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ABSTRACT

We present a new hybrid meshing procedure specifically designed to simulate Atmospheric Boundary Layer (ABL)
flows featuring Coriolis effects for onshore applications. Two new meshing contributions for ABL flow simulation
are proposed. First, a new metric-based adaptive meshing process to discretize the topography is presented. The
adaptivity process is specifically written to deal with the discrete nature of topographic data, reparemeterizing
smoothly the topography to allow computing the first and second order derivatives required by the desired metrics.
Second, we present a new hybrid mesh generation procedure to discretize the ABL. We generate a prismatic boundary
layer that captures the gradients of the Surface Boundary Layer, and following, an unstructured mesh is generated
to discretize the rest of the domain. We show examples to illustrate the reduction in the element count with respect
to standard semi-structured approaches, and we present the simulation result obtained on an onshore topographical
scenario.

Keywords: Topography, Atmospheric Boundary Layer Flows, Hybrid Meshes, Mesh adaptation

1. INTRODUCTION

Simulation of Atmospheric Boundary Layer (ABL)
flows is of interest to various scientific disciplines and
related applications including, among others, meteo-
rology, atmospheric transport of pollutants, or wind
energy. In the ABL, orographic gradients, ground sur-
face drag, and atmospheric thermal instabilities from
radiative forcing, can generate turbulence and strong
wind shear (vertical velocity gradients) in the so-called
Surface Boundary Layer (SBL), which extends up to
a 10 − 20% of the total ABL depth [1, 2, 3, 4, 5].
The need to capture these high gradients impose re-
quirements to the mesh generators employed in ABL
simulation. The requirement to reproduce the high-
gradients of the SBL has been translated in most
mesh generators for ABL simulation in a fully struc-

tured mesh in the normal direction to the surface
[6, 7, 8, 9, 10, 11].

In addition to the structure along the vertical direc-
tion, most mesh generators specifically designed to dis-
cretize the ABL [6, 7, 8, 9] are also semi-structured in
the surface and do not feature adaptivity to the ter-
rain. They feature hexahedra and use block structured
strategies to provide a fine resolution in the zone of
interest and less resolution far away from this region.
However, since in each block the mesh is structured,
inevitably finer resolution of the interest areas is ex-
tended to the rest of the domain. Although having
the drawback of increasing the required number of el-
ements of the mesh, this structured strategies have
been exploited in offshore cases (analyzing the wind
resource on the sea) or in topographic scenarios that
do not feature high complexity or high gradients in or-
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der to align the mesh with the wind inflow direction,
generating one mesh for each simulated wind inflow
direction.

Herein, we are interested in generating meshes in com-
plex topographic scenarios, see for instance results in
Section 6.2. In those scenarios, although when simu-
lating without Coriolis there is a dominant wind di-
rection, the complexity of the topography does not
allow a priori to determine the best alignment of the
mesh with the flow in the interest close-to surface re-
gion. In addition, herein we model the Coriolis effect
in the flow, which translates in the fact that, even
in offshore scenarios, the wind direction close to the
ground is different than the wind direction in the top
of the domain. The change of the wind direction de-
termined by the Coriolis effect depends on the latitude
of the scenario but in general can impose a change in
the direction around 20 degrees from the ground to
2km over the topography. Thus, taking into account
the Coriolis force, not even in offshore cases there is
a unique wind direction, since it changes according to
the height. Taking into account both that the wind di-
rection changes at different heights and also due to the
influence of the topography, in this work we propose
to use an unstructured mesh on the surface.

Herein, we propose two new meshing contributions for
Atmospheric Boundary Layer flow simulation. First,
we propose an adaptive process to the topography, to
have elements of the desired length on the topography
and capture the curvature of the features present in
the terrain. Second, we propose to generate the vol-
ume mesh in a different approach than the standard
in simulation of ABL flows. First, we generate a pris-
matic boundary layer that captures the gradients of
the Surface Boundary Layer, and following using an
unstructured mesh to discretize the rest of the ABL.
We take into account that away from the ground the
vertical velocity gradient is small and the flow is al-
most isotropic. In addition, the influence of the to-
pography is minor and a coarser mesh can capture the
same flow features than the structured fine mesh that
we have generated close to the topography to capture
its geometrical features. Thus, tetrahedral elements
deliver a geometrical flexibility that can be exploited
to increase the element size in all the directions.

The rest of the paper is organized as follows. First,
in Section 2 we present the previous works on the
field of mesh generation for ABL flows. Second, in
Section 3 it is presented the modeling of the discrete
input topography and the two metrics used to adapt
the surface mesh to the topography. Third, in Sec-
tion 4 the surface mesh adaptation procedure is pre-
sented. Next, in Section 5 the combined structured
and unstructured volume mesh generation process is
detailed. Finally, in Section 6 different topographic

scenarios are discretized with the presented methodol-
ogy and the generated meshes are applied to simulate
Atmospheric Boundary Layer flows.

2. RELATED WORK

The standard approaches for Atmospheric Boundary
Layer simulation feature structured or semi-structured
meshes. The use of structured grids was first used
in Finite Difference and Finite Volumes applications,
introducing the effect of the topography by means
of a change of coordinates in the formulation of the
problem instead of discretizing the topography with
the mesh [12, 13]. Also in Finite Element and Finite
Volume applications the use of structured hexahedral
meshes represents the current most standard proce-
dure. This semi-structured meshing strategy exploits
the advantage of hexahedra to align the mesh with the
flow on offshore applications and also exploits the ten-
sor structure of hexahedra to reproduce the close-to-
surface boundary layer. Several mesh generation ap-
proaches have based on solving a system of hyperbolic
Partial Differential Equations (PDEs) to improve the
orthogonality of the mesh and the desired element vol-
ume [14, 6, 7]. Similarly, the use of elliptic PDEs has
been explored to determine the location of the mesh
nodes [15]. In contrast with these approaches, in [9, 16]
it is proposed a procedure that combines sweeping the
quadrilateral surface mesh with a quality-based mesh
optimization, to determine the best configuration of
the nodes of the mesh according to the chosen quality
measure.

There are several alternatives to the use of hexahe-
dral elements. First, regarding the simulation of ABL
flows, in [11] a fully prismatic mesh is generated to dis-
certize the boundary layer. This work takes advantage
of generating a triangle surface mesh to avoid extend-
ing the finer mesh size in the interest region to the
rest of the domain and, simultaneously, takes advan-
tage of the tensor direction of the prisms to discretize
the boundary layer. As an alternative to structured or
semi-structured approaches, different approaches fea-
turing tetrahedra have been followed for problems that
require a mesh conformal with the topography but
that do not require a boundary layer close to the sur-
face [17, 18, 19, 20, 21, 22, 23].

In this work, we aim to develop an specific-purpose
approach to deal with ABL flows featuring Coriolis
effects on complex topographies. In contrast with pre-
vious works, we aim to generate an hybrid prismatic
and tetrahedral mesh that features the main advan-
tages of both structured and unstructured meshes for
our target CFD model. First, in the surface mesh gen-
eration process, we exploit the flexibility of the well-
established triangle meshers to generate a triangle sur-
face mesh adapted to the topography. Second, as pre-
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viously highlighted, in the first 10−20% of the volume,
a boundary layer is required. Thus, we take advantage
of the tensor structure of prismatic elements to discer-
tize the ABL with the desired growing ratio. Finally,
once in a region with smaller vertical gradients, we
take advantage of the flexibility of tetrahedra to dis-
certize the domain with the desired element size, and
not limited by the structure of the mesh in the first
region of the domain close to the surface.

3. TOPOGRAPHY GEOMETRY
MODELING

In this section, it is detailed the strategy followed
herein to model the geometry data for topographic
landscapes. Topographic geometries are discrete due
to the existent data extraction processes. Thus, first
we present the approach to obtain a smooth geometry
representation that allows computing first and second
order derivatives of the underlying topography, see
Section 3.1. Following, in Section 3.2, the two met-
rics used in this work to adapt to the geometry are
presented, particularizing them for the case of topo-
graphic geometries.

3.1 High-order approximation of the to-
pography

This work is devoted to generate meshes conformal
with the terrain. The geometry corresponds to real
measured data that can be given in many formats,
such as contour topography maps, Cartesian grids or
point clouds. Herein, all the input frameworks are con-
verted into a triangle mesh that is used as a geome-
try representation. Following, we define the proposed
parameterization of the target surface (topography).
Due to the existent data extraction procedures, to-
pographic data for wind resource assessment in this
work always ensures that each point in the plane has
a unique height value. This is so since the triangle
mesh that represents the geometry can be interpreted
as a planar triangle mesh with a height value in each
of the points of the mesh. In particular, we define ΠΣ

as the parametric plane, the region in R2 where the
topography is defined (region of the plane where the
topography data has been measured). Thus, given a
point x ∈ ΠΣ the height function of this point zh(x)
on the topography is defined as

zh : ΠΣ ⊂ R2 −→ R
x = (x, y)t 7−→ zh(x),

(1)

where zh(x) is computed by finding the triangle to
which this point belongs and interpolating the height
value in the triangle. The function zh unequivocally
determines a parameterization ϕh of the topography

surface Σ as

ϕh : ΠΣ ⊂ R2 −→ Σ ⊂ R3

x = (x, y)t 7−→ z = (x, y, zh(x))t.
(2)

This parameterization maps a point in the parametric
plane to a point in the topography. As highlighted,
it is a discrete parameterization that finds the surface
triangle to which the point belongs, and computes the
exact location of this point in the topography. To com-
pute for instance the curvature of the target surface
(Section 3.2) in the mesh adaptation process (Section
4), it is required to perform queries of the first and
second order derivatives of the geometry. However,
since topography representation is a piece-wise linear
triangle geometry, the derivatives of the topography
geometry are not well defined. On the one hand, there
are discontinuities of the first order derivative in the
edges between the elements of the topography geome-
try. On the other hand, since the geometry mesh fea-
tures piece-wise linear elements, the curvature of each
triangle configuring the geometry is null. Thus, simi-
larly to [24, 25], herein we propose to reconstruct local
high-order approximations of the geometry that allow
queries of the derivatives of the surface representation.

To generate the high-order approximation in a point
x ∈ ΠΣ, first it is located the triangle that contains
this point in the mesh that defines the geometry. Fol-
lowing, several layers of elements adjacent to the con-
tainer elements are gathered. Each new layer is com-
puted as the triangles neighboring to the current con-
sidered elements. Then, we compute the least squares
approximation of the desired order of the cloud of
points determined by the neighborhood of elements
around the target point. Specifically, given a set of to-
pography points {z1, . . . , znp} the high-order approx-
imation used in this work is written as

zp(x, y) =
∑

{i,j}∈Ip

aijx
iyj , (3)

where p is the desired polynomial degree, Ip =
{{i, j} | i, j ≥ 0 and i + j ≤ p} is the set of indexes
lower or equal to p, and {aij}{i,j}∈Ip are the coeffi-
cients of the polynomial zp(x, y) on x and y. In par-
ticular, we seek the approximation that better fits the
cloud of points in the least squares sense:

{aij}{i,j}∈Ip = argmin
aij∈R
{i,j}∈Ip

np∑
k=1

(zp(xk, yk)− zk)2 , (4)

where zk = (xk, yk, zk) are the cloud point coordi-
nates.

Note that if there are less points than parameters aij
the problem stated in Eq. (4) is ill-conditioned. Thus,
by default p levels of elements around the container el-
ement are considered. Once all the neighboring points
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are gathered, they are counted to ensure that the num-
ber of points in the cloud is higher or equal than the
number of parameters. Otherwise, an extra layer of
neighboring elements is included, repeating this pro-
cess until the number of points ensures a well-posed
minimization problem. In particular, if we have the
exact same number of parameters we would obtain a
surface containing all the points of the cloud.

Once computed the smooth high-order approximation,
the new parameterization ϕp is defined as

ϕp : ΠΣ ⊂ R2 −→ R3

x = (x, y)t 7−→ z = (x, y, zp(x, y))t.
(5)

Note that this parameterization has well defined first
and second order derivatives that will allow to com-
pute the desired metrics on the geometry in Section
3.2. The order of approximation used in this work in
the presented examples is three, and, accordingly to
what has been previously stated, the number of lev-
els of adjacency to compute the approximation is also
three (without requiring in any example to automati-
cally computing extra layers of neighbors).

3.2 Metrics over the topography geometry

The main objective of this work is to generate meshes
that feature the desired edge length on the surface and
that at the same reproduce the curvature of the geom-
etry. Thus, the edge lengths of the surface mesh will
be measured taking into account two different metrics:
the metric of the tangent space, and the metric derived
from the Hessian of the parameterization.

First, some notation is stated regarding the measure-
ment of edge lengths in surfaces with respect to a given
metric. Following Section 3.1, we denote a general pa-
rameterization of a surface Σ as:

ϕ : ΠΣ ⊂ R2 −→ Σ ⊂ R3

x = (x, y)t 7−→ z = ϕ(x).
(6)

We define the curve γ(t) between two points z1 and
z2 on Σ in terms of the parameterization ϕ and the
edge [x1,x2] on the parametric space as

γ : [0, 1] −→ Γ ⊂ Σ ⊂ R3

t 7−→ ϕ(x(t)),
(7)

where x(t) is defined as

x : [0, 1] −→ [x1,x2] ⊂ ΠΣ ⊂ R2

t 7−→ x1 + t(x2 − x1),
(8)

and with γ fulfilling that γ(0) = z1 and γ(1) = z2.
The length of the curve on the surface is

l(z1, z2) =

∫ 1

0

√
<
∂γ

∂t
(t),

∂γ

∂t
(t) > dt, (9)

where < a,b >= a · b is the scalar product between
the vectors a and b.

Next, following the ideas in [26], the chain rule is used
in the definition of the curve in Eq. (7) and Eq. (8):

∂γ

∂t
=

(
∂ϕ

∂x

∂ϕ

∂y

)
· ∂x(t)

∂t
= ∇ϕ · (x2 − x1),

and rewrite the length of the curve in Eq. (9) in terms
of the parametric coordinates of the two surface nodes:

lM1(z1, z2) =

=

∫ 1

0

(
(x2 − x1)t · ∇ϕt · ∇ϕ · (x2 − x1)

)1/2
dt

=

∫ 1

0

(
(x2 − x1)t M1(x(t)) (x2 − x1)

)1/2
dt,

(10)

where

M1(x(t)) ≡M1 =

= ∇ϕt · ∇ϕ =

(
∂ϕ

∂x

∂ϕ

∂y

)t

·
(
∂ϕ

∂x

∂ϕ

∂y

)
,

(11)

is the matrix expression of the first fundamental form
of the surface Σ at the point on the parametric space
x(t), see Eq. (8). In particular, for isotropic mesh
generation with a desired length h of an edge known
in each region of the domain, we define the tangent
metric in terms of M1 as

MT :=
1

h2
M1, (12)

and the corresponding length measure as

lMT (z1, z2) :=∫ 1

0

(
(x2 − x1)t · MT (x(t)) · (x2 − x1)

)1/2
dt.

(13)

Note that we would ideally like the edges of the mesh
to have measure 1 with the metric MT . In this man-
ner, in the adaptive procedure that will be presented
in Section 4, Eq. (13) will be used to compute the
length of the curve on the surface in terms of the co-
ordinates of the nodes in the parametric space. Next,
these elements with measure greater than one (with a
safety factor) will be refined until all edges fulfill the
desired metric.

In addition to measuring the edge length of the mesh
taking into account the length of the curve described
in the surface, we also want to capture the curvature
of the surface. That is, the second order derivatives of
the surface will be also taken into account in the adap-
tive procedure. To do so, we explicitly exploit that the
parameterization ϕ in Eq. (6) for topographic geome-
tries can be rewritten as ϕp(x, y) = (x, y, zp(x, y)),
as detailed in Eq. (3) and Eq. (5) from Section 3.1.
Thus, the parameterization can be also understood as
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a field zp over a 2D mesh on x and y. Hence, herein we
propose to adapt the mesh to capture the curvature of
the geometry using techniques for 2D mesh adaptation
to reduce the interpolation error of zp(x, y).

Following the ideas presented in [27, 28], from the Hes-
sian H of the topography at a point,

H =

(
∂2zp
∂x∂x

∂2zp
∂x∂y

∂2zp
∂y∂x

∂2zp
∂y∂y

)
,

the following metric is defined:

MC = V D Vt, (14)

where V = (e1, e2) is the matrix composed by the
eigenvectors e1 and e2 of H, D = β diag(|λ1|, |λ2|) a
diagonal matrix with its absolute value of the eigen-
values, and β a curvature discretization parameter.
Herein, β has a default value of 1, which has been de-
termined experimentally for the average metrics that
arise in topographic applications after testing several
topographic scenarios. However, it can also be speci-
fied by the user to discretize the curvature of the geom-
etry with the desired accuracy, or computed according
to [29, 30, 31] to provide an estimate of the number of
vertices in terms of the metric complexity. Similarly
to Eq. (13), the length of the curve between z1 and
z2 with respect to the metric MC is defined as

lMC (z1, z2) :=∫ 1

0

(
(x2 − x1)t · MC(x(t)) · (x2 − x1)

)1/2
dt,

(15)

where x(t) is defined in Eq. (8). In particular, if the
user has prescribed an element size of h, the edges of
a mesh should ideally fulfill lMT = 1 and lMC = 1.
However, these two conditions may not be achievable
simultaniously since, for instance, the curvature of the
geometry may demand lMT << 1. Following, in Sec-
tion 4 it is detailed the adaptive mesh generation pro-
posed in this work, based on the two presented metrics.
First, it will be generated a coarse topography mesh,
which will be locally refined it until no edges of the
mesh have length greater than 1, or if the length of
the edges is lower than a minimum value set by the
user. With these two conditions, the edge length of
the surface mesh is controlled and it is ensured that
the mesh accurately reproduces the curvature of the
geometry.

4. SURFACE MESH: UNSTRUCTURED
TOPOGRAPHY MESH GENERATION

In this section, we detail our surface mesh adaptation
procedure for topographic geometries. The topogra-
phy is parameterized according to the technique pro-
posed in Section 3.1, and the edge lengths of the mesh

Figure 1: Synthetic example illustrating the domain
regions: farm (light gray), transition (gray) and buffer
(dark grey).

are measured according to the tangent and curvature
metrics, Eq. (13) and Eq. (15) respectively, both de-
tailed in Section 3.2.

In this work, the topography is divided into three re-
gions, with three different levels of resolution illus-
trated in Figure 1: the interest wind farm area (higher
resolution, light gray), a transition area (gray), and
an elliptical buffer area to impose the boundary con-
ditions (lower resolution, dark gray). First, the farm
area is meshed. The farm is a quadrilateral domain
featuring the region of interest in the simulation (for
instance, area where a wind farm is to be designed).
The adaptive process to the topography is applied in
the farm region, where high geometric accuracy is re-
quired to discretize the features of the topography.
The transition area is an elliptical domain that encir-
cles the farm region and is meshed with a triangle mesh
that smoothly matches the fine mesh of the transition
with the element size of the buffer, the outer region.
Finally, it is defined an additional elliptic region with
a coarse element size to impose the boundary condi-
tions. Herein, the outer boundary is chosen to be el-
liptical to avoid the discontinuities that the corners of
a quadrilateral domain can induce in ABL simulations
with Coriolis and to impose in a continuous manner
the input/output flow conditions.

4.1 Adaptive mesh generation process

To generate a surface mesh adapted to the topographic
features, two inputs are required: the maximum ele-
ment size hmax and the minimum allowed size hmin.
First, a planar triangle mesh with the maximum ele-
ment size is generated using the Triangle mesh genera-
tor [32]. In Figure 2(a) the initial mesh with constant
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Algorithm 1 Surface mesh generation process
adapted to the topography

Input: Topography surface Σ, Maximum edge length
hmax, Minimum edge length hmin

Output: Mesh M
1: function MeshTopography(Σ,hmax,hmin)
2: M ← generate planar tri mesh of size hmax

3: elemsToRefine← findElemsToRefine(M,Σ)
4: while elemsToRefine6= ∅ do
5: M ← refinePlanarMesh(M,elemsToRefine)
6: elemsToRefine←findElemsToRefine(M,Σ)
7: end while
8: M ← mapToSurface(M,Σ)
9: M ← optimizeMeshOnSurface(M,Σ)

10: return M
11: end function

element size is illustrated. This mesh constitutes the
starting point for the adaptive procedure. Following,
the edge lengths of all the elements of the mesh are
measured using the tangent and curvature metrics. If
an edge of an element is greater than 1, this implies
that the edge is longer than desired with the metric.
The condition to accept the element as it is or refine it
is relaxed to those elements with lengths greater than√

2, see [24, 26]. Thus, this element is included in a
list of elements to be refined.

Once all the mesh elements have been checked, we lo-
cally refine the mesh where it is required. The refine-
ment is performed by using the previous mesh as back-
ground mesh and asking to those elements included in
the refinement list to have half of the size of the trian-
gle. This process is repeated until all the elements have
length below the desired threshold for both metrics, or
if the minimum edge length is below the desired min-
imum length. We highlight that the minimum length
is checked using the euclidean metric to control the
minimum length in the mesh for the simulation.

The iterative procedure to perform the mesh refine-
ment is detailed in Algorithm 1. In particular, while
there are elements to refine, Line 4, the mesh is refined
as previously detailed. Every time that the mesh is
refined, the edge lengths with respect the two metrics
are computed. Once the edge lengths are computed,
the elements with edges not fulfilling the desired edge
lengths are listed again to be refined, Line 6. However,
to control the minimum allowed element size and to
avoid obtaining excessively refined meshes, those ele-
ments with length under the euclidian metric higher
than hmin are not included again in the refinement
process. The process concludes when no elements vi-
olate any metric, or when the elements violating the
metrics have already achieved the minimum allowed
edge length. At this point, the nodes of the planar
triangle mesh are mapped to the topography in Line

8, discretizing it.

In Figure 2 the adaptive process is applied to generate
a mesh on the Bolund peninsula geometry. In this
illustrative example, the input mesh sizes are hmax =
5m and hmin = 0.5m. First, in Figure 2(a) a planar
mesh of constant element size is generated, Line 2 in
Algorithm 1. Then Figures 2(b) to 2(h) illustrate the
successive refinements of the mesh according to Line
5. Finally, in Figure 2(i) the final surface mesh is
illustrated. In the procedure, the initial number of
elements is 5089, and the final one is 9037.

Once the adaptive process is finalized, it is obtained
a mesh that has elements of the desired size on the
surface, and that reproduces the curvature of the ge-
ometry up to the minimum allowed mesh size. Up to
this point local mesh refinement has been performed
in order to improve the accuracy of the geometric ap-
proximation. However, in this process the quality of
the generated mesh for simulation has still not been
assessed. Thus, to conclude the generation of the to-
pography surface mesh, in Line 9 a quality optimiza-
tion of the surface elements is performed. Following,
in Section 4.2 we detail the quality measure that will
be used in this work to validate the generated meshes,
and the current mesh configuration will be improved
by means of reallocating the nodes on the surface to
improve the mesh quality.

4.2 Surface mesh optimization

The final step of the generation of the surface mesh
is an optimization of the location of the mesh nodes
on the exact topography to obtain a mesh which min-
imizes the elemental distortion (maximizes the qual-
ity). For each element on the surface, its ideal is de-
fined as an equilateral triangle of the desired size. The
optimization procedure targets that each surface ele-
ment reassembles the ideal as much as possible. It has
to be taken into account that this ideal configuration
can not in general be achieved since the mesh topology
is now fixed and since the surface elements have their
nodes tied to the geometry.

To measure if an element is valid, and to quantify
how much it differs from the desired configuration, we
use a distortion measure (see Knupp [33] for a review
of measures). A distortion measure quantifies in the
range [1,∞) the deviation of an element with respect
to an ideal configuration (for instance, the equilateral
triangle with the desired size for the triangle case).
In this work, the distortion of an element with nodes
z1, . . . , znp is denoted as η(z1, . . . , znp). The distor-
tion takes value 1 when the element presents the de-
sired configuration, and tends to infinity when the el-
ement degenerates. Following the ideas for high-order
elements in [34, 35], the distortion measure used in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: (a)-(h) Mesh adaptive process for the Bolund geometry illustrated in Figure 1. (i) Final adapted topog-
raphy surface mesh.
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this work can be written for any given element with
nodes z1, . . . , znp as:

η(z1, . . . , znp) :=
‖ηsh(Dφ)‖EI

‖1‖EI

, (16)

where ηsh is defined in [33] as

ηsh(Dφ) :=
‖Dφ‖2F

d | detDφ |2/d
,

where φ(z1, . . . , znp) is the mapping between the ideal
EI and physical elements, Dφ is its Jacobian, ‖ · ‖F is
the Frobenius norm, ‖ · ‖EI is the L2 norm on the ideal

element, ‖1‖EI is the measure of the ideal element, and

d is the dimension of the element (d = 2 for planar and
surface meshes, and d = 3 for volumetric meshes). In
particular, the quality of an element is the inverse of
the distortion:

q :=
1

η
∈ [0, 1], (17)

which gives us a value in [0, 1], being 0 an invalid con-
figuration, and 1 the desired one. For the surface case,
we consider as ideal the equilateral triangle with the
desired size. In Figure 3(a) we show the initial surface
mesh, coloring the elements with respect to their qual-
ity. It can be observed that non-regular lower quality
elements are present in areas with big slopes of the
topography.

To optimize the nodes on the topography [36, 37],
we use the surface parameterization to rewrite the
distortion in Eq. (16) for an element E with nodes
z1, . . . , znp , in terms of the parametric coordinates of
the nodes x1, . . . ,xnp as:

ηϕ(x1, . . . ,xnp) :=η(ϕ(x1), . . . ,ϕ(xnp))

=η(z1, . . . , znp).

In the optimization process it is found the location of
the nodes on the parametric plane ΠΣ such that pro-
vide minimal elemental distortion (maximum quality)
of the surface elements in the least squares sense. In
particular, it is sought {x∗1, . . . ,x∗nNs

} ⊂ ΠΣ such that:

{x∗1, . . . ,x∗nNs
} =

argmin
x1,...,xnNs

∈ΠΣ

nEs∑
e=1

(
ηϕ(xe1 , . . . ,xenp

)
)2

,
(18)

where nNs is the number of surface nodes, nEs is the
number of surface elements, ei denotes the global node
id of the ith node of element e, and ηϕe denotes the
distortion of element e. We highlight that to deal
with inverted elements (detDφ ≤ 0), and specially
to untangle meshes in the optimization procedure, the
regularization of the determinant detDφ presented in

Table 1: Shape quality statistics (minimum, maxi-
mum, mean and standard deviation) for the triangle
meshes presented in Figure 3.

Mesh Min.Q. Max.Q. Mean Q. Std

Fig. 3(a) 0.17 1.00 0.89 0.12
Fig. 3(b) 0.50 1.00 0.96 0.05

[38, 39] is used. In particular, detDφ in Eq. (16) is
replaced by r(detDφ), where

r(x) =
1

2

(
x+

√
x2 + 4δ2

)
, (19)

where δ is a numerical parameter that we determine
following the approach presented in [40].

Once the optimal location in the parametric space
{x∗1, . . . ,x∗nNs

} is obtained, the nodes are mapped
back to the topography by means of the parameteri-
zation as {z∗1, . . . , z∗nNs

} = {ϕ(x∗1), . . . ,ϕ(x∗nNs
)}. For

the optimization process, we use the input piece-wise
linear parameterization in order to ensure that the fi-
nal location of the mesh nodes is on the input topog-
raphy.

The topography mesh generation process for the Bol-
und hill (Denmark) is shown in Figure 3. In addition,
in Table 1 we illustrate the mesh quality statistics re-
sulting from the detailed procedure. Figure 3(a) shows
the initial distorted surface mesh, which has a mini-
mum quality of 0.17. In contrast, Figure 3(b) shows
the optimized mesh, with a minimum quality that has
been increased to 0.50, and where it can be observed
that the distorted elements from the initial mesh have
become almost regular all over the domain. We high-
light that the quality of the surface mesh is of major
importance for the volume mesh generation. The sur-
face mesh defines the boundary of the volume mesh,
and therefore, an invalid (or low-quality) surface mesh
will derive in a low-quality (or invalid) volume mesh.

5. VOLUME MESH: ATMOSPHERIC
BOUNDARY LAYER MESH

GENERATION

The Atmospheric Boundary Layer mesh is generated
in a domain enclosed by the topography, a planar ceil-
ing at the desired height (user input defaulted as 2km
over the highest topography point), and an elliptic lat-
eral wall. The elliptic lateral boundary is defined by
extruding vertically the boundary of the 2D domain,
see Figure 1, up to the desired height.

This volumetric domain is meshed following Algorithm
2. First, in Line 2, the triangle surface mesh of the to-
pography is swept (extruded) to generate a structured
prismatic mesh close to the ground. This process is de-
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(a) (b)

Figure 3: Topography mesh generation for the Bolund hill: (a) initial distorted surface mesh, and (b) optimized
high-quality surface mesh. The surface elements elements are colored according to their quality, Eq. (17).

tailed in Section 5.1. As input for the prismatic mesh-
ing process, it is required to provide the initial height
of the elements (h0), the growing ratio (r), a max-
imum elemental height for the boundary layer (h1),
and the height until which the boundary layer extends
(zBL). Herein, the growth factor of the boundary layer
is chosen in the interval [1.05, 1.25], and the anisotropy
in the first layer is set between the order of 1/100 or
1/1000, depending on the CFD case and the region of
the domain. In addition, the maximum height of the
structured boundary layer region is set by default at
the 20% of the total ABL (400 meters over 2km), see
[1, 2, 3, 4, 5]. If the elements become isotropic be-
fore reaching the height of the structured region, the
sweeping is continued keeping constant the size along
the vertical direction.

Once the prismatic mesh is finished, in Line 3 an un-
structured tetrahedral mesh is generated to fill the rest
of the domain with tetrahedra: from the last prismatic
layer to the flat ceiling located at height ztop. The gen-
eration of the tetrahedral mesh relies on TetGen [41],
to which a surface mesh is provided together with an
element size field. The element size of the triangles
from the prismatic mesh are assigned with their own
size, while the elements in the top ceiling are assigned
with the top ceiling size given by the user (h2). The el-
ements on the elliptical lateral boundary are assigned
with a smooth linear size gradation from the prismatic
mesh to the top ceiling height. The prismatic layer
together with the tetrahedral mesh compose an hy-
brid mesh, Line 4, and following, the resulting hybrid
mesh is optimized, see Line 5. The generation of the
unstructured mesh and the optimization of the hybrid
mesh are detailed in Section 5.2.

Algorithm 2 Generation of the hybrid ABL mesh

Input: Surface mesh MΣ, Initial Size SBL h0, Final
Size SBL h1, Growing Ratio r, Height SBL zBL,
Top Ceiling ztop, Top Ceiling Size h2

Output: Mesh M
1: function MeshABL(MΣ,h0,h1,r,zBL,ztop)
2: Mpri ← MeshSBL(MΣ,h0,h1,r,zBL)
3: Mtet ← GenerateTetMesh(Mpri,ztop,h2)
4: M← GenerateHybridMesh(Mpri,Mtet)
5: M← OptimizeQuality(M)
6: end function

5.1 Structured prismatic meshing using an
optimization-based sweeping

Given a initial triangle surface mesh generated with
the approach presented in Section 4, the volume mesh
of the close to the surface region is generated by means
of an iterative sweeping procedure that requires two
main steps to compute each new sweeping layer. First,
given a layer of triangle elements, a new layer of tri-
angles is generated. These two triangle meshes deter-
mine the new prismatic layer by connecting each node
on the initial layer with the corresponding swept node
in the extruded layer. Second, once a new layer of
prisms has been generated, it is performed a local op-
timization of the low quality elements that have been
generated up to this point.

Given a layer of triangle elements, we generate a new
layer of prisms by means of sweeping each node com-
puting a new extruding length and an extruding di-
rection. The current extrusion length is computed in
a standard manner using a geometrical law based on
a user input growing ratio, herein defaulted as 1.15.
As input for the user it is also asked a maximum ele-
ment size (defaulted as the isotropic configuration of
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the swept element). Once this size is reached or if
the element becomes isotropic, the extruding length
is kept constant and not further increased with the
growing ratio.

To determine the extruding direction, we compute the
pseudo-normal [42, 43] of the nodes adjacent to each
swept node. In particular, given a node z with nl

neighboring nodes {z1, . . . , znl}, the pseudo-normal
nz is defined as

nz :=

∑nl
i=1 zi × zi+1

‖
∑nl

i=1 zi × zi+1‖

=

∑nl
i=1 (zi − z)× (zi+1 − z)

‖
∑nl

i=1 (zi − z)× (zi+1 − z)‖ ,

where we consider znl+1 ≡ z1. The pseudo-normal
is used to maximize the orthogonality of the extruded
layer with respect to the previous one. The main prop-
erty of the pseudo-normal nz is that it defines the
plane that maximizes the area of the projection of the
polygon defined by {z1, . . . , znl}, see [42, 43], reducing
the chances of generating invalid extruded elements.
We highlight that the pseudo-normal is blended with
the vertical direction in order to enforce that the mesh
grows towards the ceiling and that it gets to the top
orthogonally to the planar ceiling.

It must be remarked that although the use of the
pseudo-normal reduces the possiblity of obtaining in-
verted or low quality elements, this is still not guar-
anteed in the extruding process. Thus, it is required
to assess the quality of the mesh during the procedure
to ensure its validity and, if possible, improve its qual-
ity with a similar approach to the one used for the
surface mesh in Section 4.2. To compute the quality
of a given prismatic element, an ideal element is re-
quired. We set the ideal of each prism in terms of the
best prism that we would get if no topography was
present. That is, the ideal element of a given physical
prism is defined as the initial surface element extruded
orthogonally with the computed extrusion length at
the current layer. This is indeed the element that we
would desire to generate, since it is extruded orthog-
onally and has the best configuration on the surface
(it has been optimized for the target topography in
Section 4.2). Once we have set the ideal prism, we use
Eq. (16) to compute the distortion of the elements
and assess its validity.

Once a new prismatic layer is generated, it is optimized
to improve its configuration with respect to the defined
ideal elements. Recall that although it has been ex-
truded using the best projection plane, the constraint
of coming from a non-planar mesh prevents the mesh
from being optimal. In particular, only a mesh with
a planar topography would be optimal with respect
to the ideal configuration. Therefore, before generat-
ing a new layer of elements, the current layer is op-

Table 2: Shape quality statistics (minimum, maxi-
mum, mean and standard deviation) for the meshes
presented in Figure 4.

Mesh Min.Q. Max.Q. Mean Q. Std

Fig. 4(a) 0.10 1.00 0.98 0.10
Fig. 4(b) 0.10 1.00 0.85 0.23
Fig. 4(c) 0.20 1.00 0.86 0.19

timized. Since the mesh is still being generated and
taking into account the computational efficiency of the
process, during the sweeping process we only optimize
the lowest quality elements on the mesh. The quality
threshold for this local optimization is defaulted in our
applications as 0.2. To allow those elements to have
room for improvement, several layers of neighboring
nodes are included in the optimization process. The
rest of nodes are kept fixed and are not optimized. In
all the examples of this work, two levels of neighbor-
ing nodes are considered. In particular, following a
Gauss-Seidel approach, we solve for each free node the
non-linear minimization problem:

zi = argmin
zi∈R3

ni
E∑

e=1

η2
ê(ze1 , . . . , zenp

), (20)

where {ê}e=1,...,ni
E

denotes the set of adjacent ele-

ments to node zi, ê denotes the global id of the e-th
adjacent element of node zi, ηê is the distortion of the
e-th element, and ei corresponds to the global node id
of the ith node of the eth neighbor element.

5.2 Unstructured mesh generation and hy-
brid mesh optimization

Once the sweeping process is finalized, the unstruc-
tured tetrahedral mesher TetGen [41] is used to gen-
erate a volume mesh that fills the rest of the domain
up to the desired height. To do so, the target volume
is defined in terms of a planar ceiling, an elliptical
surface that encloses all the perimeter of the initial
surface mesh, and the top boundary of the prismatic
mesh. Each triangle of the boundary that encloses
the volume is assigned with an element size field that
determines the size of the tetrahedral mesh. In par-
ticular, the triangles from the swept prismatic mesh
are assigned a size that ensures a smooth matching
between the prismatic and the tetrahedral mesh. The
triangles of the planar top ceiling are assigned the el-
ement size chosen by the user. Finally, the triangles
from the elliptic lateral are assigned an element size
computed using a linear blend between the size at the
swept surface and the size at the planar top ceiling.

Once all the volume mesh has been generated, only the
prismatic elements have been optimized in terms of the
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(a)

(b)

(c)

Figure 4: Main meshing steps to generate the mesh of
the Atmospheric Boundary Layer for the Bolund hill:
(a) prismatic mesh, (b) hybrid prismatic-tetrahedral
mesh, and (c) globally optimized hybrid mesh. The
elements are colored according to their quality.

quality presented in Eq. (17), and only locally in the
sweeping process to improve the previous configura-
tion before a new surface sweep. Therefore, the mesh
is still not globally optimal in terms of the defined
quality (distortion) measure. Thus, after the topology
of the final mesh has been set, we perform a final mesh

optimization to compute the coordinates of the mesh
nodes that deliver minimal distortion. To do so, we
optimize all the nodes except the topography surface
ones. The nodes on the topography are kept fixed
since they are already optimal in the parameterized
topography geometry. The volume nodes are free to
move in R3, whereas the rest of boundary nodes are
allowed to move on their boundary surfaces.

In particular, we find the coordinates of the nodes
that do not belong to the topography that minimize
the mesh distortion in the least-squares sense [34], by
optimizing in a Gauss-Seidel approach the objective
function

f(z1, . . . , zn) =

nE∑
e=1

η2
e(ze1 , . . . , zenp

), (21)

where nN is the number of nodes of the mesh, nE is the
number of elements in the mesh, ηe is the distortion
of the e-th element, and ei corresponds to the global
node id of the ith node of element e.

Figure 4 illustrates the generated hybrid volume mesh
from the topography surface mesh illustrated in Fig-
ure 3(b). Figure 4(a) shows the first step of the pro-
cess, the prismatic mesh obtaining by sweeping the
topography surface mesh. Figure 4(b) shows the hy-
brid mesh obtained after meshing with tetrahedra the
domain between the top triangles mesh from the pris-
matic sweep mesh and the top ceiling mesh. Finally
in Figure 4(c) we illustrate the final hybrid mesh ob-
tained after the performed quality optimization. We
highlight that the domain has been designed to clearly
illustrate both the topography adaptation, the pris-
matic mesh and the unstructured mesh in the same
image. That is, the sizes of the farm, transition and
buffer areas, and the region featuring the boundary
layer are not realistic for an ABL flow simulation. A
complete Bolund scenario is meshed in Section 6.1.
Table 2 details the quality of the meshes presented in
Figure 4. The minimum quality of the final mesh, Fig-
ure 4(c), is 0.2. The minimum is obtained in prismatic
mesh in the region extruded close to the almost verti-
cal wall from the geometry, where the mesh has been
more refined. We highlight that without the final mesh
optimization the minimum quality of the mesh is 0.1,
presenting a significant quality improvement due to
the presented optimization process. In addition, if no
volumetric optimization is present during the extrud-
ing procedure (Sec. 5.1), the mesh becomes invalid
during the sweeping process and the mesh cannot be
generated. This issue stresses the importance of the
quality optimization framework, specially in regions
where the topography features high gradients.
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6. RESULTS

In this section, we present two examples to illustrate
the capabilities of the presented hybrid mesh gener-
ation approach adapted to the topography. First, in
Section 6.1 it is performed an analysis of the meshes
obtained using the hybrid process in contrast with the
standard semi-structured hexahedral meshers for ABL
flows. In particular, the same mesh sizing parame-
ters are used to analyze the main differences between
the semi-structured and the unstructured approaches.
Second, in Section 6.2 the meshing process is illus-
trated for the topography encircling the Badaia wind
farm, located in Spain.

In Section 6.2, the generated mesh is used to solve
the Reynolds Averaged Navier-Stokes (RANS) equa-
tions with a k-ε turbulence model adapted to the At-
mospheric Boundary Layer [44] and featuring Coriolis
effects. The model was presented and developed in
[10, 45] and implemented in the finite-element multi-
physics parallel solver Alya [46, 47]. However, the
proposed meshing algorithm has been implemented
in the external model-independent pre-process code
WindMesh [10, 9, 16, 48]. As a result, meshes gen-
erated with this utility can be used to simulate both
with RANS or Large-Eddy Simulation (LES) turbu-
lence models and, in addition, are also valid for solvers
based on other numerical methods such as Finite Vol-
umes. The simulation illustrated in Figure 8 has been
run in the supercomputer MareNostrum4 [49] using
512 cores.

For the different examples, we detail the computa-
tional time of the mesh generation process performed
on a MacBook Pro with one dual-core Intel Core i7
CPU, a clock frequency of 3.0 GHz, and a total mem-
ory of 16 GBytes. In Section 6.1, the computational
time to generate the semi-structured mesh in Figure
5(a) is 9 seconds, and the time to generate the hybrid
mesh in Figure 5(b) is 17s. In Section 6.2, the CPU
time to generate the hybrid mesh in Figure 7 is 246
seconds.

6.1 Bolund peninsula

The objective of this work is to propose a new mesher
to simulate ABL flows featuring Coriollis effects in
complex topographies. In this context, the motivation
of this section is to present a simple example to illus-
trate the advantages of using the proposed approach
against a standard semi-structured ABL mesher in
terms of the resulting element count and the flexi-
bility to attain the desired element sizes in the do-
main. We highlight that standard meshers are de-
voted for problems without Coriollis. In those cases
there is a dominant large-scale wind direction at the
top ceiling, and this is exploited by means of gener-

ating semi-structured hexahedral meshes aligned with
this inflow direction. However, in cases featuring com-
plex topographies, the direction of the wind close to
the ground is not dominated by a particular direction.
As previously highlighted, this problem is increased
when Coriollis effects are present, where even with-
out topography the wind direction changes depending
on the height with respect to the ground. Thus, in
contrast with standard meshers, we have developed a
specific-purpose mesher for complex topographies and
simulations featuring Coriollis effects.

The comparison of this section is performed with the
aim to illustrate the advantages of the meshing ap-
proach proposed in this work for the specific-purpose
for which it has been developed. One of the objec-
tives of the hybrid mesher is to reduce the degrees
of freedom required to discretize a complex topogra-
phy and the Atmospheric Boundary Layer in simula-
tions featuring Coriollis effects. Hence, we will mea-
sure the reduction of degrees of freedom of the pro-
posed mesher in contrast with the standard approach
[6, 7, 8, 9, 16, 10, 11]. However, we highlight that
semi-structured meshers have the advantage of being
aligned with the wind inflow direction in problems
without Coriollis effects or without complex topogra-
phies.

To perform this comparison, we use our in-house semi-
structured code WindMesh [9, 16], that generates
a semi-structured cross-type mesh, see Figure 5(a),
which constitutes the standard in the field of ABL flow
simulation [6, 7, 8, 9, 10, 11, 16]. As previously high-
lighted, these semi-structured meshers are devoted to
generate an hexahedral mesh aligned with the inflow
direction. Thus a structured quadrilateral mesh is gen-
erated in the interest regions, and then an elliptical
domain is meshed using a semi-structured approach
increasing the mesh size towards the exterior of the
domain. Next, this mesh is extruded to discretize the
boundary layer, see [9, 16] for further details.

Figure 5 illustrates the obtained meshes. Figure 5(a)
shows the generated semi-structured mesh, while Fig-
ure 5(b) we illustrate the hybrid mesh generated with
exactly the same parameters than the semi-structured
one. That is, the imposed mesh sizing is exactly the
same. In this particular test case, featuring a small
domain with a small topographic scenario around Bol-
und hill (a small peninsula in Denmark), the input
sizes are: 5 meters in the farm region and 25 in the
buffer region. Regarding the vertical discretization,
the initial cell size is 0.5 and the growing ratio is 1.15.
We highlight that in this example, we do not adapt the
hybrid mesh to the topography, to perform a fair com-
parison with the semi-structured approach. However,
the adaptive procedure can also be exploited to locate
the degrees of freedom where they are really required
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(a) (b)

Figure 5: Meshes generated on Bolund hill: (a) standard semi-structured mesh and (b) hybrid mesh.

and reduce even more the total element count.

Regarding the number of elements and nodes of the
generated meshes, the hexahedral mesh in Figure 5(a)
is composed by 1407780 (1.41M) nodes and 1362756
(1.36M) elements. In contrast, the meshes in Fig-
ure 5(b) is composed by 268698 (0.27M) nodes and
767444 (0.77M) elements, from which 405680 (0.41M)
are prisms and 361764 (0.36M) tetrahedra. In partic-
ular, we obtain a mesh with half of the elements and
a fifth of the number of nodes but attaining the same
required resolution than in the structured approach.
Recall that the computational cost of a given simula-
tion depends on the number of nodes, since the nodes
determine the number of unknowns to solve. Thus, a
fifth of the number of nodes is a significant reduction of
the computational cost and of the size of the matrices
involved in the solvers, which have a dimension of the
order of the number of nodes. However, we have the
additional advantage of being able to adapt the mesh
to ensure that the element size on the surface is the
desired and to capture the curvature of the geometry.

The difference in the element count derives from the
flexibility of the new approach to attain the mesh sizes
prescribed by the user in the different regions. In con-
trast, the semi-structured approach extends the high-
resolution areas towards the rest of the domain, both
in the surface mesh and in the volume mesh when ex-
truding the boundary layer. It must be highlighted
again that, in applications with a dominant wind di-
rection and not introducing the Coriolis effect on the
RANS equations, the semi-structured mesh presents
a clear advantage, which is the alignment of the el-
ements with the flow direction. However, we are in-

terested on onshore problems featuring Coriolis, and
thus the combination of the effect of complex topo-
graphic scenarios and a wind direction that changes
according to the height reduces the advantages from
a semi-structured approach for our objectives. Thus,
in our application, without a unique wind direction,
the hybrid approach reduces to one fifth the degrees
of freedom of the simulation and simultaneously we
reduce the complexity of generating a different mesh
for each inflow direction.

Alternatively to the unstructured hybrid approach
presented in this work, an unstructured quadrilateral
surface mesh and an unstructured hexahedral mesh
could also be an alternative to the standard semi-
structured approach. However, the existence of ma-
ture Delaunay-based meshers such as Triangle [32] and
TetGen [41], has allowed us in this work to focus on
dealing with the input topography data, the geometry
re-parameterization, the adaptation process and the
boundary layer meshing. Together with the lack of a
unique wind direction, we have favored a fully unstruc-
tured triangle approach on the surface that is adapted
to the topography features, relying on existent mature
technology provided by Triangle. Regarding the vol-
ume mesh, we have exploited the vertical structure of
the SBL and generated first a prismatic region. Fi-
nally, we have generated an unstructured tetrahedaral
mesh to allow a size gradation in all the directions out
of the SBL, relying on the mature technology provided
by TetGen.
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Figure 6: (a) Badaia topography, and (b) adapted surface mesh.

(a) (b)

Figure 7: ABL hybrid mesh on Badaia topography: (a) overview and (b) close-up.

Figure 8: Velocity speedup with respect to a reference point upwind over Badaia topography.
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6.2 Badaia topography

In this section, we present the adapted mesh gener-
ated on the Badaia topographic scenario, Figure 6(a),
located in Spain. The main objective is to illustrate
both the adaptive surface technique and the hybrid
volume mesher in a real scenario. This topography
features a valley surrounded by several plateaus and
mountains with orographic steps up to 700 meters.
The minimum height of the topography is 388 meters
over the sea level, and the maximum 1098 meters. The
area of the target meshed domain is of 20x20km2, and
the top ceiling of the mesh is located at 2km over the
highest topographic point.

The surface meshing procedure generates a triangle
surface mesh with elements featuring edges of at most
75 meters, which are allowed to be refined up to 10
meters to capture the geometry curvature. The gen-
erated surface mesh is presented in Figure 6(b). The
initial mesh is composed by 41531 nodes and 82379
elements. The mesher performs 4 cycles of the refine-
ment procedure presented in Section 4.1. The final
surface mesh is composed by 62469 nodes and 124172
elements. After the adaptive procedure the obtained
mesh has a minimum elemental quality of 0.2, which is
improved up to 0.24 after performing the optimization
procedure presented in Section 4.2.

In Figure 7 two different slices of the volume mesh
are presented. The generated volumetric mesh is com-
posed by 2.2M nodes and 5.6M elements, from which
3.7M are prisms and 1.9M are tetrahedra. The mean
quality of the generated mesh is 0.84 and the mini-
mum is 0.08. After the mesh optimization, the min-
imum mesh quality is improved up to 0.11, whereas
the mean remains is 0.84. In Figure 8 we illustrate the
applicability of the generated meshes for simulation.
In particular, we illustrate the wind velocity speedup
with respect to a reference point upwind. The wind
inflow direction is from left to right of the domain.

Although out of the scope of this paper, in the fu-
ture we would like to perform an actual study of the
benefits of the topography adapted mesh on the solu-
tion of the ABL flow. The fact that the mesh can be
adapted to the topography may allow us to reduce the
degrees of freedom, augmenting the mesh size in large
flat regions, and increasing the resolution around the
features of the topography that require it.

7. CONCLUDING REMARKS AND
FUTURE WORK

In this work, we have presented a new meshing strat-
egy to simulate ABL flows on onshore topographical
scenarios. The first contribution is an adaptive proce-
dure to attain the desired mesh size on the topography
surface and to capture the curvature of the geome-

try. Since topographic geometries are discrete (point
clouds, contour lines or triangle meshes in contrast to
CAD geometries), to compute the required metrics to
perform the mesh adaptivity, a new approach to com-
pute local smooth parameterizations of the geometry
is presented. In particular, the geometry is locally ap-
proximated by a high-order polynomial of the desired
degree (by default 3) that allows to compute a local
continuous first and second order derivatives. Using
those derivatives, we compute the metric of the tan-
gent space and a curvature metric. These metrics al-
low us to refine the elements of the mesh to attain the
desired edge length of the surface mesh and to dis-
cretize the curvature of the geometry with the desired
accuracy.

The second contribution is the new hybrid volume
mesh generation procedure. On the first 10 − 20%
of the domain a prismatic mesh is generated to cap-
ture the Surface Boundary Layer flow. On the rest of
the domain, the flexibility of tetrahedra is exploited
to avoid extending the fine mesh on the interest re-
gion to the rest of the domain. The result is an hy-
brid mesh that resolves the Surface Boundary Layer
using prisms, and then discretizes the rest of the do-
main with the desired resolution using tetrahedra. The
tetrahedral elements allow imposing a smooth size
transition between the finer element size of the pris-
matic layer and the coarser element size desired in the
top planar ceiling.

To illustrate the advantages in terms of the number of
generated degrees of freedom, in Section 6.1 a stan-
dard semi-structured mesh is compared to the new
strategy. In addition, Section 6.2 illustrates the ap-
plicability of the mesher to discretize complex topo-
graphical scenarios producing valid meshes for simu-
lation. We discretize the Badaia topography with the
hybrid approach and we use the generated mesh to
perform a RANS simulation using the model presented
in [45, 10].

In the near future, we will perform a detailed analy-
sis of the advantages and disadvantages of the use of
an hybrid approach to simulate ABL flows against the
standard semi-structured approach, both in terms of
the simulation accuracy and the number of degrees of
freedom of the simulation. In addition, we would like
to study the possibility to use the topography adap-
tation procedure to reduce the degrees of freedom of
the mesh, by means of increasing the mesh size in flat
areas and only requiring a finer mesh size around the
topography features. Regarding the application of the
mesher for wind farm assessment, we would also like to
explore using the generated hybrid mesh to discretize
wind farms modeled with the actuator disc model with
a similar approach to the one presented in [9, 16].
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Rodŕıguez E. “An algebraic method for smooth-
ing surface triangulations on a local parametric
space.” Int. J. Numer. Meth. Eng., vol. 66, no. 4,
740–760, 2006

[20] Montenegro R., Montero G., Escobar J.M.,
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