
GUARANTEED QUALITY-DRIVEN HEXAHEDRAL
OVERLAY GRID METHOD

Nicolas Le Goff1 Franck Ledoux1 Jean-Christophe Janodet2 Steven J. Owen3

1French Alternative Energies and Atomic Energy Commission (CEA), CEA, DAM, DIF, F-91297
Arpajon, France. nicolas.le-goff@cea.fr, franck.ledoux@cea.fr

2IBISC, Univ. Evry, Université Paris-Saclay, 91025 Evry, France. jeanchristophe.janodet@univ-evry.fr
3Sandia National Laboratories (SNL), 1515 Eubank SE Albuquerque, NM, U.S.A. sjowen@sandia.gov

ABSTRACT

Hexahedral mesh generation using overlay grid methods has the benefit of being fully automatic, requiring minimal
user input. These methods follow a mesh-first approach where an initial mesh, usually a grid, is used to overlay the
reference geometry. Procedures to modify the initial mesh are then employed to best capture the geometry to get a
conformal all-hex mesh [1]. One of the main drawbacks of those methods is the resulting mesh quality. While the
interior of the mesh remains the same as the initial mesh, cells located at the material interfaces can end up quite
deformed or even inverted, making the mesh totally useless for most numerical simulation codes. Considering an
input mesh carrying volume fractions of the materials, the main purpose of the presented work is to ensure a minimal
cell quality. Our method draws upon the overlay grid pipeline described in [2] where several steps (cell assignment
correction, interface reconstruction, mesh adaptation) are altered to control cell quality.

Keywords: mesh generation, overlay grid, quadrilateral, hexahedral, guaranteed quality

1. INTRODUCTION

The finite element method (FEM) and the finite vol-
ume method (FVM) require to discretize the physical
domain of interest with a mesh. Depending on the ap-
plication field and the numerical scheme that is used,
mesh properties can be totally different and can go
from unstructured tetrahedral meshes to boundary-
aligned block structured hexahedral meshes. In this
work, we focus on hexahedral meshes and more specif-
ically on the generation of unstructured hexahedral
meshes starting from grid-like meshes.

This process is of interest particularly in an indus-
trial context where a full simulation process is built
by loosely coupling simulation codes acting on differ-
ent mesh representations. In our case of study, we
consider the “Euler to Lagrange” situation where (1) a
first simulation code computes a solution to a physical
problem onto a mesh (usually a structured grid) made

of multi-materials cells, i.e a cell can contain different
materials, then (2) a second simulation code acting on
a pure unstructured hexahedral mesh is used (see Fig-
ure 1 for an illustration of the first stage), where every
single cell contains a single material. The first code
is said to be Eulerian, while the second one is said
Lagrangian. In this context, the Eulerian code only
needs a grid to work on, and the Lagrangian code re-
quires a pure hexahedral unstructured mesh that can
be created using an overlay grid method. Those meth-
ods [3, 4, 5, 2] developed in recent years have dramati-
cally improved the ability to rapidly and automatically
generate hexahedral meshes for complex geometries.
They rely on a mesh-first approach to mesh genera-
tion where an initial base grid is used to overlay the
reference geometry. Procedures to modify the base
grid are also employed to best capture the geometry
to define a conformal all-hex mesh.

As the generated mesh is used as an input to a nu-

308

Figure 1: From left to middle, during an hydrodynamic simulation on a grid where two materials are defined (green and
yellow) the interfaces between the two materials evolve. For running a Lagrangian code that requires a pure conformal
mesh as an input, the mesh must be adapted along with material interfaces. Zoom is performed on the right on the final
Lagrangian mesh.

merical simulation code, it must meet some quality
requirements dictated by the numerical code. This
quality can be defined by a quality metric and a min-
imum threshold that must be verified by every cell of
the mesh. For instance, having non-inverted cells or
cells whose scaled Jacobian measure is over 0.2 are
possible criteria. The aim of this work is to control
as much as possible the quality of the generated mesh.
Considering the output of an Eulerian code, a selection
of materials to consider, and a couple (quality met-
ric, minimal threshold), we modify an existing overlay
grid algorithm to control the mesh quality. For our
purposes, the overlay grid algorithm we start from is
based on Sandia’s Sculpt [2] algorithm.

1.1 Related works

The overlay grid methods [3, 4, 5] are all based on the
same principle. Starting from a box B, which overlays
the reference geometry Ω to be meshed, they discretize
B using a size-adapted grid G, then adapt G both
topologically and geometrically. Geometric adapta-
tion mainly consists in projecting some nodes of G onto
∂Ω, while topologic adaptation consists in applying re-
finement patterns in order to adapt the grid resolution
to some local features of Ω (like a hole in a surface, a
small detail compared to the overall geometry). The
mesh to be deformed is then no longer a grid but an
unstructured hexahedral mesh.

One of the main differences of [2] is to take as an in-
put some volume fraction defined on G. The reference
geometry is then implicit and it can be used in our con-
text to generate a pure Lagrangian mesh from a multi-
material Eulerian grid. Some other works [6, 7] share
this type of inputs. In [7], the authors extended their
interface reconstruction method [6] by iteratively mov-
ing the obtained interfaces, represented by triangular
surface meshes in 3D, combining a Laplacian smooth-
ing and a volume control contribution. Their method
is dedicated to visualization purposes, and so one of
their concerns is to obtain “good quality” triangles;
they can also adapt the surface meshes, depending for
example on a triangle edge length criteria threshold.

As our reference geometry is implicitly defined, inter-
face reconstruction methods are relevant for us. Vol-
ume of fluids method [8], may be considered as re-
lated to our work. Starting from volume fractions
living on any unstructured meshes (like an Eulerian
grid for instance), those methods try to build inter-
faces with a strict volume preservation per cell. They
do precisely control for volume inside each cell of the
input. However, rather than producing pure compu-
tational elements, they can yield mixed elements in
the output mesh where local interfaces are defined by
discrete planar geometry. Such interfaces are glob-
ally non-conformal and aside from their usefulness for
the simulation codes can only be used for simple vi-
sualization process or for initializing other numerical
codes. On the contrary, overlay grid algorithms, such
as Sculpt algorithm, require to get a smooth interface
that approximates the interface surface. This smooth
interface is then used to define a geometric model that
can be a support for hex meshing.

1.2 Main contributions

Considering the “Euler to Lagrange” context, we pro-
pose a complete pipeline of steps to apply, where we
try and control the mesh quality as much as possible
at each step. This quality control is one of the main
differences in the global process since most of the time
mesh quality is ensured by post-processing where some
mesh smoothing and untangling methods [9] are ap-
plied at the end of the pipeline, but these sometimes
fail to improve the mesh quality.

Other contributions of our work are technical improve-
ments on three steps of the pipeline. An overview of
this pipeline is given in Section 2. The three improved
steps are described in details from Sections 3 to 5. In
Section 3, we provide a new assignment correction pro-
cess to avoid non-manifold topological configurations.
In Section 4, we propose a new interface reconstruction
algorithm. Compared to [2], it allows us to build an
independent geometry model that can be used after-
wards for performing node relocation and projection.
This process mimics techniques described in [6, 7] but

309

with the capability to better preserve volume fractions
when G is an unstructured mesh. Section 5 introduces
an adaptation loop that interleaves topological and
geometrical operations in order to perform the grid
movement. The main originality of this step is to de-
fine and use local pillowing operations to best control
mesh modifications.

2. OVERVIEW

The method we propose adapts the pipeline defined
in [2], where the initial input is n-dimensional grid G,
with n = 2 or 3. Each cell of G is a quadrilateral cell in
2D and a hexahedron in 3D. We have the same context
in this paper where every step of the algorithm can be
applied to any unstructured quadrilateral or hexahe-
dral mesh as an input without any algorithm and code
modifications. As the input grid G is the output of an
Eulerian simulation code, each cell c ∈ G can contain
several materials. Let M be the set of materials de-
fined on G. Then, we also have as an input a family
of material assignment functions maG,m, simply noted
mam in the following, such that mam : G → [0, 1] and∑

m∈M

mam(c) = 1, ∀c ∈ G. (1)

A cell is said to be pure if it contains only one ma-
terial and mixed otherwise. The material assignment
function gives the volume fraction of materials of M
in each cell of G. For the sake of simplicity, we note
ma the family of material assignment functions, and
we will call it the material assignment ma.

Let us now give a brief overview of the approach con-
sidering the 2D grid given in Figure 2-a as an input.
We have |M| = 3 and the volume fraction of each
material is indicated in each cell.

1. Cell material assignment. The first step of
the algorithm consists in assigning each cell of G
to a single material of M (see Section 3.1). This
is done by: First assigning a material to each cell
c considering only the volume fractions of ma-
terials in c (see Figure 2-b); Secondly, correcting
wrong topological configurations in the vicinity of
every grid node (see Figure 2-c and Section 3.2.).
Each cell of G is virtually assigned to a single ma-
terial and we have a set of interfaces between cells
virtually assigned to different materials. We call
those virtual grid interfaces.

2. Material interface reconstruction. In
every mixed cell of G containing materials
{m1, . . . ,mp}, with p > 1, we locally rebuild geo-
metric interfaces between all those materials (see
Section 4). This set of geometric interfaces will
help us modify the grid G in Section 5.3.

3. Mesh adaptation. The final stage of the ap-
proach consists in modifying G in such a manner
that the virtual grid interfaces fit geometric inter-
faces as much as possible while controlling grid
cell quality. It relies on three main operations
that we interleave in our process (see Section 5):

• First, we can move the nodes lying on a vir-
tual grid interface towards the correspond-
ing geometric interface (see Figure 2-d).

• Secondly, we can change the grid topology
by performing pillowing1 [10] operations. It
can be done in a traditional manner on each
set of grid cells virtually assigned to the
same material (see Figure 2-e) or by using
local pillowing techniques (see Section 5).

• Thirdly, we can smooth all the grid nodes:
inside each material and along the virtual
grid interfaces (see Figure 2-d).

1.0 1.0 1.0 0.2

0.8 1.0

1.0 0.8

0.2

0.15

0.25

0.6

1.0 1.0

1.0 1.0

0.6

0.4

1.0 1.0

1.0 1.0

0.8

0.2

0.1

0.9 1.0

1.0 1.0 1.0 1.0 1.0

(a) volume fractions (b) local assignment

(c) assignment correction (d) interface movement

(e) pillowing (f) smoothing

Figure 2: Overview of some operations involved in the
proposed pipeline. Starting from the volume fractions
given in (a), grid cells are virtually assigned to each ma-
terial in two stages (b and c) before being modified geo-
metrically (d and f) and topologically (e).

1The pillow operation consists in isolating a connex set
of hexahedral cells SH by inserting a layer of hexahedral
cells around it. Each cell of this layer can be created by
inflating each quadrilateral cell of ∂SH into a single hexa-
hedron.

310

3. CELL MATERIAL ASSIGNMENT

The first stage of the pipeline consists in defining a new
assignment to each cell of G, where each cell is pure.
This assignment is said virtual and is denoted va. The
term virtual is used in opposition to the material as-
signment fraction, which is the reference assignment
given as an input of the pipeline. As previously said,
the material assignment is initialized locally at each
cell then upated to resolve wrong topological configu-
rations.

3.1 Initialization via a local assignment

In order to initalize the virtual assignment in each cell
c ∈ G, we simply select the material having the high-
est volume fraction in c; in case of equality the first
material examined is selected. More formally,

∀c ∈ G, va(c) = m with mam(c) = max
p∈M

map(c). (2)

It gives us the assignment as depicted in Figure 2-b
from the material assignment shown on Figure 2-a.

3.2 Assignment correction

It can be mandatory for the simulation codes or for
mesh generation algorithms that each material be an
assembly of disconnected manifold (when they need
for instance to compute the normal to a material at
all nodes of its interface) or for practical purposes (ease
of implementation).

Informally, in 2D, it means that a material is repre-
sented as a set of surface patches that do not overlap
one another and do not touch along a single point. A
single patch cannot also touch itself at a point (see
Figure 3 on the left). Topologically, it corresponds to
the fact that, in each point of a d-dimensional patch,
one can define a single d-dimensional ball.

Figure 3: Illustration of non-manifold simplicial patches
in 2D (left) and 3D (right). In both cases, the red node
N induces that the patch is not a manifold.

In order to detect such situations for a material m
at a node n, we build a polyhedron made of the cells
adjacent to n assigned to m and we use the Euler-
Poincaré relation for convex polyhedra. Considering a
polyhedron having N nodes, E edges and F faces, we

have the formula

N − E + F = 2. (3)

Let us apply this formula on a single hexahedral ele-
ment made of 6 faces, 12 edges and 8 nodes, we have
N − E + F = 8 − 12 + 6 = 2 and relation 3 holds.
Let us now consider the polyhedron build from the
two cells shown on Figure 4-a. As they only share a
node, we have N = 15, E = 24 and F = 12 and so
N −E +F = 3 6= 2. Relation 3 does not hold and the
set of cells Cn,mi forms a non-manifold around point
n.

(a) (b)

(c) (d)

Figure 4: Example of non-manifold configurations for a
material (non-transparent cells) around a node.

At the end of the mesh traversal, we have for each
material a set of nodes indicating where non-manifold
configurations occur. It is the input of the resolution
procedure detailed by Algorithm 1. The resolution
consists in modifying the virtual assignment initially
done around the vicinity of each collected node. Note
that solving the non-manifold issue locally to the vicin-
ity of a node can lead to making non-manifold con-
figurations appear at neighbouring nodes, which were
originally not problematic (see for instance Figure 5-b).
Hence, our resolution process is an iterative procedure
where new nodes can be added to the set. As a con-
sequence, we also must prevent a node to be treated
several times leading to a livelock situation. We pre-
vent such a situation from occuring by keeping track
of local virtual assignments already performed around
a node. If we treat a node again, we select a valid
virtual assignment which was not already applied (see
Figures 5-c and d). We iterate until there are no re-
maining non-manifolds.

Let us dive into the procedure we apply locally to ev-
ery non-manifold node. This procedure is given in
Algorithm 2. Let n be a node where a non-manifold
configuration occurs for adjacent cells Bn. We get all

311

Algorithm 1: Full-mesh non-manifold resolution.

Data: mesh G, material assignment ma
Result: virtual assignment va with only

manifold configurations

1 va← ma
2 Nnm ← getNonManifoldNodes(G, va)
3 validConfigs ← ∅
4 while Nnm 6= ∅ do
5 for n ∈ Nnm do
6 if validConfigs(n) = ∅ then
7 /* this node was never treated */
8 /* call to Algorithm 2 */
9 validConfigs.add(n,

solveManifoldnessAtNode(n, va))
10 end
11 /* we try to get an unused stored

combination */
12 c ← validConfigs.getConfig(n)
13 if c == NULL then
14 /* the number of solutions stored per

node was insufficient */
15 return FAIL
16 else
17 validConfigs.remove(n, c)
18 va.reassign(c)
19 end
20 end
21 Nnm ← getNonManifoldNodes(G, va)
22 end

(a) (b)

(c) (d)

Figure 5: Example of non-manifold resolution and live-
lock avoidance strategy. (a) the initial material assign-
ment with the non-manifold node highlighted; (b) the
new assignment (at Algo 1:7) solves the non-manifold
at the first node but causes another to appear; (c) the
new non-manifold node is solved but we are back to the
initial assignment; (d) the non-manifold is solved again
with another assignment (at Algo 1:10), thus avoiding
an infinite loop between state (a) and (b).

the possible assignments for any cell of Bn using the
material assignment (line 2). They are gathered in the
set Mpossible. We then build the set that gathers all
the possible configurations of virtual assignment where
each cell of Bn can take any value in Mpossible (line
3). In the loop (lines 4 to 16), we test those possi-
ble configurations and only keep the acceptable ones,
i.e. configurations where we don’t have non-manifold
situations; we order them by cost and only keep a lim-
ited number of those (lines 14 and 15). The “best”
configuration is the one that minimizes:

cost =
∑
c∈Bn

|1−mava(c)(c)|V ol(c). (4)

We have the following remarks about our procedure:

• The number of possible configurations is equal to
|Mpossible||Bn|. This number can far exceed the
current hardware capabilities, so a limit to the
potential materials |Mpossible| is enforced, such
as keeping only the four or five most preponder-
ant materials that are in Bn, based on material
assignment;

• We keep the twenty (user’s choice) best valid vir-
tual assignments. Since we test every possible as-
signment and a node can be treated several times,
we store the solutions when first treating the node
and provide the next best not already used as-
signment (we allow the initial assignment to be
tried twice) when asked again. This allows us
to avoid infinite cycles, but if the upper limit is
reached our code stops and the user has to rerun
using a higher limit.

Note that additional assignment modifications can be
dictated by other criterias, such as the expected fi-
nal mesh quality as seen in [11] where cells forming
isolated or thin chunks of one material are reassoci-
ated because these configurations usually lead to hav-
ing bad quality cells, or sometimes the simulation code
cannot handle small slivers of materials.

4. INTERFACE RECONSTRUCTION

This section focuses on building interfaces between
materials that could help in the computation of a
prospective new position (currently done similarly
to [2]) for the interface nodes (the nodes adjacent to
cells assigned to different materials) . Additionally,
extracting such interfaces will also bring the added
benefit of producing a geometric model.

Material interface extraction poses two main issues:
the desired interfaces should be smooth, typically
when the goal is to visualize them, but at the same
time they should also fit the input data as best as

312

Algorithm 2: Local non-manifold resolution.

Data: node n, mesh M , material assignment a,
volume fraction V F , materials M

Result: stored valid configurations in Bn
1 B ← M.adjacentCells(n)
2 Mpossible ← {m ∈M/∃c ∈ B with am(c) > 0 }
3 possibleConfigurations←build(Mpossible)
4 for Ci ∈ possibleConfigurations do
5 isValid ← true
6 for m ∈ Ci do
7 if .not. isManifold(m) then
8 /* cells of m form a non-manifold */
9 isValid ← false

10 break
11 end
12 end
13 if isValid then
14 cost ← computeCost(Ci, ...)
15 store(n, cost, Ci) /* we store only the 20

best solutions */
16 end
17 end

possible, namely the volume fractions; those two ob-
jectives can conflict with one another. Several meth-
ods exist, in different fields:

• ALE-simulation interface reconstruction.
A domain where material interface reconstruc-
tion is extensively studied and applied is CFD
simulations. While those reconstructed inter-
faces have a built-in volume fractions preserva-
tion, they are not smooth, as they are discontin-
uous across cells [8]. Most of these methods also
have the additional drawback of being material
order-dependent;

• Sculpt
The position computed for the interface nodes
in [2], and that we use in our implementation,
depends on the volume fractions (and their gra-
dient) and the virtual assignment. We have new
positions for the nodes, but no geometric model;

• voxels
These methods decompose the mixed cells into
sub-elements – typically a hexahedron will be re-
fined into a grid – on which a partitioning is called
with respect to the volume fractions inside each
cell. The interfaces at the sub-elements level are
aliased, and since these methods originated from
visualization purposes the interfaces are usually
simplified into smooth triangular surfaces. We
will further study voxel-like methods in this sec-
tion.

4.1 problem under voxel terminology

The discrete interface reconstruction techniques stems
from the need to visualize the location of materials in
the case where some of the cells are mixed and where
the number of materials is greater than two. In the
case where the number of materials equals two, classic
iso-contouring methods provide an adequate solution
but with more materials small gaps or artifacts can
appear that are non-desirable. In [12] the authors in-
troduced the decomposition (or refinement) of mixed
cells into subcells (or pixels) which are in turn assigned
to the materials present in the mixed cells they were
spawned from; the work in [6, 7] extends it to cases
with more than three materials per cell.

The voxel problem is the following: all the mixed cells
and their adjacent pure cells are subdivided into pixels,
and we want a virtual assignment on those pixels. Pix-
els spawned from pure cells are already assigned to the
material of their corresponding pure coarse cell, leav-
ing those spawned from mixed coarse cells as ”free”.
We favor a pixel virtual assignment that has a low

• edgecut, defined as the sum of pairs of adjacent
pixels assigned to different materials;

• discrepancy, defined as the sum over each coarse
cell cc of the absolute difference between the vol-
ume of each material present in cc (for material k
it is mak(cc)V ol(cc)) and the volume of the pix-
els of cc assigned to k. It expresses whether the
pixels assignment fit the volume fractions.

We compare four methods that solve the problem:

• mixed-integer linear programming

• simulated annealing

• graphcut

• greedy heuristic

4.1.1 MIP

We formulate the problem as a linear problem; since
our variables are integers we in fact have a mixed-
integer linear problem. In our implementation, we use
the GLPK [13] library to solve the problem.

Problem formulation:



min
∑

p∈P,k∈Mat

|cp,k − 1
|N(p)|

∑
q∈N(p)

cq,k|

constrained to
cp,k ∈ {0, 1} ∀p, k∑
k∈Mat

cp,k = 1 ∀p∑
p∈cc

cp,k = nbsub ∗mak(cc) ∀k, ∀cc



313

where cp,k returns 1 if pixel p is assigned to mate-
rial k, 0 otherwise (using the previous notations, it
gives va(p) = k). The first two constraints indicate
that every pixel has an assignment and only one. The
third constraint expresses that we want to have a
discrepancy equal to zero (nbsub being the number
of pixels in a coarse cell). The objective function that
we want to minimize reflects the desire for pixels as-
signed to the same material to be clustered together,
i.e. having a low edgecut.

4.1.2 Simulated Annealing

This method introduced in [6] consists in randomly
assigning the pixels to materials with respect to the
volume fractions data; pair of pixels spawned from
the same coarse cell will then swap their virtual as-
signment, as described in Algo 3. Since the initial
assignment to the pixels fit as best as possible the vol-
ume fractions and that only swaps are performed, the
resulting pixels virtual assignment fits just the same.
Note that this property does not hold true when the
mesh is unstructured; more precisely when the pixels
are of different size (see Figure 8).

4.1.3 Graphcut

Our problem can be seen as an energy minimization
problem; in [14, 15, 16] it was shown that expressing
the energy function as the sum of a so-called data and
smooth costs allows the problem to be solved using a
graphcut.

Problem formulation, with fp being the virtual assign-
ment of the pixel p and E the pairs of adjacent pixels:

E(f) = λ
∑
p∈P

Dp(fp) + β
∑

{p,q}∈E

Vp,q(fp, fq)

with basically the edgecut:

Vp,q(fp, fq) =

{
0. if fp = fq

1. otherwise

and the cost of assigning a material to a free pixel
(nearest is the nearest pixel issued from a pure cell
assigned to fp):

Dp(fp) = (1.−mafp(p))p.distance(nearest(fp))

We should note that the first term does not enforce
matching the volume fractions. In order to apply the
graphcut this term has to be dependent on only p; the
expression that we chose tries to emulate that property
but we will see in the results (Figure 7-c) that it is far
from being efficient. The second issue comes from the
energy function itself that is the sum of two terms not
related to one another, and the values chosen for (λ, β)
might depend on the cases we run on.

Algorithm 3: SubPixels assignment via simulated
annealing (as implemented in Visit 2.13.3).

Data: volume fraction V F , pixelated mesh
Result: subpixels assignment

1 /* temperature stays constant but it could
decrease over time */

2 T ← 0.25
3 while time ≤ allotedtime do
4 iter ← 0
5 for iter ≤ 1000 do
6 /* randomly select a mixed (coarse)

cell */
7 c ← getMixedCell()
8 /* randomly select a pair of pixels of c

assigned to different materials; give up
after ten tries */

9 p0, p1 ← c.getSwapCandidates()
10 l0 ← label(p0)
11 l1 ← label(p1)
12 /* evaluate the energy with the current

labeling and the prospective one where the
labels are swapped */

13 current energy ← energy(p0, l0) +
energy(p1, l1)

14 future energy ← energy(p0, l1) +
energy(p1, l0)

15 if future energy < current energy then
16 swap(p0,p1,l0,l1)
17 else
18 ∆E ←

|future energy − current energy|
19 if rand(0, 1) < e−∆E/T then
20 /* randomly swap anyway

depending on the temperature */
21 swap(p0,p1,l0,l1)
22 else
23 if future energy =

current energy and
rand(0, 1) < 0.5 then

24 /* when equal randomly
swap */

25 swap(p0,p1,l0,l1)
26 end
27 end
28 end
29 iter + +
30 end
31 end

314

4.1.4 Greedy Heuristic

We have implemented a greedy heuristic (see Algo. 4)
where at each iteration the free pixels are assigned
volume fractions that depend on the values in their
respective coarse cells adjusted to take into account
the pixels that were already assigned (see Figure 6).
3D results are shown in Figure 9

Algorithm 4: SubPixels assignment greedy
heuristic.

Data: volume fraction V F , pixelated mesh
Result: subpixels assignment

1 threshold ← 1.
2 freeSubpixels ← allsubpixels
3 fixedSubpixels ← ∅
4 vf ← (V F , freeSubpixels)
5 for freeSubpixels 6= ∅ do
6 /* get the free pixels with a vf higher than the

threshold for one material */
7 fixedPixelsToAdd ←

extractPixelsBelow(freeSubpixels, threshold)
8 fix(fixedPixelsToAdd)
9 if fixedP ixelsToAdd 6= ∅ then

10 reduce threshold
11 end
12 /* update the vf while substracting the pixels

already assigned */
13 vf ← update(V F , freeSubpixels)
14 for iter ≤ maxNbIter||convergence do
15 /* kind of a vf smoothing */
16 vf ← average(vf) for pixels where ¡

threshold
17 normalize(vf)
18 end
19 end

4.2 results

The results of the four methods can be seen applied
on the 5x5 example in Figure 7. The MIP implemen-
tation is impractical, as it does not return a solution
in an acceptable time; it can sometimes return a valid
(meaning that it fits the constraints) but not optimal
solution, which is the case in Figure 7-a. The graphcut
tends to return straight interfaces, resulting in a good
edgecut, but as we have mentionned is quite bad when
considering the discrepancy. That leaves us with the
simulated annealing, which is better than our greedy
heuristic in the case of a grid, but fares badly concern-
ing the discrepancy in unstructured cases, as shown in
Figure 8. All of those methods have the same memory
limitation, as the submesh can be quite big. In prac-
tice, we will use our heuristic to build the pixelated
interfaces, as it is a good compromise in structured
and unstructured cases and does not rely on tuning
parameters depending on the case.

(a) vf=0.40 , vf=0.60 (b) vf=0.43 , vf=0.57

(c) vf=0.62 , vf=0.38 (d) vf=0.61 , vf=0.39

(e) vf=0.54 , vf=0.46 (f)

Figure 6: Greedy heuristic applied to the 5x5 example
where we can see the evolution of the volume fractions
(see Algo. 4:13) assigned to the free pixels of the central
coarse cell below each figure. The wireframe black grid
is the coarse mesh and the pixels colored in red are those
not yet assigned.

(a) MIP (b) simulated annealing
d=0, edgecut=592 d=0, edgecut=536

(c) graphcut (d) greedy heuristic
d=2.18, edgecut=440 d=0.56, edgecut=558

Figure 7: Comparison of the pixelated interfaces recon-
struction methods. Note that we stopped the MIP im-
plementation after 5 minutes.

315

(a) d=0.0768 (b) d=0.024

(c) d=0.264 (d) d=0.1444

(e) d=0.1344 (f) d=0.1254

Figure 8: Greedy heuristic (first row) versus simulated
annealing (second and third rows) applied to unstruc-
tured cases. Only the highlighted cell is mixed, and
the respective volume fractions are (0.5,0.5) in the left,
(0.2,0.8) in the right. Two different results are shown for
the simulated annealing method because some cluster of
pixels can appear due to the randomness of the initial
pixel assignment and the swaps.

(a) (b)

Figure 9: Greedy heuristic applied on two 3D cases with
three materials. The third material is hidden. (a) an
extruded case; (b) a ”real” 3D case.

5. MESH ADAPTATION

Up to now, the geometry and the topology of the grid
G have not been modified. The aim of this section is to
do so while offering some quality guarantees about the
output mesh. From now on, we consider that the user
provides a cell quality threshold Sq > 02 in addition to
the input mesh G carrying volume fractions data ma-
terialized by the material assignment functions ma.
Assuming that all cells of G are initially above the
user-input threshold Sq, G keeps satisfying the qual-
ity requirements at the beginning of this stage of the
process. It is the operations that we are going to per-
form now that have an impact on the mesh geometry
and/or its topology and where there is no longer any
guarantee on cell quality. Those operations are: node
movement, pillowing and smoothing. As a reminder,
our starting point is the pipeline of operations given
in [2, 11] and illustrated on Figure 10-a.

material assignment

assignment correction

compute

position

basic

move

global

pillow

smooth

material assignment

assignment correction

compute

position

smooth

controlled

move

controlled

move

cavity pillow

cavity smooth

cavity insertion

(a) base algorithm (b) our approach

Figure 10: Base algorithm diagram versus our modifica-
tions. In green the part where we have a guaranteed cell
quality, and in orange the part where there is no control
over this.

In this initial pipeline, after computing ideal locations
for the nodes of G that are on virtual grid interfaces,
we move the virtual grid interface nodes to these new
locations in order to better capture the material in-
terfaces. Such a direct movement tends to decrease
the cells quality. Then a pillowing phase is applied,

2Typically, it can be a minimum scaled Jacobian [17]
value below which no cell must be.

316

(a) basic move (b) minSJ = 0.036

(c) pillow (d) minSJ = 0.046

(e) smooth (f) minSJ = 0.588

Figure 11: Evolution of the cell quality during the base
algorithm. In (a) and (b) the node movement causes
a sharp decrease of the cell quality; in (c) and (d) the
pillowing does not really improve the cell quality; in (e)
and (f) the smoothing is efficient in this example.

where each material is wholly pillowed without taking
cell quality into account, and eventually a final global
smoothing stage is executed so as to improve the over-
all cell quality. The intermediate pillowing phase does
not in itself improves quality, but it provides more de-
grees of freedom for the smoothing algorithm to work
with. The example of Figure 11 illustrates that such
a pipeline can lead to good results. While the cell
quality is not strongly controlled, the mesh quality is
improved during the process.

The example of Figure 12 shows the exact opposite.
The mesh quality worsens because of a global pillow-
ing technique that does not take into account some
local geometric features. In this case, performing a
pillowing around the right tip of the green area leads
to strongly decreasing the inner angle of each quadri-
lateral cell around this node. Note that the worst
cell after proceeding with the pillowing (in red in Fig-
ure 12-d) was the one hampering the displacement of
the marked node. The subsequent smoothing applied
does not improve the situation and the quality of the
worst cell is eventually lower than at the beginning
(0.237 agains 0.307).

We consider that this process has two main drawbacks.
First, node relocation is done without considering the
quality of surrounding cells. We propose to control

(a) controlled move (b) minSJ = 0.307

(c) pillow (d) minSJ = 0.089

(e) smooth (f) minSJ = 0.237

Figure 12: Global pillowing quality problem on a 5x5
two materials case. (a) and (b) mesh after the controlled
move with the marked node stopped at a distance of 0.04
from its desired position; (c) and (d) global pillowing; (e)
and (f) the smoothing makes good use of the additional
edge added to the marked node in the green material
area to improve quality but cannot improve it at the tip.

this node movement and to forbid it if the cells qual-
ity get lower than Sq. Secondly, we propose to adopt a
local pillowing strategy instead of a global one. Even-
tually we interleave those operations with a traditional
smoothing step in our process (see Figure 10-b). It al-
lows us to preserve quality above the threshold at all
times in the new pipeline, which includes:

• a controlled node movement strategy;

• a localized cavity pillowing in place of a global
indiscriminate one;

• a node position computation based on a geomet-
ric model extraction - the one given by the in-
terface reconstruction in Section 4 - in order to
smooth the target material interfaces, particu-
larly necessary in 3D.

In the subsequent examples used for illustration pur-
poses, the threshold chosen for the minimum scaled
Jacobian will always be Sq = 0.3.

317

5.1 Controlled node movement

As seen in Figure 10 and 11-b, the first phase that may
decrease quality is the basic node movement. Consid-
ering that the input mesh meets the quality require-
ments, our strategy is to avoid moving the nodes when
the quality is degraded below the threshold. For that
purpose, we progressively move each node n of the
virtual grid interfaces towards their expected location
pideal on the geometric interface. At each small move-
ment of n, we check the quality of cells surrounding n.
In our implementation, a small movement corresponds
to 1/16 of the distance between the location of n and
pideal. The impact of this controlled movement can
be seen in Figure 13, and the guarantee over the qual-
ity, represented in green in Figure 10-b, extends and
reaches just before the pillowing stage.

(a) basic move (b) minSJ = 0.036

(c) controlled move (d) minSJ = 0.387

Figure 13: Example of controlled movement. (a) and (b)
basic move and the mesh quality; (c) and (d) controlled
move, the marked node could not move all the way and
was stopped at a distance of 0.118 from its expected
location and the cell quality remains above 0.3.

A direct side effect of this controlled movement is that
some of the nodes did not reach their expected posi-
tion. LetN be those nodes, we introduce an additional
modification to the base algorithm to allow for those
nodes to move further. After applying the topological
modifications (the pillowing), the algorithm enters into
a move-smooth loop (see Figure 10-b) so that the nodes
of N can progressively keep moving towards the geo-
metrical interfaces, eventually reaching it in the best
cases. In this move-smooth loop, the smoothing stage
has two prerequisites: it must not decrease the quality
and nodes that have reached the geometric interfaces
are fixed. At the end of this stage, the set N is not
necessarily empty.

5.2 Cavity pillowing

As shown in Figure 12 , performing a global pillowing
can lead to drastically decrease the mesh quality with-
out any guarantee of successfully improving it during
the final smoothing stage. In our pipeline, the pillow-
ing is performed in a totally different manner. It aims
to help moving nodes of N by providing more leeway
for the smoothing algorithm to work with. The idea
is then to apply pillowing operations in the vicinity of
N while avoiding to change the mesh topology where
the quality is already good.

The process we follow can be summarized as follows:
for each node n of N and each material m adjacent to
n, we extract cell groups that we are going to pillow.
Each cell group is called a cavity. In theory, the idea
would be to build many sets of cavities {ci}i>0 for
(n,m), pillow and smooth each cavity ci independently
and keep the one that gives the best quality. If this
quality is higher than the quality threshold Sq then
the pillowing of this “best” quality is published in the
mesh.

(a) (b)

(c) (d)

Figure 14: Cavity definition for the green material. (a)
the node n that could not reach its destination is marked
and assigned a range (here it is 3); (b) the adjacent cells
are also selected and a reference to n is kept; (c) the
selection is extended to the adjacent nodes, a reference
to n is kept and the range is decreased; (d) we continue
until the range reaches zero or all the cells assigned to
the material are selected.

As there is a huge number of potential cavities, we
consider in practice a maximal distance to the node
n to build cavities. This distance corresponds to a
vertex-based traversal of the mesh starting from n.
For instance, for distance 1, the cavity of (n,m) con-
tains all the cells of material m that are adjacent to
n. In all our examples, a maximal distance of 3 is cho-
sen. As an illustration, Figure 14 shows our process

318

to create cavities when N is reduced to a single node.
Another implementation choice is to have a greedy ap-
proach where we do not perform the pilllowing for all
the cavities. For a couple (n,m), we publish the first
one that provides a quality above Sq. This greedy al-
gorithm is done by progressively decreasing the cavity
distance. We made this choice because the cavities of
several nodes of N are more likely to merge when they
are big enough. Such merging reduces the number of
topological changes. Figure 15 shows how we can end
up with potentially several large-size cavities.

Figure 15: Cavity extracted for the green material in the
triple point example (see Figure 19) where we can see
the cavities spawned from different nodes merged to form
bigger cavities. Note that marked nodes at the interface
between the yellow and grey materials are ignored and do
not spawn cavities, as we currently consider one material
at a time.

As previously said, our greedy algorithm stops when
we encounter a situation with a cavity quality that is
above Sq. This is illustrated by Figures 16 and 17. In
Figure 16, we first extract a cavity of range 3 for the
marked node (in a) and then we pillow and smooth it
(in b and c). As the quality is below the 0, 3 threshold,
we decrease the cavity range to 2 and start a second
iteration (in e, f , g and h) where we get the expected
quality. In Figure 17, we see the local pillowing made
on both materials adjacent to the marked node. Our
overall algorithm is summarized by Algorithm 5).

5.3 Geometric model extraction, projec-
tion and smoothing

So far we have tried to move the nodes towards a
computed location that depends solely on the input
volume fractions and the cells virtual assignment (as
computed in [2]). No care was taken for the expected
interfaces quality. It becomes relevant in 3D where
the mesh entities forming the interfaces are no longer

(a) cavity of range 3 (b) pillow

(c) smooth (d) minSJ = 0.237

(e) cavity of range 2 (f) pillow

(g) smooth (h) minSJ = 0.494

Figure 16: Cavity pillowing and smoothing loop. (a, b,
c and d) A first iteration with a cavity of size 3 does
not give the expected quality; (e, f , g) and h) a second
iteration with size 2 meets the requirements.

319

(a) (b)

(c) (d)

Figure 17: Cavity pillowing insertion back into the mesh.
(a) and (c) the pillowed cavity for the green material and
its insertion inside the mesh; (a) and (d) the same for
the yellow material.

Algorithm 5: Cavity loop.

Data: marked Nodes N
Result: mesh

1 for m ∈Materials do
2 /* we initially assign the same user-input

range to all the marked nodes */
3 R ← initRange()
4 /* cavity extraction (see Figure 14) */
5 cavity ← extractCavity(N , R, m)
6 while cavity 6= ∅ do
7 /* we will apply modifications to the

cavity and reduce it size until it meets the
quality threshold (see Figure 16) */

8 cavity.pillow()
9 cavity.smooth()

10 qual ← cavity.getQuality()
11 if qual > threshold then
12 /* the mesh modifications inside the

cavity meet the quality requirements,
we can insert it back into the mesh
(see Figure 17) */

13 mesh.insert(cavity)
14 break
15 end
16 /* cells of the cavity keep a reference to

the node that marked them, we decrease
the range of such nodes for cells of
quality below threshold */

17 R ← updateRange()
18 cavity ← extractCavity(N , R, m)
19 end
20 end

1-cells (or edges) but are now 2-cells (or faces). Mov-
ing the nodes to their computed ideal location can
by-design leads to bad quality faces, hence severely
limiting our nodes controlled movement. Figure 18-a
illustrates it in the asteroid case, the surface mesh we
would obtain by moving the interface nodes at their
expected locations has very bad-quality quadrilateral
elements.

In order to counteract this we modify the computed
nodes locations by applying a surface smoothing (see
Figure 18-d). So as not to stray too far from the input
volume fractions data and preserve the volume of the
materials, the positions are constrained on a geometric
model, which in our case is the model that can be
extracted from interfaces reconstructed (see Figure 18-
b) as seen in section 4. The resulting expected surface
is shown in Figure 18-c. The benefits of this corrected
new position computation appear in the asteroid 3D
case where not applying this adjustment results in our
algorithm being stuck after the first controlled move.
Such a resulting mesh could be considered satisfactory,
quality-wise, still we want the interface nodes to be
located as much as possible close to where the material
interfaces were determined to be.

6. RESULTS

In this section, we demonstrate and analyse the results
of the proposed method on several cases, both 2D and
3D; the metrics on the results are shown in Table 1
where distinit and distfinal are defined as the sum of
the distances between the interface nodes and their ex-
pected position, respectively after the first controlled
move and at the end of our algoritm. Admittedly those
values heavily depend on the size of the grid, so com-
parisons between cases might not be relevant, but the

ratio
distfinal

distinit
represents the improvements (the lower

the better) our modified pipeline brings to counter-
act the drawback of the controlled node movement.
We also compare our method with Sculpt on some ex-
amples regarding execution time and a discrepancy
metric.

6.1 Results of our method

2D cases. We applied our approach in an intercode
context, where our inputs are grid meshes carrying vol-
ume fractions data taken from a CFD simulation code
at several time steps (see Figure 19) for two cases, the
triple point and the double bar problems. They came
from simulations run on grids of two different resolu-
tions. The results in Table 1 highlight the motivations
behind our approach: taking the triple point case at 1
second, we can see that for one grid resolution the base
algorithm returns with a mesh containing no inverted
cells (but still lower than the 0.3 minimum scaled ja-

320

material assignment

assignment correction

compute

position

smooth

controlled

move

controlled

move

cavity pillow

cavity smooth

cavity insertion

extract

geom model

project &

smooth

(a)

(b)

(d) (c)

Figure 18: Motivation behind the adjustment to the
computed node position, using the geometric model ex-
traction and projection smoothing illustrated in the as-
teroid case in 3D. (a) close-up of the expected surface
interface mesh where the marked quad has a quality of
0.068; (b) the pixelated interface between the asteroid
and the exterior as obtained in section 4 and on which
we will smooth the expected interfaces to remove prob-
lems such as those seen in (a); (c) the smooth and pro-
jected expected node position; (d) new pipeline that now
includes the modifications to the computed positions.

cobian threshold chosen by the user). That is not the
case for the other resolution, making it unreliable. It
is unrealistic to ask users to rerun their simulations
with different resolutions at random, assuming it is
even feasible, hence the need for our algorithm that
consistently works.

Our method was applied on two additional hydrody-
namics simulations issued from [18] (see Figure 20); in
all those cases it improves the distance by at least an
order of magnitude.

3D extruded cases. The same cases from Figure 19
were extruded3 and run in 3D.

While our method does indeed result in meshes meet-
ing the quality requirements the ratio of distfinal over
distinit remains much higher than in the 2D cases.

”Real” 3D cases. Fully 3D cases were studied, one
which input is a grid where the volume fractions data
were computed by imprinting an asteroid model into
the grid (see Figure 18) and the other one is an hy-
drodynamics simulation of a ball of fluid falling into
a box computed using [19] and taken at several time
steps (see Figure 21).

These cases make use of the improvements on the com-
puted node position as described in Section 5.3 and
shown in Figure 18.d. We should also note that in
these cases, the first controlled move was executed
with a threshold Sq = 0.3 which was decreased to 0.2
for the remainder of the algorithm. Without this in-
termediate threshold the cavity adaptation never man-
ages to produce a good enough one to insert back into
the mesh, which means our output mesh would have
been the mesh obtained after the first controlled move.
The distance distinit and distfina are illustrated in
Figure 22, and a success of the decreasing cavity-size
strategy is shown in Figure 23.

6.2 Discrepancy and comparison

Neither Sculpt nor our method preserve the volume
fractions; in [20] the authors show that it is not an
issue, depending on the application. Nevertheless, we
are interested in measuring by how much our output
deviates from the input; in [21] we define a per-cell
discrepancy criteria for c a cell of G as

dc =
∑

m∈M

|V (c ∩MO
|m)−mam(c)V (c)|. (5)

where V (X) is the volume of any geometric space X
and MO

|m the output mesh restricted to the pure cells

3The 3D mesh is created from a 2D quad mesh, lying in
the XY plane, by creating successive layers of hexahedral
cells along the Z direction. Volume fractions are simply de-
rived for each hexahedral cell from their origin quadrilateral
cell.

321

Table 1: Quality and distance metrics for the examples.

case name minJS minJS distinit distfinal
distfinal

distinit

base algo our algo

2D
triplepoint 1s 420x180 0.215 0.322 0.0676 0.0071 0.105
triplepoint 1s 518x222 -0.071 0.310 0.0856 0.0061 0.071
triplepoint 2s 420x180 -0.031 0.311 0.165 0.0138 0.084
triplepoint 2s 518x222 0.097 0.308 0.186 0.0163 0.088
doublebar 0.5s 200x100 0.074 0.306 0.5915 0.0163 0.027
doublebar 0.5s 214x107 0.091 0.301 0.5950 0.0121 0.020
doublebar 1s 200x100 -0.177 0.300 0.5768 0.0319 0.055
doublebar 1s 214x107 -0.109 0.301 0.6146 0.0411 0.067
hydro toro a -0.104 0.300 116.70 6.0177 0.051
hydro toro b -0.994 0.300 1902.3 104.34 0.055

3D
triplepoint 1s 420x180x3 0.067 0.300 34.048 21.587 0.634
triplepoint 2s 420x180x3 -0.157 0.300 74.5847 44.388 0.595
doublebar 0.5s 200x100x3 0.043 0.300 134.47 26.025 0.193
doublebar 1s 200x100x3 -0.159 0.300 122.24 44.576 0.365

With our algorithm (Figure 18-d)
asteroid -0.13 0.200 319.874 31.148 0.097
balldrop 10 0.274 41.426 5.5029 0.133
balldrop 15 0.209 35.243 6.3432 0.18
balldrop 20 0.221 35.824 18.149 0.506
balldrop 25 0.200 75.346 39.089 0.519

(a) t = 1sec (b) t = 2sec

(c) t = 0.5sec (d) t = 1sec

Figure 19: Examples of CFD simulations in 2D. Our
algorithm was also applied to 3D cases extruded from
the 2D. (a and b) triple point problem where three fluids
of different densities lead to the formation of a vertex; (c
and d) double bar problem where three fluids of different
densities are stirred by two rotating blades.

(a) (b)

(c) (d)

Figure 20: Other examples of hydrodynamics simula-
tions in 2D [18]. (a) and (c) the two cases; (b) and (d)
close-ups on our resulting meshes shown respectively.

322

(a) time step 10 (b) time step 15

(c) time step 20 (d) time step 25

Figure 21: Resulting mesh from our algorithm applied
to the balldrop case.

(a) (b)

(c) (d)

(e) (f)

Figure 22: 3D cases measuring the impact of our algo-
rithm. (a and c) the distance in the asteroid case be-
tween the interface nodes after the first controlled move
and their computed position, and the same after applying
our whole algorithm; (b and d) the same for the balldrop
case at step 25; (e and f) a clipped view of both cases
in order to exhibit the exterior.

(a) nbCells = 9548 (b) nbCells = 4115

Figure 23: Cavity downsizing for the pillow on the ball-
drop case at step 25. (a) first cavity on which the pillow
was tried for the fluid material, it is practically the whole
fluid; (b) cavity where the pillow and smoothing phases
managed to produce a submesh of acceptable quality that
was inserted back into the mesh.

of material m. It basically expresses the difference
between the input volume fractions and the ones com-
puted by imprinting our output mesh onto the initial
grid G. The discrepancy is simply the sum of the term
computed in eq 5 for all the cells of G.

We compared our approach with Sculpt (using Cubit
v15.4b) and Sculpt with an active contouring add-on
developed in [21] aiming to reduce the discrepancy;
the results can be seen in Table 2. We do not claim
to be exhaustive in testing Sculpt, which has many
options to drive the mesh generation.

We can see that our method fits better the volume
fractions, even after applying the add-on. It could be
explained by the fact that in order for Sculpt to return
an output mesh with no negative scaled Jacobian ele-
ments in those cases the defeaturing [11] option was
activated, favoring mesh quality by sacrificing the vol-
ume fractions preservation (see the impact in Figure 24
where some small clusters of material were wiped out).
Even with this option on, we were not able to obtain a
mesh without inverted elements in the double bar 1.0s
example. In Figure 25 we can see that an agressive
smoothing makes the rotating bar loose its shape.

We can also see that our robustness comes at a price,
our method being approximately twenty times slower
(Sculpt was run on a single MPI process, and our algo-
rithm on a single thread). In Table 2 is shown that for
the doublebar cases, which have the same grid size, the
execution time varies significantly: our method is not
only sensitive to the grid size, but also to the carried
data.

7. CONCLUSION AND FUTURE
WORKS

In this work, we have improved on a straightforward
overlay grid algorithm to make it compatible with
the requirements of the “Euler to Lagrange” context

323

Table 2: Discrepancy and execution time comparison with Sculpt, Sculpt + add-on and our approach.

case name metric Sculpt Sculpt+ add-on our algo

triplepoint 1s 420x180x3 discrepancy 583.983 248.594 205.699
time (s) 24.57 505.2

triplepoint 2s 420x180x3 discrepancy 1204.86 513.38 433.458
time (s) 26.5 540.6

doublebar 0.5s 200x100x3 discrepancy 852.687 351.924 270.238
time (s) 9.14 187.9

doublebar 1.0s 200x100x3 discrepancy fail fail 546.159
time (s) 84 334.8

(a) (b)

(c) (d)

Figure 24: Comparison for the triplepoint 2sec case. (a)
and (b) output meshes from Sculpt and our method; (c)
and (d) their respective per-cell discrepancy.

(e) (f)

(g) (h)

Figure 25: Comparison for the doublebar 0.5sec case.
(a) and (b) output meshes from Sculpt and our method;
(c) and (d) their respective per-cell discrepancy.

by means of being able to control cell mesh quality
to make the generated mesh a valid input for a La-
grangian mesh. While the method can still be im-
proved, it reaches the aim of keeping the cell quality
above an acceptable threshold. It was made possible
by controlling node movement and introducing locality
during pillowing.

Our pipeline is robust, but in order to improve the
results further, the mesh adaptation pipeline will be
simplified in the short term in order to be a more tradi-
tional loop adaptation process as it is done for triangu-
lar and tetrahedral mesh adaptation. The key point to
be added in this process will be a new node movement
based on successive simple operations put in an iter-
ative process: node position computation, controlled
movement towards the pixelated model, surface and
volume smoothing. It will improve upon the “projec-
tion and smooth” step done at the beginning of the
mesh adaptation for some 3D cases.

As seen on several examples throughout the paper,
the pillowing operation can drastically decrease the
mesh quality. Detecting configurations where no good
pillowing can be applied could help offer a diagnostic
on the pillow resulting quality and inform the user that
his expected quality threshold will not be reachable,
or at the cost of capturing the interfaces very poorly.
More investigation of local pillowing will be done.

Eventually, our output mesh is a transformation of
the input mesh, keeping the number of cells and their
size quite similar. As it is usually expected of a La-
grangian simulation to require fewer cells than an Eu-
lerian simulation for the same accuracy, we might need
to coarsen and/or refine the output mesh. This pro-
cess will use the material assignment and the interface
reconstruction results to coarsen and refine the mesh
locally before the mesh adaptation steps. Analyzing
the inconsistencies between the mesh and the pixelated
geometric model (see Figure 26) should provide hints
to know where the grid could be refined.

324

(a) (b)

(c) (d)

Figure 26: Topology similarities and differences between
our final mesh and the pixelated interfaces on close-up of
the hydro toro a case; the black wireframe is the original
grid mesh carrying volume fractions data. (a) and (b)
both return the same topology for the green material;
(c) and (d) the topology is not the same.

References

[1] Schneiders R. “A grid-based algorithm for
the generation of hexahedral element meshes.”
vol. 12, no. 3, 168–177, 1996

[2] Owen S.J., Staten M.L., Sorensen M.C. “Parallel
Hex Meshing from Volume Fractions.” Engineer-
ing with Computers, vol. 30, no. 3, July 2014

[3] Zhang Y.J. Geometric Modeling and Mesh Gen-
eration from Scanned Images. CRC Press, 2016

[4] “OpenFoam User Guide, SnappyHexMesh.”
https://cfd.direct/openfoam/, 2017

[5] Distene. “Volume Meshing: MeshGems-Hexa.”
http://www.meshgems.com, 2017

[6] Anderson J.C., Garth C., Duchaineau M.A., Joy
K.I. “Discrete Multi-Material Interface Recon-
struction for Volume Fraction Data.” vol. 27,
no. 3, 1015–1022, 2008

[7] Anderson J.C., Garth C., Duchaineau M.A., Joy
K.I. “Smooth, Volume-Accurate Material Inter-
face Reconstruction.” vol. 16, no. 5, 802–814,
2010

[8] Kucharik M., Garimella R.V., Schofield S.P.,
Shashkov M.J. “A comparative study of interface
reconstruction methods for multi-material ALE
simulations.” Journal of Computational Physics,
vol. 229, no. 7, 2432–2452, 2010

[9] Freitag L.A. “On Combining Laplacian
And Optimization-Based Mesh Smoothing Tech-
niques.” Trends in Unstructured Mesh Genera-
tion, pp. 37–43. 1997

[10] Mitchell S.A., Tautges T.J. “Pillowing Doublets:
Refining A Mesh To Ensure That Faces Share At
Most One Edge.” proceedings of the 4th Interna-
tional Meshing Roundtable, pp. 231–240. Sandia
National Laboratories, October 1995

[11] Owen S.J., Brown J.A., Ernst C.D., Lim H., Long
K.N. “Hexahedral Mesh Generation for Compu-
tational Materials Modeling.” vol. 203, 167–179,
2017

[12] Hege H.C., Seebass M., Stalling D., Zöckler
M. “A Generalized Marching Cubes Algorithm
Based on Non-Binary Classifications.” Tech. Rep.
SC-97-05, ZIB, Takustr. 7, 14195 Berlin, 1997

[13] GLPK. “GLPK (GNU Linear Programming
Kit).” https://www.gnu.org/software/glpk/,
2018

[14] Boykov Y., Veksler O., Zabih R. “Fast ap-
proximate energy minimization via graph cuts.”
vol. 23, no. 11, 1222–1239, 2001

[15] Boykov Y., Kolmogorov V. “An experimental
comparison of min-cut/max- flow algorithms for
energy minimization in vision.” vol. 26, no. 9,
1124–1137, 2004

[16] Kolmogorov V., Zabin R. “What energy functions
can be minimized via graph cuts?” vol. 26, no. 2,
147–159, 2004

[17] Knupp P. “Algebraic mesh quality metrics.”
SIAM J. Sci. Comput., vol. 23, no. 1, 193–218,
2001

[18] Toro E. “Riemann Solvers and Numerical Meth-
ods for Fluid Dynamics: A Practical Introduc-
tion.” Riemann Solvers and Numerical Methods
for Fluid Dynamics. 2009

[19] Guy R. “A PIC/FLIP fluid simulation
based on the methods found in Robert
Bridson’s ”Fluid Simulation for Computer
Graphics”: rlguy/GridFluidSim3D.” URL
https://github.com/rlguy/GridFluidSim3D

[20] Owen S.J., Shelton T.R. “Evaluation of grid-
based hex meshes for solid mechanics.” Engineer-
ing with Computers, vol. 31, 5–29, 2015

[21] Le Goff N., Ledoux F., Owen S. “Hexahedral
mesh modification to preserve volume.” vol. 105,
42–54

325

