
FAST CUBIT-PYTHON TOOL FOR HIGHLY ACCURATE
TOPOGRAPHY GENERATION AND LAYERED DOMAIN

RECONSTRUCTION

J. May1, D. Pera1, F. Di Michele2,
R. Aloisio 2,3, B. Rubino1, P. Marcati 2

1 Department of Information Engineering, Computer Science and Mathematics,

University of L’Aquila – via Vetoio, loc. Coppito, I–67100 L’Aquila, Italy
2 Gran Sasso Science Institute (GSSI), via M. Iacobucci 2, 67100 L’Aquila, Italy

3 INFN-Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, Assergi (AQ), Italy

February 2021

ABSTRACT

In this paper we present a new tool which can be used to simplify and speed up the reconstruction of real Earth
surfaces, cake-layered domains and planar fault sources for numerical simulations. The tool makes use of the CUBIT-
Python interface in order to directly ’communicate’ and to allow for maximum portability across di↵erent operating
systems. We will focus the use of the tool to earthquake simulations, although many other types of simulation are
able to make use of the same output. Indeed the features created using this software can be applied to numerous
other model scenarios, including but not limited to: water flow models, avalanche models, subsurface cavity e↵ects
on travelling waves, and earthquake simulations.

Keywords: Domain generation, Surface topography reconstruction, Computational seismology

1. INTRODUCTION

Modern earthquake simulations require a high level of
accuracy in domain construction in order to build rep-
resentative synthetic seismograms. The introduction
of a real surface representation into a 3D computa-
tional model is important to fully appreciate any ef-
fects this has on the travelling waves at surface regions.
It is also mandatory to have e�cient and portable pro-
gramming tools in order to both simplify and speed-up
the creation of a realistic domain.
The advantages of the procedure automation are: less
working user input, the parallelisation of domain and
feature creation, and the confidence that the final
structures are consistent with the input data. The ac-
curacy of any computational model depends on several

features including: the numerical method, the proper-
ties of the domain, the underlying equations, the mesh
size, and time step selection. Which of these could be
considered the most important depends on the project
goal and any application of the solution. Depending
on the project target, di↵erent elements of any 2D or
3D domain will take on more significance. In some
applications, such as the modelling of subsurface cav-
ities, [1, 2, 3, 4], the e↵ect of the upper surface of the
domain may be considered negligible, however when
modelling water flow or avalanches top surface accu-
racy is incredibly important in predicting which direc-
tion of flow. In these cases it is required to be able to
construct a surface in a way that guarantees a mini-
mum level of detail in a suitable time frame. It may
also be important to use software which allows the po-

1

184

tential for other features to be added in the future.
Equally, in seismic models the surface can influence the
propagation of the waves through the media [5, 6, 7, 8],
for example causing local reflections of energy which
can increase peak ground motion at a particular site.
Also important in seismic models are the rupture
sources, these are fault parts where local slip causes
an earthquake and which are calculated post event.
These sources may be approximated using a plane of
given size, strike, dip and location.

The following work concerns the reconstruction of an
accurate computational domain, more specifically any
real world surface and subsurface layers, along with
fault plane sources which may be used within a seis-
mic model. It will outline a Python tool, made avail-
able along with user instructions through contacting
the authors, which may be used to create real world
surfaces of required accuracy and size. The tool also
includes the option of adding any layer(s) to create
a 3D domain and the creation of geo-located planar
fault sources. A simple way of building surfaces will
start with a series of points. One can generate a simple
surface using few points using inbuilt commands and
these points. These surfaces are useful in numerous
cases and models, however there is no in-built method
for building a highly irregular real Earth surface. It is
possible to import many di↵erent file types into CU-
BIT, however it can then be complicated to clean any
leftover features which, coupled with the di�culty in
editing mesh based geometry, can cause problems.

In this article we will use earthquake simula-
tions as an example setting for our tool. We
designed our application for use with SPEED
(http://speed.mox.polimi.it) however integra-
tion with other software such as SPECFEM3D (
https://geodynamics.org/cig/software/specfem3d)
is simply done. We will describe the methods used
to reconstruct surfaces, build computational domains
and generate planar surfaces for fault source. Exam-
ple user input files are shown in an appendix and we
will present some timing results for the tool in order
to demonstrate both the simplicity of user input and
its fast working.
The paper is organized in the following way, in section
2, for the sake of completeness, we introduce some
basic mathematical concepts needed to understand
the seismological modelling aspects. In section 3
we present and discuss the working of our software.
Finally, in section 4 we provide conclusions and other
possible applications are suggested.

2. ELASTODYNAMICS EQUATIONS
AND SPECTRAL ELEMENT

METHOD

In this section we review the mathematical concepts
related to seismic wave propagation. For more detail
refer to [9, 10, 11].
The standard approach is to use the Cauchy Equation
(1), first introduced by Augustin-Louis Cauchy, which
describes how the i�th component of the momentum
ui (the displacement in our case) changes over time t

⇢
@2ui

@t2
=

@�ik

@xk
+ ⇢fi, (xk) 2 ⌦ ⇢ R3 and t 2 [0, T],

(1)
where ⇢ is the density and f is the body force mod-
elling the seismic source.
The stress tensor �ij can be written as a function of
the displacement as

�ij = ��ij
@uk

@k
+ µ

@ui

@j
+

@uj

@i

�
, (2)

where � and µ are the Lamé parameters. They are
usually expressed in terms of shear wave velocities (vs)
and pressure wave velocities (vp):

� = ⇢(v2p � 2v2s) and µ = ⇢vs.

Using (2), the equation (1) becomes

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

⇢ @2u
@t2

= (�+ 2µ) @
2u

@x2 + (�+ µ)
h

@2v
@x@y + @2w

@x@z

i

+µ
h
@2u
@y2 + @2u

@z2

i

⇢ @2v
@t2

= (�+ 2µ) @
2v

@y2 + (�+ µ)
h

@2u
@x@y + @2w

@y@z

i

+µ
h
@2v
@x2 + @2v

@z2

i

⇢ @2w
@t2

= (�+ 2µ) @
2w

@z2
+ (�+ µ)

h
@2u
@x@z + @2v

@y@z

i

+µ
h
@2w
@x2 + @2w

@y2

i

(3)

In equation (3), for simplicity, we use (x, y, z) instead
of (xi, xj , xk) and (u, v, w) instead of (ux, uy, uz).
To solve (3) we need to couple the system with a suit-
able set of initial and boundary conditions.
As the initial condition we set

(u, v, w) =

✓
@u
@t

,
@v
@t

,
@w
@t

◆
= (0, 0, 0), (4)

namely we assume that the domain is at rest for
8x 2 ⌦ at t = 0.
For the boundary conditions multiple choices are al-
lowed. Usually, in the context of seismic waves prop-
agation, the topographic surface is treated as a free
surface for which we set �n = 0. while the absorbing
boundary condition is applied at the other external

2

185

faces of the domain, namely (�n)⇤ = 0. The inter-
ested reader can refer to [12] to get the expression of
(�n)⇤.

With a system of equations capable of modelling the
elastic wave propagation within an elastic media, the
next step is the selection of a method capable of solv-
ing the continuous system of equations. A common
approach is to reduce the continuous system to a fi-
nite problem, this can be achieved through the use
of numerical methods such as finite di↵erences, finite
volumes or finite elements.

The complete treatment of numerical methods for elas-
tic waves is out the scope of this paper. We just remark
that many software packages used to simulate elastic
wave propagation in elastic media (such as SPEED
and SPECFEM3D), are based on the spectral element
method [13, 14, 15, 16].

3. GEOLOGICAL DOMAIN AND MESH
CREATION

The following section outlines each individ-
ual step that the tool can perform. Domains
created using this pre-processing tool where
used for the earthquake simulator available at
https://www.opendatalaquila.it/APPS/CUIM-sisma/.
Further models using this tool can be seen in [17],
where the authors also introduced a new sedimentary
basin and compared two known potential sources
and a blind test prediction to real seimograms for
simulations related to the 6th April 2009 L’Aquila
earthquake.

3.1 Auto Creation tool

The following section outlines the Python tool for fea-
ture generation and gives a brief explanation of its
requirements. The tool takes care of the four main is-
sues when creating a 3D domain for use in seismic
modelling, namely: real surface generation (section
3.1.1), adding layers to create a 3D domain (section
3.1.2), creation of fault planes (section 3.1.3), and the
calculation of Hypo-center, Hypo-strike and Hypo-dip
(section 3.1.4) within the model coordinates. Figure 1
shows a graphical representation of the 3 main parts
of the tool with the control script (in red) and their
respective input files (in blue). The Hypo-centre in-
formation is handled by a separate script which is run
independently of the others.

Each part of the tool shown in separate red blocks in
figure 1 may be run independently from the others if
so desired. However the linking Main script o↵ers ease
of use for almost complete model creation.

The following sections will describe in more detail the
role of each part, its input, output and methods. All

Auto Creation Tool Input Files

Main

Surface Create.py:
Reconstruct real surface
from geo-located points

Layer Create.py:
Sweep surface and cut
volume to create layers

Fault Create.py:
Create planar fault
representations

Main User
Input file

Main User Input file
Geo-located point file

Range file

Main User Input file
Layer info file

Main User Input file
Fault info file

Figure 1: Graphical representation of the tool workflow.

The red blocks represent tool functions. The blue blocks

contain the input files for their connected parts. The grey

block at the left of the figure is the only input to Main.py
and is the same file as read by the other functions of the

tool

user input files can be seen in appendix A. Filenames
are highlighted in italic-bold and match those given in
blue blocks of figure 1.

3.1.1 Surface Creation

The most important of the scripts is the surface cre-
ation script, Surface Create.py. This will read input
and output file names from Main User Input file,
shown in listing 1. From these names it is able to read
a Geo-located point file in CSV format, see listing
2 for a partial example, which contains an ordered set
of geo-located XYZ points defining a surface. From
here we will call the surface created the primary sur-
face. The routine will also read from a CSV formatted
Range file, example in listing 3, which contains the
minimum and maximum X and Y points for the pri-
mary surface. The output file name read from Main
User Input file is used to control the naming of the
saved .trelis output file containing the primary surface.

After reading from the input files the routine runs a
loop over the dataset and skips any points where the
X or Y coordinate lies outside the user defined range.
Any point lying within the bounds generates a CUBIT
command resulting in the creation of a vertex at the
defined location. Within the loop is also a check on
the first column coordinate, this controls a command
to create a spline from the vertices created before this
point, while any subsequent vertices will now form part
of a new spline curve. Both the vertices and splines
are generated using the software’s inbuilt commands.

The spline generation requires that the data be or-
dered. The first column must be ordered, then the
second column ordered within equal values of the first,
whether the first column denotes the X or Y coordi-
nate is not important. From a set of splines it is pos-
sible to generate a surface using the skin curve com-
mand. After the removal of the splines what is left
is a reconstructed surface from the original data-set

3

186

and accurate to the inbuilt spline and skin curve com-
mands.

Figures 2 and 3 show examples of real surfaces recon-
structed using this technique, each surface is roughly
centered around the city of L’Aquila and has been gen-
erated from a 400m resolution data set which is avail-
able from [18].

Figure 2: Real surface reconstructed from 21750 geo-

located points surrounding L’Aquila city, taken from [18]

Figure 3: Real surface reconstructed from 62500 geo-

located points surrounding L’Aquila city, taken from [18]

3.1.2 Layer Creation

This routine, contained in Layer Create.py, is ’linked’
to the first in that it needs a primary surface in order
to function, however the primary surface need not be
an Earth surface or special in any way. It is possible to
skip the first routine and create or import a di↵erent
primary surface before this step if desired, this can be

controlled by the input inside the Main User Input
file. This routine will also allow the importing of an
existing .trelis file containing a set of subsurface layers
that the user wishes to use, again controlled by Main
User Input file.

For the typical use, that is creating a cake-layered
model, the routine will work as follows. It will read the
Main User Input file for the input file name related
to the layer definitions and an output file name for
the cake-layered model to be saved to. The routine
will read the layer defining Layer info file in CSV
format, see listing 4, for the requested layer depths. It
then gives a series of commands to CUBIT in order
to create planar surfaces at the necessary Z values.
It is then possible to use these planar surfaces to cut
the volume generated by the sweeping of the primary
surface. After removing the small volume at the base
of the set, which will contain a copy of the primary
surface having been swept to create the volume, the
remaining volumes will define a cake-layered domain.
This domain contains the primary surface at its top,
and a number of layers at depths depending on the
user input at this step. An example is shown in figure
4.

3.1.3 Fault creation for earthquake dy-
namic models

Models able to simulate earthquake dynamics require
the introduction of a source model. Seismic sources are
modeled by defining a slip distribution along a plane
known as a fault plane. Given the importance of the
fault source to the model we have created a routine
which automates the creation of the fault plane.

The technique that we use to introduce a planar fault
source into a model is to perform a cut within the
geometric entities, this will force the fault plane to
occur at the interface between two or more volumes
and therefore ensure that the fault plane is modelled
exactly within the 3 dimensional mesh of the final do-
main. This method will lead to the introduction of the
planar source without strong impact to the meshing
process used to generate the hexahedral mesh required
for the simulations. Complexities can arise depending
on the planar source location, strike (rotation from
North) etc, these complexities may lead to a hexahe-
dral mesh with negative Jacobian. In section 3.3 we
outline two techniques for planar source addition that
lead to a usable mesh being created.

This routine within the tool, contained in
Fault Create.py, will read Main User Input
file in order to access the name related to the Fault
info file. This file contains geo-paramaters related
to the fault (such as the length, width etc.). This
routine is not ’linked’ to the previous two since it is

4

187

designed to start from a new instance. The routine
requires the following information within the CSV
file:
X -location, Y -location, minimum depth, length,
width, dip, strike and a name which will be used as
the filename upon saving, an example can be seen in
listing 5. Upon completion of the routine each fault
is saved in an individual file, which is then easily
imported into a domain file for editing as needed.
Since the fault plane is placed using the location
information provided in the Fault Info file the fault
plane is immediately generated in the correct place
within the domain. Figure 4 shows an image of two
real fault approximations imported into a layered
domain. Information shown in listing 5 was taken
from http://diss.rm.ingv.it/dissGM/, and was
used to generate the faults shown in figure 4.

Figure 4: 5 layer domain with two fault planes located

within it. Fault planes were generated from information

available at http://diss.rm.ingv.it/dissGM/.

3.1.4 Additional source information -
Hypo-center, Hypo-strike, Hypo-dip

In earthquake dynamic numerical simulations it may
be useful to know the Hypo-center, Hypo-strike and
Hypo-dip in the domain system. The Hypo-center
is the point directly beneath the epicenter which de-
fines the initial point of energy release for a given
Earthquake, the Hypo-strike and Hypo-dip refer to
the movement across the source plane in the horizontal
and vertical directions respectively. Each is measured
from the upper left corner of the plane to the Hypo-
center. To calculate this Hypo Info.py projects a given
epicenter onto a previously generated fault plane, from
which it is possible to find the Hypo-center, Hypo-
strike and Hypo-dip in the domain system of reference
in relation to the upper left corner of the fault.

Hypo Info.py works by reading input from a .txt file,
an example is shown in listing 6, which contains the
fault name (name of existing .trelis file(s) containing a
fault) and the epicenter used for each fault. The rou-
tine will then open this fault into a new instance and
generate a vertex representing the epicenter. This ver-
tex is then projected onto the fault surface and from
here it is possible to create curves on the surface which
represent the hypo-strike and hypo-dip. This is cur-
rently not linked through the main routine however,

work is underway to connect it with the rest of the
tool through Fault Create.py.

3.2 Performance evaluation and examples

In numerical geo-dynamic applications and simula-
tions one of the most labour intensive parts is the
creation of the model domain and any required fea-
tures, such as fault input planes. We now report some
timings for two di↵erent surfaces and their respective 5
layered 3D domains. All were generated in batch mode
on the Linux HPC cluster ”Caliban” of the High Per-
formance Parallel Computing Laboratory of the De-
partment of Information Engineering, Computer Sci-
ence and Mathematics (DISIM) at the University of
L’Aquila. Tests were run on a compute node with
the following specs: DELL R730 2CPUs Intel Xeon
E5 2698 v4 2.2 GHz (40cores/80threads) 256 Gbyte
RAM with Linux CentOS 6.5 , python 3.7 and CU-
BIT 16.5/17.0. The timing results are shown in table
1. Each domain and surface contained within a de-
lineated 2 row section are linked, meaning that the
5-layer domain created starts from that given surface.
Therefore the domain time noted includes the surface
creation time.

To time the fault creation routine 100 faults were cre-
ated to extend the timing to record-able lengths. Of
the 100 faults created there are 4 distinct faults, each
repeated 25 times, with the output files overwritten
each time.

CUBIT Version Geometric Object Time

Pro 16.5 Surface (21750 points) 0:20
Pro 16.5 Domain (5 layers) 0:38
Pro 17.0 Surface (21750 points) 0:20
Pro 17.0 Domain (5 layers) 0:37
Pro 16.5 Surface (62500 points) 1:27
Pro 16.5 Domain (5 layers) 2:27
Pro 17.0 Surface (62500 points) 1:26
Pro 17.0 Domain (5 layers) 2:26
Pro 16.5 Fault (100 faults) 0:03
Pro 17.0 Fault (100 faults) 0:03

Table 1: Linux timings

The timings reported in table 1 are an average over 5
tests. The surface containing 21750 points is created
with 150 curves of 145 points, the surface of 62500
points consists of 250 curves of 250 points. Both sur-
faces use an underlying dataset with approximately
400m resolution in X and Y, taken from [18]. Ex-
amples of these surfaces are shown in figures 2 and 3
respectively, with an example layered domain shown
in figure 4.

Looking at table 1 it is obvious that the two versions of

5

188

CUBIT have a negligible di↵erence in timing. The two
surfaces and domains also overlap completely, again
meaning negligible (if any) di↵erence between the ver-
sions. The main result of this work, demonstrated in
table 1, is that it is possible to create a 5 layered do-
main, from a real surface with 62500 points in around
2:30, including all IO operations. It must be noted
that while this reduces simple but potentially labour
intensive work to minutes it also allows for parallel
running of the scripts on any available multi-core ma-
chine. This could allow the creation of any number of
distinct domains with di↵erent features located in dif-
ferent files, limited only by the number of cores present
on any machine, inside 3 minutes.

3.3 Mesh Generation

In geological applications it is important that the mesh
is able to represent the underlying geometry. This is-
sue is particularly apparent in any simulations that
are e↵ected by the resolution of a real surface. CUBIT
is mainly used for engineering applications with regu-
lar geometries, however the irregular surfaces and do-
mains obtained using the tool described in this paper
are, in general, meshable with in-built meshing tools.
These meshed domains are usable for geo-computing
applications without mesh deformation and irregular-
ities that could lead to errors during simulations. CU-
BIT is able to generate a representative mesh for the
real surface without di�culty, an example is shown
in figure 5, the mesh shown contains a large mesh size
(approximately 1500m) for ease of visibility within the
figure.

However, any highly irregular cuts made are likely to
generate a negative Jacobian when using a hexahedral
mesh. Therefore the addition of a planar fault source
requires the cutting of the domain in a way that will al-
low the final hexahedral mesh to be generated without
any features that could prevent usability, (i.e. negative
Jacobian).

We have worked on domain reconstruction techniques
to overcome the mesh problems listed. The required
cuts for a planar fault source depend on the position of
the source relative to the domain boundaries, the ori-
entation of the source, its size, its locality relative to
any highly irregular surface features and its distance
from the real surface. In the simplest case it is possible
to perform a simple series of cuts originating from the
source plane in order to divide the domain into two
pieces, an example is shown in figure 6. In this ex-
ample we see three distinct interfaces which combine
to divide the domain. The central interface exists on
the plane of the source and extends it to the surface,
the interfaces propagating from this central one are
defined by the two outer edges of the source plane.
Figure 7 shows the mesh generated at the edge of the

domain after a cut is made to include a fault source. In
more complicated situations it is necessary to perform
numerous cuts and subdivide the domain into smaller
volumes. This can be required to generate a working
mesh by simplifying the shapes within the domain that
need to be meshed. An example of this is shown in fig-
ure 8. Here the fault is bound within a box defined
by its 4 edges and this box is used to cut towards the
domain boundaries similar to the first example. The
issue of meshing after performing cuts to add planar
sources exists due to our need for a hexahedral mesh,
the use of a tetrahedral mesh would greatly simplify
this as it would allow far more irregular shapes within
the domain to be meshed, however the simulation soft-
ware which we use in our work requires a hexahedral
mesh.

In built tools also allow mesh refinement, this is impor-
tant within geo-dynamic models due to the size of the
domains and the requirement for small element sizes
in order to correctly treat more interesting frequen-
cies, therefore the meshes are typically created with
larger sized elements and then refined around an area
of interest. In figure 9 it is possible to see a refine-
ment to the surface as shown in figure 5. It is clear
when comparing figures 5 and 9 that with each refine-
ment the mesh is able to more accurately represent
the real surface. The new o↵ering of parallel meshing
from CUBIT o↵ers the user the option of creating a
usable mesh in a fraction of the time. The meshing
is split over separate entities by the software and each
meshed in parallel over a number of nodes selected by
the user. This can o↵er a significant speed up with the
’base mesh’. However it does not seem to accommo-
date refinement, it is a new option and still has several
issues for users with highly irregular surfaces - as we
have in our geo-dynamic models.

Figure 5: This figure shows an example 1500m element

size hexahedral mesh.

6

189

Figure 6: Example of the simplest cut required to in-

troduce a planar fault source. The central of the three

curves defining the boundary between the two surfaces

extends directly from the planar fault which itself does

not touch the surface.

Figure 7: Mesh section surrounding a cut required for

the introduction of a planar fault. Green volumes are on

the left and pink on the right of a cut made through the

domain to accommodate a planar fault source.

4. CONCLUSION

In general creating a domain manually with CUBIT
is not a complicated task but it can be a time con-
suming and labour intensive one, particularly for ge-
ological models and applications. Although the tool
introduced here does not necessarily create the ab-
solute final version of a domain - depending on the
needs of the user - it will generate one which is almost
complete, as extra steps may be required depending
on the simulations. For this reason the tool does not
currently include a meshing step. What’s more, this
process has been streamlined into a single collection of
scripts controlled by the user which allows the creation
of a usable domain in minutes. The scripts also allow
the user to pick and choose which parts of the model
to build - just surfaces, faults or entire 3D domains.

The tool may be used in parallel through the use of
multiple instances on Linux, Windows, or MAC ma-
chines, in order to accelerate the creation of multiple

Figure 8: Example of the box cut to introduce a planar

fault source. The central dark green surface is the top of

a cuboid which contains the planar fault. The surfaces

connected to its smaller edges are cuboids created by

cutting from the fault box to the domain boundaries.

domains with di↵ering features. This option could be
used to generate multiple models with minor changes
by altering the IO filenames inside the Main User
Input file in order to point to files with, for exam-
ple, a di↵erent layer structure or a di↵erent surface
resolution.

The tool o↵ers a further advantage, it is accurate
to the data-set given and to CUBIT interpolations.
Should the user wish to change the geo-located points
used in the surface creation then the script will create
a more or less accurate surface depending on the new
input. The only limit for the tool is the input data
set and the ability of CUBIT to interpolate a spline
from vertices and a surface from a set of splines. In
the future, should CUBIT have an updated interpo-
lation method, the surface creation script will benefit
immediately with no cost to the user.

Ongoing and future work includes the exten-
sion of the existing tool with the target of
creating output that is usable in other simula-
tion software, such as SPECFEM3D and PyLith
https://geodynamics.org/cig/software/pylith,
by incorporating, for example, the need for the input
parameters to be attached to each layer block.

5. ACKNOWLEDGEMENTS

This work was partially supported by the GSSI ”Cen-
tre for Urban Informatics and Modelling” (CUIM)
(https://www.opendatalaquila.it) and the GNCS-
INdAM. All numerical simulations have been realized
on the Linux HPC cluster Caliban of the High Per-
formance Parallel Computing Laboratory of the De-

7

190

Figure 9: A surface refinement of the mesh shown in

figure 5

partment of Information Engineering, Computer Sci-
ence and Mathematics (DISIM) at the University of
L’Aquila (https://caliband.disim.univaq.it). We
thank the DISIM for the technical support.

References

[1] Datta S., El-Akily N. “Di↵raction of elastic waves
by cylindrical cavity in a half-space.” The Jour-
nal of the Acoustical Society of America, vol. 64,
no. 6, 1692–1699, 1978

[2] Lee V.W., Trifunac M.D. “Response of tunnels to
incident SH-waves.” Journal of the Engineering
Mechanics Division, vol. 105, no. 4, 643–659, 1979

[3] Dravinski M. “Scattering of SH waves by sub-
surface topography.” Journal of the Engineering
Mechanics Division, vol. 108, no. 1, 1–17, 1982

[4] Smerzini C., Aviles J., Paolucci R., Sánchez-
Sesma F. “E↵ect of underground cavities on sur-
face earthquake ground motion under SH wave
propagation.” Earthquake Engineering & Struc-
tural Dynamics, vol. 38, no. 12, 1441–1460, 2009

[5] Bouchon M., Schultz C.A., Toksöz M.N. “Ef-
fect of three-dimensional topography on seismic
motion.” Journal of Geophysical Research: Solid
Earth, vol. 101, no. B3, 5835–5846, 1996

[6] Bouchon M., Barker J.S. “Seismic response of a
hill: the example of Tarzana, California.” Bul-
letin of the Seismological Society of America,
vol. 86, no. 1A, 66–72, 1996

[7] Durand S., Ga↵et S., Virieux J. “Seismic
di↵racted waves from topography using 3-D dis-
crete wavenumber-boundary integral equation

simulation.” Geophysics, vol. 64, no. 2, 572–578,
1999

[8] Lee S.J., Komatitsch D., Huang B.S., Tromp
J. “E↵ects of topography on seismic-wave prop-
agation: An example from northern Taiwan.”
Bulletin of the Seismological Society of America,
vol. 99, no. 1, 314–325, 2009

[9] Shearer P. Introduction to seismology. Cambridge
university press, 2019

[10] Aki K., Richards P.G. Quantitative seismology.
Univ Science Books, 2002

[11] Igel H. Computational Seismology A Practical In-
troduction. 2016, Oxford University Press

[12] Antonietti P.F., Ferroni A., Mazzieri I., Paolucci
R., Quarteroni A., Smerzini C., Stupazzini M.
“Numerical modeling of seismic waves by discon-
tinuous spectral element methods.” ESAIM: Pro-
ceedings and Surveys, vol. 61, 1–37, 2018

[13] Patera A.T. “A spectral element method for fluid
dynamics: laminar flow in a channel expansion.”
Journal of computational Physics, vol. 54, no. 3,
468–488, 1984

[14] Maday Y., Patera A.T. “Spectral element meth-
ods for the incompressible Navier-Stokes equa-
tions.” IN: State-of-the-art surveys on computa-
tional mechanics (A90-47176 21-64). New York,
American Society of Mechanical Engineers, 1989,
p. 71-143. Research supported by DARPA., pp.
71–143. 1989

[15] Priolo E., Carcione J.M., Seriani G. “Numer-
ical simulation of interface waves by high-order
spectral modeling techniques.” The Journal of
the Acoustical Society of America, vol. 95, no. 2,
681–693, 1994

[16] Seriani G., Priolo E. “Spectral element method
for acoustic wave simulation in heterogeneous me-
dia.” Finite elements in analysis and design,
vol. 16, no. 3-4, 337–348, 1994

[17] Michele F.D., May J., Pera D., Kastelic V.,
Carafa M., Smerzini C., Mazzieri I., Rubino B.,
Antonietti P.F., Quarteroni A., Aloisio R., Mar-
cati P. “Spectral elements numerical simulation
of the 2009 L’Aquila earthquake on a detailed re-
constructed domain.” Submitted

[18] Tarquini S., Isola I., Favalli M., Mazzarini F.,
Bisson M., Pareschi M.T., Boschi E. “TINI-
TALY/01: a new triangular irregular network of
Italy.” Annals of Geophysics, 2007

8

191

A. APPENDIX USER INPUT EXAMPLE

Listing 1: Example user input file script control

−−− User s e l e c t i o n
Create Sur face=True
Create Layers=True
Create Fau l t s=Fal se
−−− Basic IO F i l e names
Range in=Range . csv
Su r f i n=Sur face . csv
Layer in=Layer . csv
Fau l t i n=Fau l t r e a l . csv
Sur f out=IMPPIO Surf . t r e l i s
Domain out=IMPPIO Dom. t r e l i s
−−− Import op t i ons & f i l e names
Import Sur face?=Fal se
Import Layer?=False
Sur f import=
Layer import=
Number Layer=
Depth=

Listing 2: Partial example of user input file for surface

800150 .4 , 4650150 .4 , 37 .174
800150 .4 , 4650551 .2 , 26 .234
800150 .4 , 4650952 .0 , 26 .095
800150 .4 , 4651352 .8 , 33 .032

Listing 3: Example user input file for surface range

840000 ,899850
4670000 ,4728000

Listing 4: Example user input file for layers

5
2000
4000
8000
12000
16000

Listing 5: Example user input file for fault planes

863969 .9 ,4715921 .3 , −12000 ,10000 ,6000 ,75 ,95 , I s o l a
866721 .1 ,4694904 .7 , −3000 ,14000 ,9500 ,43 ,133 , Paganica
850503.0 ,4705208 .2 , −3000 ,23400 ,13600 ,50 ,132 , Montereale
881035 .4 ,4690099 .6 , −700 ,16200 ,10500 ,50 ,127 , Pio

Listing 6: Example user input file for Hypo-centre infor-

mation

Fault=Montereale , Paganica
Epicentre =853138 .07 ,4707202 .97 ,866721 .1 ,4694904 .7

9

192

