
UPDATING AND RE-MESHING VIRTUALLY DECOMPOSED MODELS

Benoit Lecallard1, Christopher M. Tierney1, Trevor T. Robinson1, Cecil G. Armstrong1,
Declan C. Nolan1, Alexander E. Sansom2

1Queen’s University Belfast, Belfast, U.K. t.robinson@qub.ac.uk
2Rolls-Royce Plc, Alexander.Sansom@rolls-royce.com

ABSTRACT

Generating hexahedral meshes is often an expensive process, which limits the use of high-fidelity numerical simulation methods
for design. Hexahedral meshes can be generated by decomposing a geometric model into simpler meshable regions, but robustly
propagating design modifications to the decomposed representation makes any attempt to update the mesh very challenging. In this

paper, a virtual topology workflow enabling automatic generation of hex-dominant meshes is extended to propagate parametric
modifications and feature changes to the decomposition and resulting mesh. Geometric and topological modifications are identified
and linked to the decomposition through virtual topology relationships. Modified regions are localized and reasoning on the virtual
decomposition enables their definition and associated meshing strategy to be updated. Instead of starting the meshing process from
the beginning, only modified cells are re-meshed. This provides an efficient and automated method to propagate design changes
down to the analysis model.

Keywords: Automatic decomposition, mesh generation, mesh update, hexahedral, parametric models, virtual topology

1. INTRODUCTION

The increasing use of finite element analysis throughout a
product lifecycle is limited by the ability to generate

appropriate simulation models. This is especially true for the
simulation of complex events, such as crash or large
displacement analyses, where generating the hexahedral
(hex) elements preferred for this task is very user-intensive
work. Simulation-based design depends on the ability to
quickly generate analysis models for many design variations
to run an optimization procedure. This is incompatible with
the manual analysis set up required in a typical hex meshing

workflow. Analysis requirements are also prone to change,
especially within coupled multi-physics analyses where
analysis results from one domain dictate updates for another.
For example, if a model is deformed by wear or thermal
expansion and is used as an input for subsequent analysis
these changes must be reflected in the downstream analysis
model.

Many tools have been developed during the last decades in

an attempt to automate hex meshing with various results [1].
They include direct methods such as Whisker Weaving [2]
and Plastering [3], as well as indirect methods such as tet-
combination [4]. Decomposition-based methods partitioning
the design geometry into smaller sub-regions for which a

simple meshing strategy can be found are the most widely

used methods. These meshing strategies include mapping
[5], sub-mapping [6] and sweeping [7], where a quad mesh
of a source face is swept in order to generate 3D hex
elements. Even if these tools fail to tackle generic
geometries, they can be integrated in an incremental
decomposition workflow to significantly alleviate the
workload of generating meshes. Virtual topology-based
decomposition, coupled with cellular modelling for meshing

workflows, has shown promising results and flexibility [8]–
[10]. The benefits of using virtual topology (VT) for
generating meshes without altering the CAD model
definition were first presented by Sheffer et al. [11]. In the
context of this work, a cellular model is a decomposition of
space into cells of analysis significance. The interfaces in the
model are robustly captured and are cells in their own right
[12]. This structure means that the links between the
decomposed virtual representations and the design model

can be robustly maintained [13]. In addition, as a model is
decomposed for meshing, the cellular representation
maintains connections between the subset domains that
enable both the automation of downstream meshing and the
localization of modified cells after design changes.

After design changes, the mesh needs to be updated to
remain an accurate representation of the model. In the
Computer-Aided Design (CAD) environment, updating the

50

mailto:t.robinson@qub.ac.uk

design is straightforward, either by changing parameters
associated to the model or by adding/removing features in
the construction tree. However, applying the same design
modification to geometrically identical models that are
constructed with different feature orders may produce

unexpected differences that may be inadvertently
propagated to the analysis model.

Direct geometric editing (synchronous technology) is also
available, where the user can interactively manipulate
geometric entities without requiring access to the
construction tree, allowing modifications of the model
outside of the design environment. However, the analysis
model is often constructed in a separate Computer-Aided

Engineering (CAE) package, where such manipulations will
break the link to the original CAD model, and CAD-CAE
integration is a major bottleneck toward automation[14]. As
a result, the mesh cannot be as easily updated as the
construction tree and parameters are lost during the transfer
across packages. The user is often tasked to update the CAD
model before exporting it to the meshing environment where
many pre-processing activities, such as clean-up operations,

carried out to create the previous analysis model must be
repeated. Furthermore, most automated tools for hex-mesh
generation [2]–[4] do not offer the ability to efficiently
update the mesh and require the whole decomposition
process to be repeated. One challenge is that decomposition
tools are often used to partition the design model
geometrically to create a decomposed representation fit for
hex meshing. These geometric partitions usually break the

links between the design model and the decomposed
representation, meaning that even if design changes can be
identified there are no relationships that can be exploited in
order to robustly update the decomposition. The major
challenges to automatically updating a hex-dominant mesh
created from a decomposition via the approach proposed
herein are to:

 Identify the geometric and/or topological changes

resulting from a design update.

 Reflect design amendments on the analysis model

by exploiting the virtual topology relationships
stored when generating the initial decomposition.

 Update the decomposition used for meshing and

ensure it remains valid.

 Minimize the computational expense by re-using

as many existing elements as possible.

 Maintain mesh quality after update.

This work proposes to extend a virtual topology
decomposition workflow to address this problem, by using
an integrated cellular model to reflect parametric and feature
changes on the mesh. This paper first describes the virtual

topology framework used for automatic decomposition and
hex-dominant meshing. Then, handling feature and
parametric perturbations for re-meshing is presented. This is
done by first localizing the modifications, then updating the
analysis topology and finally updating the mesh locally. The
main contribution is the implementation of a cellular mesh
and interface management to enable mesh updates even

when the topology of the model is significantly altered.
Considerations on meshing strategies are presented to help
update the decomposition and the mesh.

2. RELATED WORK

Mesh update has been a topic of research for many years and
includes several domains such as mesh morphing, mesh

adaption and re-meshing. Mesh morphing [15] consists of
mapping an initial mesh onto a new geometry which is
similar to the initial geometry, either to account for the
model deformation, or to re-use an existing mesh on a
similar geometry (e.g. a design update). The mapping of
nodes requires knowledge of both the entities mapping
between the geometries and the node to entity associativity
in the original mesh. The mesh topology must remain
constant to ensure a correct mapping.

Mesh adaption [16] consists of modifying a mesh against
known quantities. It can be an iterative process to minimize
the simulation error while solving the computational
problem iteratively. Parametric modification in an
optimization loop can also drive mesh adaption procedures.
The mesh can be locally refined or coarsened, with or
without connectivity (or number of elements) modifications.
Sheffer and Üngör have proposed a dual representation using

both the boundary and a parametric representation to link
design modifications and mesh adaption procedures [17]. In
particular, the history of virtual operations applied for
simplification is retained and automatically mapped on the
updated design model before meshing. Mesh updating is
done by moving the elements to the new geometry, and then
adjusting the mesh quality by using techniques such as
whisker-sheet operations. Feature displacements have been

investigated recently by Shen et al. [18], using mesh
deformation and the mesh is refined using density fields
extracted from the initial mesh. However, adaption
approaches are limited to simple parametric perturbations, as
the mesh topology needs to be consistent to be mapped.

Parametric perturbations can induce topological
modifications on a model. To this extent, Van Der Meiden
and Bronsvoort have defined a method to relate the range of

parameters to topological entities, therefore identifying
critical parameters of interest [19]. Sun et al. have proposed
a method using virtual topology to deform a surface mesh in
the presence of simple topological perturbations [20].

Re-meshing is employed whenever mesh generation
methods need to be re-applied either locally or globally to
the model. For example, fully re-meshing a model can be
avoided after feature insertion if the feature is meshed with
new elements and connected to the existing mesh. Smit and

Bronsvoort have successfully implemented a cellular
modelling-based approach to tetrahedral re-meshing [21].
After capturing the feature differences between two models
and their interactions, all the valid original nodes are mapped
to the new model, and new elements are created to fill the
gaps. However, in the absence of any link or equivalence
between elements and geometric cells, all the nodes need to
be classified and processed for re-meshing, which can be

slow for very large meshes.

51

Figure 1. Virtual topology-based workflow for automatic decomposition and meshing.

In this paper, hex-dominant re-meshing is addressed using a
cellular representation of a virtually decomposed model.
Only the sub-regions that need to be modified to
accommodate the design change are identified and re-
meshed, while maintaining the constraints of a structured

mesh. This allows design variations to be automatically
propagated throughout a virtual topology workflow and
reflected on the final mesh (Figure 4).

3. VIRTUAL TOPOLOGY DECOMPOSITION
AND MESHING

This section describes a virtual topology-based workflow
that integrates various reasoners for automatic
decomposition and meshing (see Figure 1).

The process takes a CAD model as an input and has two
main outputs. The first is a topological description of the
decomposed model called analysis topology, contained in a

Common Data Structure (CDS). The second is a mesh in a
CAE environment that is exported to a neutral format file.
The original topology is first extracted from the CAD to the
CDS, and a series of virtual topology split operations are
applied to create the analysis topology. This analysis
topology contains the virtual decomposition and is linked to
the original design topology through virtual topology
relationships stored in the CDS. Once the model has been
virtually decomposed, a mesh can be automatically

generated by using the meshing recipe reasoner (section 3.4)
and the mesh reasoner (section 3.5). Virtual topology allows
more freedom for preparing a model for meshing and
provides much more flexibility since the actual geometry is
not modified. Instead of storing partitioning surfaces, only
the method to construct them is stored (along with virtual
geometry curves, curves that are not connected to the B-Rep
design model but exist in the CAD environment, see section

3.3) and passed to the meshing environment to generate the
mesh.

3.1 Design topology extraction to CDS

The role of the common data structure (CDS) is to convey
information between the different steps and packages
involved in the automated virtual workflow. It is based on an

external SQL relational database, similar to the one
presented by Tierney et al. [22], [23]. The relations relevant
to virtual topology decomposition and meshing are shown in
Figure 1. Other data that does not fit within the CDS is
transferred using neutral formats. For example, virtual

geometry can be transferred using STEP or Parasolid format.
Meshes can be transferred using formatted text files, such as
bulk data files that contain nodal information and element
connectivity. The CDS contains the links to connect these
various representations.

The CDS is initialized by querying all the entities contained
in the CAD model through a topology extraction tool (Figure
1). Each entity is assigned a unique identifier when added to

the database, which is linked to the name and/or tag attribute
from the CAD system. Geometric attributes such as
coordinates for vertices or mid-points for edges are also
stored to aid tracking entities. Higher dimension entities can
also be identified from their bounding entities.

The topological definition of the CAD model is extracted
and stored in a design topology relation, which is duplicated
in an analysis topology relation. Both topology relations

contain a cellular representation of the model, with each
topologic cell defined recursively from lower dimension
elements forming their boundaries, along with the relative
orientation between the bounded cell and its boundary.

To enable virtual topology manipulations, a virtual topology
relation stores the history of the virtual operations applied on
the design topology to create the decomposition in the
analysis topology. The virtual topology relation contains the

link between the virtual entities (subset or superset
depending on the virtual split or merge operation) and their
host entities.

3.2 Decomposition reasoners

Regions suitable for hex mesh generation are identified
using a sequence of decomposition reasoners within the
proposed virtual topology workflow. A decomposition
reasoner encapsulates an algorithm to identify regions
suitable for a specific meshing method (e.g. sweeping,
mapping, template…) in a generic way. Implementation

specific routines are handled outside of the reasoner, which

52

can be seen as a black box from the point of view of the
process. The input is a design model with its topology
extracted in the CDS. The output is splitting information
which is used by the virtual topology tool to partition the
domain, and a meshing strategy attribute specific to the

reasoner. The power of this virtual topology approach is that
multiple decomposition reasoners (sweep, multi-sweep, 3D
block, 2D block…) can be integrated seamlessly within one
workflow

All the geometric queries of the reasoners are made through
a VT translator tool, which uses information stored in the
CDS and the combination of the CAD and virtual geometry
to query the analysis topology model and not the design

model. Hence, the reasoner can operate on a model that has
been virtually decomposed beforehand. This ensures that
reasoners can be used one after another and in any order, but
also allows virtual defeaturing to be carried out before the
decomposition and not just as a final step before meshing.
This ability to operate in the presence of virtual topology is
critical for a robust analysis workflow.

After the reasoners have identified which region to extract,

the splitting information is created. This is done by
identifying which entities need to be partitioned, and what
existing entities can be used to do so. Necessary geometric
information such as points or curves to complete the
definition of a split are also created by the decomposition
reasoners.

3.3 Virtual Topology reasoners

Virtual topology uncouples the topological definition of a
model from the geometrical one. This enables virtual
generation of a meshed analysis model without altering the

design model. Two VT reasoners are used in this process.
The VT translator transfers geometric information between
the real CAD model and the virtually decomposed model in
the CDS. The VT tool manipulates topological
representations in the CDS to clean or decompose a model,
by applying operators as described in [8], [11]. These
operators ensure that the analysis topology remains valid
after topological manipulation, with the relative orientation

of the virtual entities and the modifications properly
recorded and updated in the CDS.

The VT translator processes the geometrical splitting
information from the decomposition reasoner to create in the
CAD environment all the curves required to define
partitioning faces. These curves are referred to as virtual
geometry, since they only exist as a layer of geometry
independent from the design model in the CAD
environment. Virtual geometry curves are used as an input

by the VT tool to virtually partition the model to create the
analysis topology. This analysis topology is linked to the
design topology by a series of VT relationships resulting
from the application of VT operators, stored in the CDS.

Virtual topology requires definition of virtual entities to
formalize the relationship between virtual entities and their
host entities (if any) [11]:

- Parasite entities: entities that did not exist in the original

topology but lie on an existing entity of higher

dimension (i.e. an edge lying on the face it splits or a

face that lies in the interior of a body).

- Subset entities: subsets of host entities that are split by

a parasite entity of lower dimension.

- Orphan entities: entity without host (e.g. an edge in the

interior of a body bounding only parasite faces).

A virtual split operation uses a parasite entity on a host entity
of higher dimension to create subset entities. For example in
Figure 2(a), a face f1 which is a bounded portion of a
geometric surface can be split by adding a parasite edge e1

which is a bounded portion of a curve. The parasite edge lies
on the host shape to divide it into two subset faces f2 and f3,
but a single surface definition remains.

A virtual merge operation on the other hand groups multiple
host entities into one by removing lower dimensional entities
common to the hosts at their interfaces. For example, in
Figure 2(b), a vertex v2 bounding only two edges can be
removed to generate one superset edge e4. A merge

operation is required to update a modified decomposition
since it enables the recombination of adjacent cells locally,
without having to undo the whole decomposition operation.
It can also be used to simplify and clean the model definition
to facilitate mesh generation.

Figure 2. (a) The face f1 is virtually split by inserting
the parasite edge e1, and (b) edges e2 and e3 are
merged into e4 by virtually removing v2. Red
entities are virtual geometry.

Virtual parasites, subsets and orphan edges are
superimposed on the CAD design model as virtual geometry.
All their links with the analysis model only exist in the CDS,
and their purpose is to provide geometric information that

does not exist in the original design model. They are created
by a decomposition reasoner and can be easily transferred
between packages using a neutral format such as STEP.
Once added in the CDS, they can be used to aid virtual
topology manipulations.

3.4 Meshing recipe reasoner

The meshing recipe reasoner is used to translate the different
meshing strategies identified by the decomposition

53

reasoners into compatible mesh controls for hex-dominant
mesh generation. The input is a CDS containing the analysis
topology of the decomposed model along with the meshing
strategy identified for each volume cell, and geometric
information, such as aspect ratios of regions and curve

lengths, previously extracted from the CAD. The reasoner
outputs optimized division numbers for every curve and
meshing methods for faces to the CDS.

Different decomposition reasoners can be applied to the
model which will result in different meshing strategies with
different priorities. The specific reasoners used in this work
sought to create an anisotropic hex meshing recipe which
was conformal throughout.

Sweeping strategies are converted into constraints on the
number of elements following the methods applied in [9].
Source faces of sweepable regions can either be paved or
mapped, while wall faces must be mapped meshed. Figure 3
shows how the meshing constraints propagate through the
model, and the resulting mesh. Soft or hard goals on division
numbers are applied on each edge of the model. A hard goal
ensures a fixed division number will be applied (e.g. number

of elements through thickness), while soft goals are
optimized to meet the constraints. Constraints are checked to
remove overly constraining mapping equalities. All the
necessary geometric information is contained in the CDS,
hence this reasoner is package independent.

Figure 3. Flow of meshing constraints and
associated mesh.

The LPSolve [24] package is used to optimize each
individual number of elements on curves, by implementing
a revised simplex algorithm. As a result, the mesh is fully
constrained, which ensures order independence during the
meshing step, and guarantees a conformal mesh will be
obtained at interfaces.

3.5 Mesh reasoner

Once the meshing recipe has been generated, the mesh can
be generated in a CAE environment using the meshing

reasoner. The input to the mesh reasoner is the CAD model
and the CDS containing the meshing recipe. The output is a
conformal mesh.

The virtual partitioning surfaces are explicitly rebuilt from
the virtual geometry and used to split the geometry of the
model, hence becoming interfaces between sub-regions.
Depending on the package used, the model is transferred to
the meshing environment before or after the geometric

decomposition which will create all the analysis topology
entities. Mesh densities contained in the meshing recipe are
applied on each curve.

All the interfaces are checked and meshed first to ensure a
conformal mesh is obtained. The 2D surface meshes of all

the interfaces are stored in a common neutral format file,
with elements grouped by interface identifiers. This step is
required to enable mesh manipulation later, but it also offers
the possibility of the 3D meshes being generated on the
individual cells in parallel. All the source faces of sweepable
regions are meshed first, and hex elements are created by
sweeping. Residual regions, where there is no known hex-
meshing strategy identified by the reasoners, are tet-meshed

at the end, after a layer of pyramid elements has been
inserted to conform to the quad mesh of the interfaces. If the
decomposition reasoners have identified hex-meshing
strategies other than sweeping, the relevant meshing
algorithms can be applied by the meshing reasoner.

The mesh is then exported in a neutral format file such as a
Nastran input deck. This format enables the mesh to be
transferred into different meshing packages, and to be edited

simply by editing the mesh file.

3.6 Integrated workflow

The choice and sequence of decomposition reasoner to apply
is left to the user, while pre-defined workflows can be
identified for specific classes of geometries. This sequence
will define which meshing methods will be used, since the
same region could be identified by different reasoners for
different hex-meshing methods. An example of a virtual
decomposition workflow for automatic meshing is shown in
Figure 1. It includes a thin-sheet decomposition reasoner for

identifying thin regions which can be sweep-meshed through
their thickness and a long-slender decomposition reasoner
for identifying regions with one large dimension suitable for
sweeping. Models of thin-walled components are suitable
for thin-sheet extraction, where regions with one small
dimension compared to the other two offer a simple sweep-
meshing strategy [25]. Pairs of large parallel faces are
discretized and imprinted one onto another in order to

calculate their intersection in the parametric space. The
result is then projected back on the boundary representation
to identify appropriate partitioning geometry, which will be
used to create the virtual geometry and the virtual split
operations for sweep meshing through the thickness. This
integrated virtual topology workflow effectively
demonstrates multi-sweeping in thin-walled components,
with explicit interfaces in the decomposed cellular model
facilitating multi-directional sweeping.

Truss-like structures, or thin-walled structures with their thin
sheet removed, feature a lot of long-slender regions. A
similar approach to Sun’s method [26] is used to extract such
regions. Long edges with a large aspect ratio relative to the
width of the faces they bound are identified and grouped into
loops. These loops are then used to find loops of mappable
faces, which verify the conditions for sweep meshing. Cap
faces are identified as a loop of virtual edges. There may also

be an offset applied if the geometry is prone to the existence
of skewed elements. This virtual geometry is then used to
help virtually split the analysis model.

54

Figure 4. Workflow for updating the decomposition and mesh after design change.

Region attributes such as whether a region is thin-sheet or
long-slender are stored in the mesh recipe relation of the
CDS. This relation, along with the cellular model of the
analysis topology, informs the reasoner tools and enables
automatic identification of the meshing recipe. The meshing
recipe is then stored in the CDS, describing face and edge
meshing constraints in terms of size or number of elements.

Other decomposition reasoners have also been developed to

identify simple sweepable regions or to decompose models
into axisymmetric regions and repeated cyclic sectors,
providing a minimal meshable representation [27].

4. UPDATING THE DECOMPOSITION

Figure 4 shows how the virtual workflow described in the
previous section can be extended to handle design
modifications to update the decomposition and ultimately
the mesh. This section describes first how design
modifications are identified by comparing the new design
with the one stored in the CDS. Then, the constraints

stemming from the hex-meshing strategies assigned to
regions guide the update of the virtual geometry and the
analysis topology. This reasoner takes a CAD model with a
design change and the CDS associated with the previous
version of the design as an input, and outputs an updated
CDS for the new design (with updated virtual geometry),
which can be used to update the mesh.

Modifications of the design can have various effects on the

boundary representation of a model, especially for
decomposed models where the number of boundary entities
is increased. Figure 5 shows an example of a model
decomposed for sweep-meshing undergoing various design
modifications. Any design changes on a model can be
classified into the following types:

- Topology only modifications, where the boundary

representation is modified but not the shape. For

example, introducing imprints on a face subdivides the

face but the underlying surface geometry remains the

same.

- Geometric only modifications, e.g. Figure 5(c) where

only the geometry of the design is modified by

changing the part length. All topology remains

unchanged.
- Geometry and topology modifications, e.g. where new

features, such as bosses, fillets etc. are added or

removed from a model, Figure 5 (d), or where a

parametric perturbation results in an additional

topology change.

In order to update the decomposition, it is necessary to
propagate the aforementioned modifications to the analysis
topology. More specifically, the parasite entities used to

virtually decompose the model must be modified (if
necessary) alongside the virtual geometry in order to enable
the mesh to be updated. In this work, design modifications
can affect:

- Only the analysis model geometry. In this case it is

necessary to determine if the virtual geometry needs to

be updated, e.g. in Figure 5 (c) where the change in part

length L requires the invalid virtual geometry (dashed

red lines) to be morphed to the new model boundary.
- Both the analysis topology and virtual geometry, e.g.

feature modifications will trigger geometric and

topological modifications to propagate to the analysis

model, such as removing the fillet in Figure 5 (d).

If the parametric perturbation has modified the design
topology, then the analysis topology is also modified.
However, it is possible the topological connectivity of
parasite entities can be modified without changing the design
topology. For example, the thickness t of the bottom pad is
increased in Figure 5 (e), resulting in parasite entities whose

configuration is now altered. The two parasite faces were
disconnected in the original decomposition. However, in the
updated decomposition, Figure 5 (e), they now share a
common edge (in dashed bold). These changes can be subtle
but will have a profound impact on updating the mappings
required to update the mesh automatically.

55

Figure 5. (a) initial decomposition, (b) corresponding meshing strategies, (c) geometric only change, (d)
topological modification and (e) only the analysis topology is modified, one edge has an invalid projection.

Figure 6. Analysis topology before and after design modification for various configurations.

56

Figure 6 shows procedures used in this work to determine
the classification for the various geometric and topological
configurations for decomposition update that can arise upon
design modification (virtual faces shown in dark grey for
visualization). This structure has been determined to be the

most suitable for the mesh types being used in this paper,
however a different structure or ordering may be better
suited to different models, or the requirements of different
analysts. Although only design changes involving
geometrical modifications are used to illustrate the
workflow, topological only modifications are handled in the
same way. Some configurations are easy to update, e.g. for
a purely geometric update where both the boundary topology

and virtual geometry have not changed. However, the top
right configuration is very challenging to update, as the
bottom host face on which the boss edges were projected has
become two unconnected faces due to the extension of the
pocket. This is related to the persistent naming problem [28],
where parametric modifications trigger topology changes
that modify the underlying geometry.

The workflow in Figure 9 describes the method used to

identify the aforementioned design changes and to update a
virtually decomposed model after such design changes.
Topological and geometrical modifications are identified
from the CAD model. After the design modifications have
been identified at the design topology level, analysis model
modifications need to be identified. This is done by checking
if the virtual decomposition history can be mapped on the
new design, by checking if all the virtual splitting entities

still lie within their hosts. Mapping constraints inferred from
hex-meshing strategies are checked to ensure they are still
valid and can inform the update of projected virtual
geometry. Finally, all the candidate bodies for re-meshing
are identified.

4.1 Tracking parametric and feature
modifications

The CDS contains a representation of both the analysis
topology and the original design topology independently
from the CAD environment and also stores the virtual
topology relationships required to transform one into the
other. The original topology in the CDS is used to identify

and classify both geometric and topological modifications
after the CAD model has been updated. The VT relationships
provide the link to map the changes in design to the analysis
topology.

This section will describe how changes to the model in the
CAD environment are propagated to the original topology in
the CDS and then to the analysis topology describing the
decomposition. The key point is that all entities in the

original topology and analysis topology are linked to those
in the CAD/CAE environment through two different
attributes:

1) Name attributes attached to entities in the CAD
environment. Any unique identifier offered by the CAD
system (name, tag, color ...) can be used, provided that is can
be assigned to an entity, queried and will persist between
different modelling sessions.

2) Geometric attributes defining unique geometric
identifiers of entities in the CAD environment, e.g. the center
point of the edges, as well as the coordinates of its end
vertices.

Both attributes are necessary, as structured interrogation of

them allows the geometric and topological modifications to
the design to be determined as outlined in the following
sections. Once modified entities have been identified, each
entity is mapped to an entity in the analysis topology through
a series of VT relationships and topological queries. This
enables the modifications to be identified and the entities of
the analysis topology to be classified.

This classification is done from lower dimension entities to

higher dimension ones, since any modification on the
boundaries of an entity will propagate to the entity, while an
entity can be modified without having its boundaries
modified. While some CAD packages offer the ability to
attach name attributes to vertices, other packages have not
implemented this capability. Coordinates used as geometric
attributes are not enough to classify vertices in the absence
of name attribute, as a design change can move a vertex to

the location of a different vertex that is also modified.
However, the matching of the geometric attribute for edges
includes checking the coordinates of both the mid-point and
the bounding vertices. Therefore, the edge classification is
based on the vertex classification, but not only as the mid-
point factors as well. In this implementation, edges are
classified first, so that vertex classification can be guided by
the bounded edges classification.

Figure 7. a) Original decomposition, b) the
decomposition is not updated after a fillet is added,
c) original entities classification, d) analysis
entities classification, e) open design loops are
closed and new virtual entities are identified, f)
open analysis loops are closed and g) updated
decomposition.

57

4.1.1 Edge classification

After parametric or feature modification, all the original
edge entities in the CAD model are compared to the ones
stored in the CDS and classified as follows:

- Original edge: If both the name and geometric

attributes match, then it is assumed that the edge has not

been modified (black edges Figure 7(c)).
- Modified edges: if the name is matched but not the

geometric attributes, it is assumed that the edge has

moved and is modified (purple edges in Figure 7(c)).

- New edges: Edge from the CAD whose name is not

matched in the CDS is assumed to be a new edge (red

edges in Figure 7(c)).
- Deprecated edges: Edges from the design topology in

the CDS not matched to entities in the updated CAD

model are assumed to be deprecated (edge e1 in Figure

7(a)).

After adding the fillet, the two faces bounded by e1 are
bounded by two new edges, but some CAD systems will

create just one new edge and reuse e1 as the name attribute
for the other. In previous workflows, this would prevent the
automatic update of analysis models. Since e1 was bounding
two faces in the original model that are not connected in the
updated model, e1 must be classified as deprecated to
remove any variability in the name attribute assignment.

New edges in the CAD model are grouped by the faces they
bound, by querying the CAD model topology. This will be

used later to simplify the identification of candidate for
updating face topologies. Face tags that do not exist in the
database help identify new CAD faces.

At this stage in the process, only the modifications to the
design model have been identified. If only the geometric
attributes of edges have changed, the geometry has changed
and is updated as described in section 4.2. Otherwise, new
or missing edges indicates that the original topology has

changed. Further classification is required to identify
modified, new and deprecated parasite entities in order to
update the analysis topology.

Analysis topology modifications are inferred by their
connectivity with original entities. For example in Figure 7,
the parasite face pf1 connected to the modified edge e2 is
classified as modified, and the mesh-mapping constraint on
pf1 indicates that the opposing edge pe1 of the edge e2 is

also modified (purple in Figure 7(d)). This enables meshing
constraints to be easily propagated to the updated topology.

4.1.2 Vertex classification

To accommodate the absence of name identifier on vertices
in the geometric kernel used in this work, the classification
of vertices is helped by the classification of the edges they
bound. Vertices are classified as follow:

- Original vertex: vertices that bound original edges, or

modified edges if there are matching geometric

attributes and topological connectivity (vertex v2 in

Figure 7(a)).

- Modified vertex: vertex bounding modified edges with

consistent topological connectivity.

- New vertex: vertices bounding a new edge that are not

original or modified vertices (vertex v3 in Figure 7(c)).

- Deprecated vertex: vertices bounding deprecated edges

or modified edges (vertex v1 in Figure 7(a)).

For each deprecated original edge, the list of edges
connected to its bounding vertices is queried from the CDS.
If these edges still exist and share the vertex in the new CAD

design, the vertex still exists, otherwise it is deprecated. In
this last case, a new vertex is created for each connected
edge, and connected edges are stored along with their
relationship to the old and new vertex to update the design
topology at a later stage.

Analysis topology edges connected to the vertex are also
checked and their relationship is stored. In the case where
the vertex was bounding a parasite or orphan edge aligned

with the sweep direction of a region, the eventual parasite or
orphan edge connected is identified as deprecated. Its end
vertices are stored to attempt to identify any new parasite
edges. This is because these edges link the source and target
faces of swept regions, and topological modification on one
face can help identify analysis topology modification on the
other face. For example, the orphan edge oe1 in Figure 7(a)
is classified as deprecated since the vertex v1 is deprecated,

hence the parasite edges lying on face f2 are classified as
modified.

4.1.3 Face classification

Topologically modified faces in both the original design and
analysis topology are identified based on their bounding
entities, since their geometric definition is more expensive
to query. Identification of the geometric modifications of
faces is kept for a later stage of the process, as it will be used
to assess the validity of meshing strategies. Faces are
classified as follows:

- Original topology faces: Faces with all their bounding

edges classified as original or modified.

- Modified topology faces: Faces bounded by deprecated

edges or disconnected modified edges (face f3 in Figure

7(a)). Hence the boundary definition is incomplete in

the CDS and will need to be updated.

- New faces: Face with a new name attribute, bounded by

new edges. These are identified after updating the

original topology in the CDS.

- Deprecated faces: Faces with less than two edges not

deprecated.

Faces with an incomplete boundary definition are marked as

open loops and stored as a sequence of edges, with all
vertices bounding only one edge marked as open ends. Open
loops appear when an original or a virtual edge is deprecated.
Two modified edges bounded by a common deprecated
vertex also identify an open loop, and the vertex is stored as
a double open-end until it is replaced by the new vertices
generated at each end of the modified edges. Furthermore, a
face that has all its bounding edges deprecated is also

considered deprecated. However, new parasite faces cannot
be identified at this stage since the new parasite edges will

58

be identified when updating the design topology (see section
4.2).

New faces bounded by an existing or modified edge
indicates that the face has been subdivided as a result of the
design modification, similar to the persistent naming

problem described previously (top right case in Figure 6). By
looking at the classification of the edges that were connected
to the edge that is matched, the other sub-faces can be
identified, and split edges are re-classified to account for the
fact that their bounding entities have been modified. Faces
that are merged as a result of parametric modification are
processed like other topology-modified faces, and the
boundary entities of the deprecated face are used as

candidates to complete the boundary definition of the
modified one. The example in Figure 8 features both split
and merged configurations where f1 and f3 are merged while
f2 becomes two faces.

Figure 8. Face definition can be split or merged by
parametric modifications.

4.1.4 Body classification

Original body classification is derived from the
classification of its bounding entities. Analysis body
classification is based on the virtual topology relationship

along with original bodies and meshing strategies checks
described in section 4.4. They are classified as follow:

- Original body: Bodies with all their faces, edges and

vertices classified as original.

- Modified body: Analysis bodies bounded by modified

entities that can be re-meshed.

- Modified topology body: body with deprecated faces

- Invalid body: Modified body with an invalid meshing

strategy.

- New body: New original body with a name attribute

not referenced in the CDS.

- Deprecated body: Bodies with all their bounding

entities removed.

Modified volume subsets in the analysis topology can be
preliminarily identified from the open loop faces in their
boundaries. Further identification is done during the update
of the analysis topology. Invalid bodies describe a set of

modified bodies for which the meshing strategy has become
invalid and is identified at a later stage (see section 4.4).
These bodies are hence deprecated in the decomposition and
will be merged to roll back the decomposition, enabling a
local decomposition update to be performed if necessary.

4.2 Original topology update

Once all the entities in the original topology have been
classified, they can be updated in the CDS to match the new
design contained in the CAD model, according to Figure 9.

Deprecated and new entities in the CAD model indicate that
the design topology has been modified. In that case, all the

deprecated entities are removed from the CDS. Deprecated
end vertices are matched against existing vertices, and a new
vertex entity is created if no valid vertex is found.
Bounding/bounded relationships and relative orientations
are updated in the original topology relation. New edges and
their vertices that are not matched by any existing vertex are
added in the entity relation, and the bounding/bounded
relation between edges and vertices is added to both
topology relations.

In the case where all the entities are matched, without any
deprecated or new entities, only the geometry has changed.
The design topology can be updated by simply updating the
geometrical attributes in the CDS. Mid-points of the
modified original edges are updated in the entity relation of
the CDS, along with the coordinates of modified vertices.
Updating the topology before the geometry attributes
enables new entities to be sorted and avoids having the same

geometric attribute for multiple entities.

At this point, only the edges and vertices of the design
topology are updated. Edges and vertices of the analysis
topology need to be updated (in the next section) before
updating the original face topology, since analysis topology
faces are updated simultaneously with the original faces. The
reason is that some new virtual edges can be identified when
closing loop of edges on the face (see section 4.3.2).

Figure 9. Geometry and topology update
workflow.

59

4.3 Virtual geometry and analysis topology
update

The next step after the design modifications have been
identified and classified is to update the virtual geometry,
and the topological connectivity of modified entities in the
analysis topology, within the CDS. Deprecated virtual
geometry vertices and edges are removed from the
topological description.

4.3.1 Virtual geometry update

Modified original edges in the analysis topology have

already been updated when updating the design topology.
Here, the virtual geometry subset and parasite edges are
updated by querying the entities that have been modified and
propagating the changes to the host entities on which they
rely.

In situations where parasite edges have been modified their
virtual geometry needs to be updated. If a parasite edge is
bounded by a vertex in the original topology, then a one-way

projection is sufficient to capture the update virtual
geometry. End vertices which were projected to create
parasite edges need to be re-projected, e.g. in Figure 10(a),
vertices A and B are created by projecting existing vertices
to the original face f1 and edge e1 respectively.

A more complicated scenario arises when a modified
parasite/orphan edge is bounded by two parasite vertices. In
Figure 10(b), which corresponds to the model in Figure 14,

the vertices C and D are the result of the reciprocal projection
between the original edges e2 and e3, hence a two-way
projection is required. Point containment and angles are used
to check whether the projection has succeeded, and the pair
of vertices are stored to identify new potential parasite or
orphan entities. If the projection has failed, parasite faces
bounding the parasite edges bounded by the vertices are
classified as deprecated, and the connected bodies become
invalid.

Figure 10. Projection of parasite vertices.

All the parasite vertices lying on modified edges and faces
are also re-projected in order to update their coordinates.
This checks the validity of subset edges and faces. Virtual
geometry is used to assess the point containment of parasite
vertices splitting parasite edges. Parasite face validity is
inferred from the validity of their boundary entities.

4.3.2 Modified face topology update

At this stage, all the necessary information is available to
update the topology of faces with an incomplete boundary
definition or open loops. Design topology and analysis
topology faces are updated at the same time, as updating the
design topology to match the CAD topology will guide the

update of the analysis topology. Suitable candidates to close
open loops in the design topology are found in the list of new
boundary edges in the updated design. Candidates for the
original and parasite loops of the analysis topology include
new boundary edges and new virtual geometry edges. Subset
faces are updated using the relationships previously
identified between edges and their bounded faces.

Gaps in open loops are filled iteratively by adding candidate
edges at the open-end vertices and updating the open end

until another open end is found. The process terminates
when there are no more open ends, and all the edges belong
to closed loops. Since this method can handle several
disconnected gaps in the boundary definition of the loop,
both inner and outer loops can be processed. In particular,
the outer loop can absorb a previous inner loop if a feature
on the face is moved to its boundary (see Figure 16 for
example, where the rod is moved to the boundary of the

middle rib).

In the case of analysis topology, mapping information from
the attached meshing strategy is used to identify matching
loops between source and target faces, and identify what
entities can be projected to complete the opposite loops. This
highlights the importance of the traceability between design
topology, analysis topology and meshing attributes. For
example, if a new edge is added in the loop of a source face

for a thin-sheet region, this edge can be projected to identify
a new parasite edge on the target face (Figure 7(e)). If the
projection succeeds, then a parasite face is created, otherwise
the thin-sheet meshing strategy needs to be reassessed.

Once all the open loops have been closed (Figure 7(f)),
leftover virtual geometry entities are traversed to identify the
smallest loops and infer new parasite faces. The analysis
bodies can then be updated, and a valid topological

representation of the analysis model is obtained (Figure
7(g)).

4.4 Updating meshing strategies

Since the main objective of the decomposition is to identify
meshing strategies for hex meshing, checks are implemented
after the analysis topology update to make sure the model
can still be meshed automatically. Angles are checked to
make sure no skew elements will be introduced. Wall faces
of swept regions, such as face f3 in Figure 12(a), also need
to remain mappable for the sweep mesh generation to be

successful. The CDS contains the geometrical and
topological information to perform these tests.

If the hex meshing strategy becomes invalid, the body is
classified as residual and connected residual regions are
merged into a single superset. Since virtual topology is used
for the decomposition, merging is done by altering entity
connectivity and orientation in the analysis topology
contained in the CDS, as described in [8]. Merging retains

60

all the correct imprints from other neighbor cells that would
be lost by undoing the split operations, hence the meshing
attributes of the neighbor cells remain valid. In Figure 11(a),
a plate with two opposite bosses is decomposed into a thin-
sheet and two general sweepable regions. After parametric

modifications, the two blocks are merged into a single
residual region while the thin-sheet strategy of the plate
remains valid, Figure 11(b).

Figure 11: 2 volume cells are merged into one
residual region after parametric perturbation.

After a valid analysis topology has been recovered,
reasoning tools for decomposition are ‘locally’ used to
recover deprecated meshing strategies or process new
residual regions. In the case where a region had a previous
hex-meshing strategy that has been identified as invalid, the

reasoner related to this particular meshing strategy is used
first. This also enables to re-use information provided by
tools external to the framework, such as face-pair
information. In Figure 12(a-b), a plate with a boss is
decomposed into a thin-sheet and a general sweepable
region. Adding a fillet to a bounding edge of the source face
of the thin sheet makes the sweeping strategy invalid as f3 is
not mappable anymore, Figure 12 (c). The face pair f1-f2

initially used to identify the thin-sheet region is re-used to
identify a thin-sheet and a new residual region, Figure 12 (d).
The long-slender reasoner is automatically applied to
classify this residual as sweepable, and the model is once
again fully hex-meshable Figure 12 (e-f).

Figure 12. Thin-sheet strategy made invalid by a
fillet insertion is recovered, and a new residual is
processed to recover a fully hex-meshed model.

Alternatively, residual regions may become eligible for a
hex-meshing strategy after a design change and can be re-
assessed. In the case where several invalid bodies have been
grouped in a single residual superset, the sequence of
reasoners used to decompose the original design model can

be re-used on the updated design. This ability to localize
changes reduces the rework required to generate a valid
analysis decomposition.

5. UPDATING THE MESH

Since all the modification have been localized, the mesh can
be updated only where necessary, thus significantly reducing
the expense of re-meshing. The original mesh was created
from a decomposed model; hence every volume cell in the
analysis topology is linked to a collection of mesh elements.
Therefore, only the elements associated to a modified

volume cells need to be altered. This collection of elements
is referred to as a mesh collector. Upon first generation, all
the interface meshes between sub-regions are stored in a
separate mesh file, allowing interface information to be
maintained when locally modifying the mesh. Management
of interfaces in this manner also provides the ability to
parallelize the meshing and re-meshing processes. Figure 13

shows an overview of the re-meshing process. Only the

modified sub-regions are exported to the meshing
environment, and a meshing recipe is automatically
identified, taking into consideration constraints from the
neighboring meshes that are not modified. Finally, the
deprecated elements are replaced by the new ones directly in
the input deck file of the solver, hence there is no need to
load the whole mesh.

5.1 Meshing recipe update

The meshing recipe is updated to inform the re-meshing
process of the modified regions. In simple cases with small

deformations, the same meshing recipe can be reused.
However, large modifications require the meshing division
numbers and constraints to be adapted to the new geometry
by locally updating the meshing recipe. To ensure
compatibility with the rest of the mesh, the original recipe is
interrogated to extract the controls at the interfaces with the
modified regions. A new integer programming problem is
created, using the number of elements division on interface

curves as fixed constraints. Meshing constraints directing
the flow of elements are recovered from the CDS and new
constraints are added. The problem is solved using LPSolve
[24] as before, and the resulting division numbers are used
to update the meshing recipe. If no feasible solution can be
found then the constraints are relaxed where possible, or a
larger portion of the model needs to be re-meshed.
Alternatively, further decomposition can be carried out on

the modified volume cells in order to create the necessary
transition zones to remove over constraints.

61

Figure 13. Local re-meshing workflow. Only the modified sub-regions are extracted from the virtual
decomposition and re-meshed in the meshing environment, after the meshing recipe is locally updated and
the interface nodes are recovered. Then the new mesh is re-assembled in the main mesh file

5.2 Local body extraction

Efficient re-meshing of a modified region is achieved by
transferring only the modified regions to the meshing

environment. This implies that any sub region can be
geometrically extracted from the virtual decomposition in
the analysis without having to decompose the whole model.
This is possible through the robust connections that exist
between the analysis topology and the geometric definitions
in the CAD and CAE environments. To achieve this, all the
interface entities can be identified from the analysis topology
relation in the CDS. These parasite faces are created,
grouped into connected sets and sewed together to make

them usable for CAD geometry split. The result can then be
extracted and exported, before the split is undone and the
cutting faces deleted, to keep the CAD design model
unaltered. Geometric modifications are only required for the
mesh generation. The residual region in Figure 14 (c) can be
extracted without having to remove thin-sheet and long
slender regions first, with all the appropriate imprints from
neighboring regions.

Figure 14. (a) virtually decomposed model, (b)
parasite faces of the residual regions created and
sewed, and (c) extracted residual with imprints.

5.3 Meshing sub-regions

All the nodes lying on the interfaces between the sub-region
being re-meshed and the rest of the analysis model are
recovered from the mesh files of the interfaces. These nodes

62

are imported into the meshing environment as frozen (locked
in space) mesh points and associated with the corresponding
face geometry in order to rebuild the surface mesh of the
interface. The labels of interface nodes and elements are then
updated to match the original mesh labelling. This ensures

that the interface nodes will not be modified by the 3D
meshing algorithm and that the new elements can be
connected to the unmodified part of the analysis model
mesh. If the re-meshing involves several connected bodies,
all the new interface nodes generated will be added to the
interface mesh file. Any deprecated nodes and elements are
removed.

After the local mesh controls have been applied from the

meshing recipe, the 3D elements are generated by the
meshing reasoner described in section 2.2, and a mesh file
containing all the new mesh for the concerned subsets is
exported as a neutral mesh file. Nodes and elements indexing
are automatically managed by setting the start index as the
largest value in the current mesh file to ensure compatibility
with the existing mesh and conformity at the interface.

5.4 Mesh manipulations

After the modified bodies have been re-meshed, the main
mesh file needs to be updated. Since all the elements are

grouped by sub-region into mesh collectors, the neutral mesh
file can be re-written to include new nodes and elements.
The updated mesh file is first created by copying the headers
until the section containing the nodes is reached. Nodes are
read and copied to the new file, removing deprecated nodes
and updating the modified ones. All the new nodes are
inserted at the end. Then mesh collectors of each of the
bodies are transferred, with elements and their nodal

connectivity replaced in the case where bodies are re-
meshed. New collectors are copied from the mesh file
containing new subset meshes, and finally the material
properties section is updated and copied.

RESULTS AND DISCUSSION

The proposed method is run automatically on a large number
of test models to ensure that the decomposition and meshing
update can handle many configurations. Figure 15 shows the
resulting meshes after a design change on a L-shaped
bracket. Modifications to the L-shaped bracket include

parametric changes by modifying wall thicknesses, and more
advanced topological changes by adding fillets etc. to the
model. The initial hex mesh in Figure 15 (a) is automatically
updated to fully conforming hex meshes after all design
modifications. In particular, thin-sheet decompositions are
updated without having to interrogate the face pairs again,
which is a costly part of the initial process.

The model in Figure 16 is taken from [21] in order to assess

the performance of the method presented here on a complex
design modification. The model is automatically
decomposed in 12 seconds, and the meshing requires 16
seconds. After perturbation of the parameter ‘d’ in Figure
16(c), the analysis topology and virtual geometry are
updated in 3.8 seconds, and the model is re-meshed in 11
seconds, recovering a full hex mesh. This corresponds to a

47% gain of time compared to running the automatic
meshing procedure form the beginning.

Figure 15. L-bracket re-meshed after various
design modifications.

Figure 16. Re-meshing all hex model. (a) Virtually
decomposed model, (b) all-hex mesh, (c)
parameter d is increased, and (d) updated mesh.

63

Figure 17. Automatic meshing and re-meshing of a rib model. (a) Original design, (b) decomposed analysis
topology, (c) equivalent geometric decomposition, (d) interfaces are meshed first, (e) resulting mesh, (f) design
modification with topological changes, (g) updated analysis topology, (h) modified cell extraction, (i) updated
interfaces meshes and interfaces nodes import, (j) re-meshed cell and (k) updated mesh.

While the proposed method offers significant time reduction

compared to a process involving manual decomposition and
meshing for large models, the re-meshing process is not as
beneficial for small analysis models, where a design
modification can require re-meshing of most of the sub-
regions.

An example of a larger model is given in Figure 17.

Successive reasoners are used to decompose the model
within 2 minutes (on a windows workstation with a 3.7 GHz
Intel Xeon E5-1630 CPU with 32GB RAM) in Figure 17(b),
and the geometric decomposition is generated in 1 minute,
Figure 17(c). The mesh is automatically generated within 5
minutes in Figure 17(e), with 235,000 hexahedra and 78,000

64

tetrahedra. The interface mesh file (Figure 17(d)), contains
19,800 quad elements allowing individual manipulation of
each of the 174 meshed sub-regions. After changing the
design by removing a hole and its protrusion near the leading
edge, the virtual decomposition is updated in 3.5 seconds

(Figure 17(g)), and the model is locally re-meshed (Figure
17(h-k)) in 19.4 seconds. 7850 elements of the previous
mesh are replaced by 2430 new hexes. The normal re-
meshing in the CAE environment for this modification takes
approximately 6 minutes, which is only for re-meshing. This
does not include the manual time required to update the
decomposition and link it to the meshed model.

A critical scenario for this approach arise when an original

entity hosting many subsets is modified. In Figure 18, all the
projections need to be updated to ensure they are still valid
after perturbation of the bottom face; hence the modification
propagate to a large portion of the analysis model. Although
applying a front propagation technique that stops once the
modified subsets have been updated is future work, the
current implementation still outperforms any manual
intervention.

Figure 18. All the projection must be checked after
the bottom face is modified.

In the event of rigid body motion, the whole decomposition
is modified. In the absence of topological modification, the
analysis model is easily updated. However, all bodies are
modified, hence the model needs to be fully re-meshed in the
current implementation. This could be easily handled by any
mesh deformation algorithm in future work.

One important challenge when re-meshing is to ensure a
good quality mesh will be re-generated, as moving features

can create small faces that will drive down the size of
elements and increase computation time. In Figure 19,
virtual geometry is moved in close proximity to original
entities. Detection of close entities is carried out using the
medial axis while taking into account the virtual geometry,
since the proximity is a result of the decomposition. This
information will be used in future work to decide merging
operations and define whether topological updates are
required to the parasite topologies.

Figure 19. Medial axis (in blue) on thin sheet source
and target faces to identify close entities.

Whilst the automated workflow in this paper has been

demonstrated around the use of thin-sheet and long-slender
decomposition reasoners, the same process is valid for any
decomposition reasoner that introduces meshing strategy
which creates mapping constraints between entities. For
example, if a reasoner identifying regions suitable for
transfinite meshing methods were applied, the mapping
between opposite pairs of faces and edges would help to
propagate the design modification. The reason is that

meshing constraints are used to guide the update of the
decomposition, and the proposed approach is capable of
automatically updating these meshing attributes to match
design modifications.

Figure 20. Manually defined block can be updated.
(a) original model, (b) sweepable blocks defined
manually, (c) automatic mesh, (d) parametric
modification, (e) automatically updated
decomposition and (f) updated mesh.

Virtual block decomposition defined manually can also be
updated if meshing strategies have also been defined by the
user (Figure 20). Limiting the update to only those blocks
that have been modified provides analysts with the assurance

they will not have to perform a block decomposition for all

65

subsequent design changes. This enables an analyst to focus
only on the regions of interest that have been modified. This
is important in the context of large analysis models where a
manual block decomposition could be performed on a
modified region with all interfaces, meshing constraints and

re-meshing automatically handled by the work presented
here.

The identification of modified regions relies on the postulate
that all the splitting entities connectivity can be traced back
to original entities, hence they can be identified by
manipulating the topological graphs of the models and the
virtual topology relation. If the modifications cannot be
processed with the method described here, the model can

still be automatically meshed using the virtual topology
workflow presented from the beginning. The user-defined
parameters such as the sequence of the reasoners and the
target aspect ratios are automatically recovered and re-used.
However, if a bump was to appear on a face without moving
any of the points sampled for the identification of
geometrical modification nor changing the topology, the
current method would be unable to identify this modification

and no modification would be made to match the new
design. Alternative shape descriptors could be used to
identify these localized geometric updates and feed this
information into the workflow.

CONCLUSION

A virtual topology workflow has been extended to handle
design changes in automatic meshing workflows, by using
the cellular description of the mesh to manipulate and update
it. Significant time reduction is achieved by automatically
controlling the re-meshing process, especially since only

parts of the mesh are loaded and updated. This approach has
achieved the following objectives:

 The model can be re-meshed after large parametric

modifications or feature changes, and all design

modifications are propagated to the analysis

model.

 The mesh structure is maintained as much as

possible by taking into account hexahedral

meshing constraints.

 The mesh update process is fully automated and

more efficient than traditional approaches.

FUTURE WORK

The presented method is limited by the variety of reasoners
applied in the work, and further work is required to improve
and validate the proposed approach. This includes:

 Implementing more decomposition reasoners.

Only reasoners that identifies region hex-

meshable with a one-to-one sweeping method

have been used. Reasoners dedicated to the

identification of mappable cube-like region can be

used within the proposed method, as the meshing

constraints are similar and can be used to guide the

update of the decomposition.

 Many-to-many sweeping is currently not handled

since the mesh reasoner is limited to simple one-

to-one sweeps. Many-to-many sweeping

introduces different constraints on entities than

mapping or sweeping techniques, and therefore

will require additional reasoning to help the update

of the decomposition.

 The decomposition reasoners used provide good

results on thin models, but introducing different

blocking tools could enhance further the method.

Special care will be required if singularity lines are

introduced, since the mapping of entities through

meshing constraints will become more difficult.

ACKNOWLEDGMENTS

The authors wish to acknowledge the financial support
provided by Innovate UK via GEMinIDS (project 113088),
a UK Centre for Aerodynamics project. The authors

acknowledge Rolls-Royce for granting permission to
publish this paper.

REFERENCES

[1] J. Sarrate, E. Ruiz-Gironés, and X. Roca,
“Unstructured and Semi-Structured Hexahedral
Mesh Generation Methods,” Comput. Technol.
Rev., vol. 10, pp. 35–64, 2014.

[2] T. Tautges, T. Blacker, and S. Mitchell, “The
whisker weaving algorithm: A connectivity-based

method for constructing all-hexahedral finite
element meshes,” Int. J. Numer. Methods Eng.,
vol. 39, no. 19, pp. 3327–3349, 1996.

[3] T. Blacker and R. Meyers, “Seams and wedges in
plastering: a 3-D hexahedral mesh generation
algorithm,” Eng. Comput., vol. 9, no. 2, pp. 83–93,
1993.

[4] G. F. Carey, “Hexing the Tet,” Commun. Numer.
Methods Eng., vol. 18, no. 3, pp. 223–227, Jan.

2002.

[5] L. E. Eriksson, “Generation of Boundary-
Conforming Grids Around Wing-Body
Configurations Using Transfinite Interpolation,”
Aiaa J., vol. 20, no. 10, pp. 1313–1320, 1982.

[6] E. Ruiz-Gironés and J. Sarrate, “Generation of
structured meshes in multiply connected surfaces
using submapping,” Adv. Eng. Softw., vol. 41, no.

2, pp. 379–387, Feb. 2010.

[7] D. R. White and T. J. Tautges, “Automatic scheme
selection for toolkit hex meshing,” Int. J. Numer.
Methods Eng., vol. 49, pp. 127–144, 2000.

[8] C. M. Tierney, L. Sun, T. T. Robinson, and C. G.
Armstrong, “Using virtual topology operations to
generate analysis topology,” Comput. Des., vol.
85, pp. 154–167, 2017.

66

[9] B. Lecallard et al., “Automatic Hexahedral-
Dominant Meshing for Decomposed Geometries
of Complex Components,” Comput. Des. Appl.,
vol. 16, no. 5, pp. 846–863, 2019.

[10] D. C. Nolan, C. M. Tierney, C. G. Armstrong, and

T. T. Robinson, “Defining Simulation Intent,”
Comput. Des., vol. 59, pp. 50–63, 2015.

[11] A. Sheffer, M. Bercovier, T. Blacker, and J.
Clemets, “Virtual Topology Operators for
Meshing,” Int. J. Comput. Geom. Appl., vol. 10,
no. 03, pp. 309–331, Jun. 2003.

[12] R. Bidarrat, K. Jan de Kraker, and W. F.
Bronsvoort, “Representation and management of

feature information in a cellular model,” Comput.
Des., vol. 30, no. 4, pp. 301–313, 1998.

[13] C. M. Tierney, “Managing equivalent
representations of design and analysis models,”
Queen’s University Belfast, 2014.

[14] G. P. Gujarathi and Y.-S. Ma, “Parametric
CAD/CAE integration using a common data
model,” J. Manuf. Syst., vol. 30, pp. 118–132,

2011.

[15] M. L. Staten, S. J. Owen, S. M. Shontz, A. G.
Salinger, and T. S. Coffey, “A Comparison of
Mesh Morphing Methods for 3D Shape
Optimization,” in Proceedings of the 20th
International Meshing Roundtable, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp.
293–311.

[16] P. Knupp, “Applications of mesh smoothing:
copy, morph, and sweep on unstructured
quadrilateral meshes,” Int. J. Numer. Methods
Eng., vol. 45, no. 1, pp. 37–45, 1999.

[17] A. Sheffer and A. Üngör, “Efficient Adaptive
Meshing of Parametric Models,” J. Comput. Inf.
Sci. Eng., vol. 1, no. 4, p. 366, Dec. 2001.

[18] C. Shen, R. Wang, S. Gao, and H. Maehama, “An
approach to feature moving of hexahedral mesh,”

Comput. Des., vol. 107, pp. 12–22, Feb. 2019.

[19] H. A. Van Der Meiden and W. F. Bronsvoort,
“Tracking topological changes in parametric
models,” Comput. Aided Geom. Des., vol. 27, pp.
281–293, 2010.

[20] L. Sun, T. T. Robinson, C. G. Armstrong, S.
Marques, and W. Yao, “Surface Mesh
Deformation in CAD-based Shape Optimization,”

in AIAA Scitech 2019 Forum, 2019, p. 2360.

[21] M. Sypkens Smit and W. F. Bronsvoort, “Efficient
tetrahedral remeshing of feature models for finite
element analysis,” Eng. Comput., vol. 25, no. 4,
pp. 327–344, Nov. 2009.

[22] C. M. Tierney, D. C. Nolan, T. T. Robinson, and
C. G. Armstrong, “Managing Equivalent
Representations of Design and Analysis Models,”

Comput. Aided. Des. Appl., vol. 11, no. 2, pp.

193–205, Mar. 2014.

[23] C. Tierney, F. Boussuge, and D. C. Nolan,
“Tolerant geometric extraction of fluid domains to
assist CFD analyses of aero-engines,” in AIAA
Scitech 2019 Forum, 2019, p. 1720.

[24] “LPSolve Mixed Integer Linear Programming.”
[Online]. Available:
http://lpsolve.sourceforge.net/5.5/. [Accessed: 25-
Mar-2019].

[25] L. Sun, C. M. Tierney, C. G. Armstrong, and T. T.
Robinson, “Decomposing complex thin-walled
CAD models for hexahedral-dominant meshing,”
Comput. Aided Des., vol. 103, pp. 118–131, Dec.

2018.

[26] L. Sun, C. M. Tierney, C. G. Armstrong, and T. T.
Robinson, “An enhanced approach to automatic
decomposition of thin-walled components for
hexahedral-dominant meshing,” Eng. Comput., pp.
1–17, Nov. 2017.

[27] F. Boussuge, C. M. Tierney, T. T. Robinson, and
C. G. Armstrong, “Symmetry-based

decomposition for meshing quasi-axisymmetric
components,” Procedia Eng., vol. 203, pp. 375–
387, 2017.

[28] J. Kripac, “A mechanism for persistently naming
topological entities in history-based parametric
solid models,” Comput. Des., vol. 29, no. 2, pp.
113–122, Feb. 1997.

67

