”
pp. 269–282, 2010

[14] Nguyen T., Kappes E., King S., Hassan Y., Ugaz
V. “Time-resolved PIV measurements in a low-
aspect ratio facility of randomly packed spheres
and flow analysis using modal decomposition.” Ex-
periments in Fluids, vol. 59, no. 8, 1–29, 2018

[15] Mittal K., Fischer P. “Mesh Smoothing for the
Spectral Element Method.” J. Sci. Comput.,
vol. 78, no. 2, 1152–1173, 2019

[16] Knupp P. “Introducing the target-matrix
paradigm for mesh optimization via node-
movement.” Engineering with Computers, vol. 28,
no. 4, 419–429, 2012

[17] Deville M., Fischer P., Mund E. High-order meth-
ods for incompressible fluid flow. Cambridge Uni-
versity Press, Cambridge, 2002

[18] Strang G., Fix G. An Analysis of the Finite Ele-
ment Method. Prentice-Hall Series in Automatic
Computation. Prentice-Hall, Englewood Cli↵s, NJ,
1973

[19] Knupp P.M. “Hexahedral Mesh Untangling &
Algebraic Mesh Quality Metrics.” IMR, pp. 173–
183. Citeseer, 2000

304

[20] Knupp P.M. “A method for hexahedral mesh
shape optimization.” Int. J. Num. Meth. in Eng.,
vol. 58, no. 2, 319–332, 2003

[21] Livesu M., She↵er A., Vining N., Tarini M. “Prac-
tical hex-mesh optimization via edge-cone rectifi-
cation.” ACM Transactions on Graphics (TOG),
vol. 34, no. 4, 1–11, 2015

[22] Xu K., Gao X., Chen G. “Hexahedral mesh quality
improvement via edge-angle optimization.” Com-
puters & Graphics, vol. 70, 17–27, 2018

305

