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ABSTRACT 

Generating hexahedral meshes is often an expensive process, which limits the use of high-fidelity numerical simulation methods 
for design. Hexahedral meshes can be generated by decomposing a geometric model into simpler meshable regions, but robustly 
propagating design modifications to the decomposed representation makes any attempt to update the mesh very challenging. In this 

paper, a virtual topology workflow enabling automatic generation of hex-dominant meshes is extended to propagate parametric 
modifications and feature changes to the decomposition and resulting mesh. Geometric and topological modifications are identified 
and linked to the decomposition through virtual topology relationships. Modified regions are localized and reasoning on the virtual 
decomposition enables their definition and associated meshing strategy to be updated. Instead of starting the meshing process from 
the beginning, only modified cells are re-meshed. This provides an efficient and automated method to propagate design changes 
down to the analysis model. 
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1. INTRODUCTION

The increasing use of finite element analysis throughout a 
product lifecycle is limited by the ability to generate 

appropriate simulation models. This is especially true for the 
simulation of complex events, such as crash or large 
displacement analyses, where generating the hexahedral 
(hex) elements preferred for this task is very user-intensive 
work. Simulation-based design depends on the ability to 
quickly generate analysis models for many design variations 
to run an optimization procedure. This is incompatible with 
the manual analysis set up required in a typical hex meshing 

workflow. Analysis requirements are also prone to change, 
especially within coupled multi-physics analyses where 
analysis results from one domain dictate updates for another. 
For example, if a model is deformed by wear or thermal 
expansion and is used as an input for subsequent analysis 
these changes must be reflected in the downstream analysis 
model.  

Many tools have been developed during the last decades in 

an attempt to automate hex meshing with various results [1]. 
They include direct methods such as Whisker Weaving [2] 
and Plastering [3], as well as indirect methods such as tet-
combination [4]. Decomposition-based methods partitioning 
the design geometry into smaller sub-regions for which a 

simple meshing strategy can be found are the most widely 

used methods. These meshing strategies include mapping 
[5], sub-mapping [6] and sweeping [7], where a quad mesh 
of a source face is swept in order to generate 3D hex 
elements. Even if these tools fail to tackle generic 
geometries, they can be integrated in an incremental 
decomposition workflow to significantly alleviate the 
workload of generating meshes. Virtual topology-based 
decomposition, coupled with cellular modelling for meshing 

workflows, has shown promising results and flexibility [8]–
[10]. The benefits of using virtual topology (VT) for 
generating meshes without altering the CAD model 
definition were first presented by Sheffer et al. [11]. In the 
context of this work, a cellular model is a decomposition of 
space into cells of analysis significance. The interfaces in the 
model are robustly captured and are cells in their own right 
[12]. This structure means that the links between the 
decomposed virtual representations and the design model 

can be robustly maintained [13]. In addition, as a model is 
decomposed for meshing, the cellular representation 
maintains connections between the subset domains that 
enable both the automation of downstream meshing and the 
localization of modified cells after design changes. 

After design changes, the mesh needs to be updated to 
remain an accurate representation of the model. In the 
Computer-Aided Design (CAD) environment, updating the 
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design is straightforward, either by changing parameters 
associated to the model or by adding/removing features in 
the construction tree. However, applying the same design 
modification to geometrically identical models that are 
constructed with different feature orders may produce 

unexpected differences that may be inadvertently 
propagated to the analysis model.  

Direct geometric editing (synchronous technology) is also 
available, where the user can interactively manipulate 
geometric entities without requiring access to the 
construction tree, allowing modifications of the model 
outside of the design environment. However, the analysis 
model is often constructed in a separate Computer-Aided 

Engineering (CAE) package, where such manipulations will 
break the link to the original CAD model, and CAD-CAE 
integration is a major bottleneck toward automation[14]. As 
a result, the mesh cannot be as easily updated as the 
construction tree and parameters are lost during the transfer 
across packages. The user is often tasked to update the CAD 
model before exporting it to the meshing environment where 
many pre-processing activities, such as clean-up operations, 

carried out to create the previous analysis model must be 
repeated. Furthermore, most automated tools for hex-mesh 
generation [2]–[4] do not offer the ability to efficiently 
update the mesh and require the whole decomposition 
process to be repeated. One challenge is that decomposition 
tools are often used to partition the design model 
geometrically to create a decomposed representation fit for 
hex meshing. These geometric partitions usually break the 

links between the design model and the decomposed 
representation, meaning that even if design changes can be 
identified there are no relationships that can be exploited in 
order to robustly update the decomposition. The major 
challenges to automatically updating a hex-dominant mesh 
created from a decomposition via the approach proposed 
herein are to: 

 Identify the geometric and/or topological changes 

resulting from a design update. 

 Reflect design amendments on the analysis model 

by exploiting the virtual topology relationships 
stored when generating the initial decomposition. 

 Update the decomposition used for meshing and 

ensure it remains valid. 

 Minimize the computational expense by re-using 

as many existing elements as possible. 

 Maintain mesh quality after update. 

This work proposes to extend a virtual topology 
decomposition workflow to address this problem, by using 
an integrated cellular model to reflect parametric and feature 
changes on the mesh. This paper first describes the virtual 

topology framework used for automatic decomposition and 
hex-dominant meshing. Then, handling feature and 
parametric perturbations for re-meshing is presented. This is 
done by first localizing the modifications, then updating the 
analysis topology and finally updating the mesh locally. The 
main contribution is the implementation of a cellular mesh 
and interface management to enable mesh updates even 

when the topology of the model is significantly altered. 
Considerations on meshing strategies are presented to help 
update the decomposition and the mesh.  

2. RELATED WORK 

Mesh update has been a topic of research for many years and 
includes several domains such as mesh morphing, mesh 

adaption and re-meshing. Mesh morphing [15] consists of 
mapping an initial mesh onto a new geometry which is 
similar to the initial geometry, either to account for the 
model deformation, or to re-use an existing mesh on a 
similar geometry (e.g. a design update). The mapping of 
nodes requires knowledge of both the entities mapping 
between the geometries and the node to entity associativity 
in the original mesh. The mesh topology must remain 
constant to ensure a correct mapping.  

Mesh adaption [16] consists of modifying a mesh against 
known quantities. It can be an iterative process to minimize 
the simulation error while solving the computational 
problem iteratively. Parametric modification in an 
optimization loop can also drive mesh adaption procedures. 
The mesh can be locally refined or coarsened, with or 
without connectivity (or number of elements) modifications. 
Sheffer and Üngör have proposed a dual representation using 

both the boundary and a parametric representation to link 
design modifications and mesh adaption procedures [17]. In 
particular, the history of virtual operations applied for 
simplification is retained and automatically mapped on the 
updated design model before meshing. Mesh updating is 
done by moving the elements to the new geometry, and then 
adjusting the mesh quality by using techniques such as 
whisker-sheet operations. Feature displacements have been 

investigated recently by Shen et al. [18], using mesh 
deformation and the mesh is refined using density fields 
extracted from the initial mesh. However, adaption 
approaches are limited to simple parametric perturbations, as 
the mesh topology needs to be consistent to be mapped.   

Parametric perturbations can induce topological 
modifications on a model. To this extent, Van Der Meiden 
and Bronsvoort have defined a method to relate the range of 

parameters to topological entities, therefore identifying 
critical parameters of interest [19]. Sun et al. have proposed 
a method using virtual topology to deform a surface mesh in 
the presence of simple topological perturbations [20]. 

Re-meshing is employed whenever mesh generation 
methods need to be re-applied either locally or globally to 
the model. For example, fully re-meshing a model can be 
avoided after feature insertion if the feature is meshed with 
new elements and connected to the existing mesh. Smit and 

Bronsvoort have successfully implemented a cellular 
modelling-based approach to tetrahedral re-meshing [21]. 
After capturing the feature differences between two models 
and their interactions, all the valid original nodes are mapped 
to the new model, and new elements are created to fill the 
gaps. However, in the absence of any link or equivalence 
between elements and geometric cells, all the nodes need to 
be classified and processed for re-meshing, which can be 

slow for very large meshes. 
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Figure 1. Virtual topology-based workflow for automatic decomposition and meshing. 

In this paper, hex-dominant re-meshing is addressed using a 
cellular representation of a virtually decomposed model. 
Only the sub-regions that need to be modified to 
accommodate the design change are identified and re-
meshed, while maintaining the constraints of a structured 

mesh. This allows design variations to be automatically 
propagated throughout a virtual topology workflow and 
reflected on the final mesh (Figure 4). 

3. VIRTUAL TOPOLOGY DECOMPOSITION 
AND MESHING 

This section describes a virtual topology-based workflow 
that integrates various reasoners for automatic 
decomposition and meshing (see Figure 1).  

The process takes a CAD model as an input and has two 
main outputs. The first is a topological description of the 
decomposed model called analysis topology, contained in a 

Common Data Structure (CDS). The second is a mesh in a 
CAE environment that is exported to a neutral format file. 
The original topology is first extracted from the CAD to the 
CDS, and a series of virtual topology split operations are 
applied to create the analysis topology. This analysis 
topology contains the virtual decomposition and is linked to 
the original design topology through virtual topology 
relationships stored in the CDS. Once the model has been 
virtually decomposed, a mesh can be automatically 

generated by using the meshing recipe reasoner (section 3.4) 
and the mesh reasoner (section 3.5). Virtual topology allows 
more freedom for preparing a model for meshing and 
provides much more flexibility since the actual geometry is 
not modified. Instead of storing partitioning surfaces, only 
the method to construct them is stored (along with virtual 
geometry curves, curves that are not connected to the B-Rep 
design model but exist in the CAD environment, see section 

3.3) and passed to the meshing environment to generate the 
mesh. 

3.1 Design topology extraction to CDS 

The role of the common data structure (CDS) is to convey 
information between the different steps and packages 
involved in the automated virtual workflow. It is based on an 

external SQL relational database, similar to the one 
presented by Tierney et al. [22], [23]. The relations relevant 
to virtual topology decomposition and meshing are shown in 
Figure 1. Other data that does not fit within the CDS is 
transferred using neutral formats. For example, virtual 

geometry can be transferred using STEP or Parasolid format. 
Meshes can be transferred using formatted text files, such as 
bulk data files that contain nodal information and element 
connectivity. The CDS contains the links to connect these 
various representations. 

The CDS is initialized by querying all the entities contained 
in the CAD model through a topology extraction tool (Figure 
1). Each entity is assigned a unique identifier when added to 

the database, which is linked to the name and/or tag attribute 
from the CAD system. Geometric attributes such as 
coordinates for vertices or mid-points for edges are also 
stored to aid tracking entities. Higher dimension entities can 
also be identified from their bounding entities. 

The topological definition of the CAD model is extracted 
and stored in a design topology relation, which is duplicated 
in an analysis topology relation. Both topology relations 

contain a cellular representation of the model, with each 
topologic cell defined recursively from lower dimension 
elements forming their boundaries, along with the relative 
orientation between the bounded cell and its boundary.  

To enable virtual topology manipulations, a virtual topology 
relation stores the history of the virtual operations applied on 
the design topology to create the decomposition in the 
analysis topology. The virtual topology relation contains the 

link between the virtual entities (subset or superset 
depending on the virtual split or merge operation) and their 
host entities.  

3.2 Decomposition reasoners 

Regions suitable for hex mesh generation are identified 
using a sequence of decomposition reasoners within the 
proposed virtual topology workflow. A decomposition 
reasoner encapsulates an algorithm to identify regions 
suitable for a specific meshing method (e.g. sweeping, 
mapping, template…) in a generic way. Implementation 

specific routines are handled outside of the reasoner, which 
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can be seen as a black box from the point of view of the 
process. The input is a design model with its topology 
extracted in the CDS. The output is splitting information 
which is used by the virtual topology tool to partition the 
domain, and a meshing strategy attribute specific to the 

reasoner. The power of this virtual topology approach is that 
multiple decomposition reasoners (sweep, multi-sweep, 3D 
block, 2D block…) can be integrated seamlessly within one 
workflow 

All the geometric queries of the reasoners are made through 
a VT translator tool, which uses information stored in the 
CDS and the combination of the CAD and virtual geometry 
to query the analysis topology model and not the design 

model. Hence, the reasoner can operate on a model that has 
been virtually decomposed beforehand. This ensures that 
reasoners can be used one after another and in any order, but 
also allows virtual defeaturing to be carried out before the 
decomposition and not just as a final step before meshing. 
This ability to operate in the presence of virtual topology is 
critical for a robust analysis workflow. 

After the reasoners have identified which region to extract, 

the splitting information is created. This is done by 
identifying which entities need to be partitioned, and what 
existing entities can be used to do so. Necessary geometric 
information such as points or curves to complete the 
definition of a split are also created by the decomposition 
reasoners. 

3.3 Virtual Topology reasoners 

Virtual topology uncouples the topological definition of a 
model from the geometrical one. This enables virtual 
generation of a meshed analysis model without altering the 

design model. Two VT reasoners are used in this process. 
The VT translator transfers geometric information between 
the real CAD model and the virtually decomposed model in 
the CDS. The VT tool manipulates topological 
representations in the CDS to clean or decompose a model, 
by applying operators as described in [8], [11]. These 
operators ensure that the analysis topology remains valid 
after topological manipulation, with the relative orientation 

of the virtual entities and the modifications properly 
recorded and updated in the CDS.  

The VT translator processes the geometrical splitting 
information from the decomposition reasoner to create in the 
CAD environment all the curves required to define 
partitioning faces. These curves are referred to as virtual 
geometry, since they only exist as a layer of geometry 
independent from the design model in the CAD 
environment. Virtual geometry curves are used as an input 

by the VT tool to virtually partition the model to create the 
analysis topology. This analysis topology is linked to the 
design topology by a series of VT relationships resulting 
from the application of VT operators, stored in the CDS. 

Virtual topology requires definition of virtual entities to 
formalize the relationship between virtual entities and their 
host entities (if any) [11]: 

- Parasite entities: entities that did not exist in the original 

topology but lie on an existing entity of higher 

dimension (i.e. an edge lying on the face it splits or a 

face that lies in the interior of a body).  

- Subset entities: subsets of host entities that are split by 

a parasite entity of lower dimension. 

- Orphan entities: entity without host (e.g. an edge in the 

interior of a body bounding only parasite faces). 

A virtual split operation uses a parasite entity on a host entity 
of higher dimension to create subset entities. For example in 
Figure 2(a), a face f1 which is a bounded portion of a 
geometric surface can be split by adding a parasite edge e1 

which is a bounded portion of a curve. The parasite edge lies 
on the host shape to divide it into two subset faces f2 and f3, 
but a single surface definition remains.  

A virtual merge operation on the other hand groups multiple 
host entities into one by removing lower dimensional entities 
common to the hosts at their interfaces. For example, in 
Figure 2(b), a vertex v2 bounding only two edges can be 
removed to generate one superset edge e4. A merge 

operation is required to update a modified decomposition 
since it enables the recombination of adjacent cells locally, 
without having to undo the whole decomposition operation. 
It can also be used to simplify and clean the model definition 
to facilitate mesh generation. 

 

Figure 2. (a) The face f1 is virtually split by inserting 
the parasite edge e1, and (b) edges e2 and e3 are 
merged into e4 by virtually removing v2. Red 
entities are virtual geometry. 

Virtual parasites, subsets and orphan edges are 
superimposed on the CAD design model as virtual geometry. 
All their links with the analysis model only exist in the CDS, 
and their purpose is to provide geometric information that 

does not exist in the original design model.  They are created 
by a decomposition reasoner and can be easily transferred 
between packages using a neutral format such as STEP. 
Once added in the CDS, they can be used to aid virtual 
topology manipulations. 

3.4 Meshing recipe reasoner 

The meshing recipe reasoner is used to translate the different 
meshing strategies identified by the decomposition 
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reasoners into compatible mesh controls for hex-dominant 
mesh generation. The input is a CDS containing the analysis 
topology of the decomposed model along with the meshing 
strategy identified for each volume cell, and geometric 
information, such as aspect ratios of regions and curve 

lengths, previously extracted from the CAD. The reasoner 
outputs optimized division numbers for every curve and 
meshing methods for faces to the CDS. 

Different decomposition reasoners can be applied to the 
model which will result in different meshing strategies with 
different priorities. The specific reasoners used in this work 
sought to create an anisotropic hex meshing recipe which 
was conformal throughout. 

Sweeping strategies are converted into constraints on the 
number of elements following the methods applied in [9]. 
Source faces of sweepable regions can either be paved or 
mapped, while wall faces must be mapped meshed. Figure 3 
shows how the meshing constraints propagate through the 
model, and the resulting mesh. Soft or hard goals on division 
numbers are applied on each edge of the model. A hard goal 
ensures a fixed division number will be applied (e.g. number 

of elements through thickness), while soft goals are 
optimized to meet the constraints. Constraints are checked to 
remove overly constraining mapping equalities. All the 
necessary geometric information is contained in the CDS, 
hence this reasoner is package independent.  

 

Figure 3. Flow of meshing constraints and 
associated mesh. 

The LPSolve [24] package is used to optimize each 
individual number of elements on curves, by implementing 
a revised simplex algorithm. As a result, the mesh is fully 
constrained, which ensures order independence during the 
meshing step, and guarantees a conformal mesh will be 
obtained at interfaces. 

3.5 Mesh reasoner 

Once the meshing recipe has been generated, the mesh can 
be generated in a CAE environment using the meshing 

reasoner. The input to the mesh reasoner is the CAD model 
and the CDS containing the meshing recipe. The output is a 
conformal mesh.  

The virtual partitioning surfaces are explicitly rebuilt from 
the virtual geometry and used to split the geometry of the 
model, hence becoming interfaces between sub-regions. 
Depending on the package used, the model is transferred to 
the meshing environment before or after the geometric 

decomposition which will create all the analysis topology 
entities. Mesh densities contained in the meshing recipe are 
applied on each curve.  

All the interfaces are checked and meshed first to ensure a 
conformal mesh is obtained. The 2D surface meshes of all 

the interfaces are stored in a common neutral format file, 
with elements grouped by interface identifiers. This step is 
required to enable mesh manipulation later, but it also offers 
the possibility of the 3D meshes being generated on the 
individual cells in parallel. All the source faces of sweepable 
regions are meshed first, and hex elements are created by 
sweeping. Residual regions, where there is no known hex-
meshing strategy identified by the reasoners, are tet-meshed 

at the end, after a layer of pyramid elements has been 
inserted to conform to the quad mesh of the interfaces. If the 
decomposition reasoners have identified hex-meshing 
strategies other than sweeping, the relevant meshing 
algorithms can be applied by the meshing reasoner.  

The mesh is then exported in a neutral format file such as a 
Nastran input deck. This format enables the mesh to be 
transferred into different meshing packages, and to be edited 

simply by editing the mesh file. 

3.6 Integrated workflow 

The choice and sequence of decomposition reasoner to apply 
is left to the user, while pre-defined workflows can be 
identified for specific classes of geometries. This sequence 
will define which meshing methods will be used, since the 
same region could be identified by different reasoners for 
different hex-meshing methods. An example of a virtual 
decomposition workflow for automatic meshing is shown in 
Figure 1. It includes a thin-sheet decomposition reasoner for 

identifying thin regions which can be sweep-meshed through 
their thickness and a long-slender decomposition reasoner 
for identifying regions with one large dimension suitable for 
sweeping.  Models of thin-walled components are suitable 
for thin-sheet extraction, where regions with one small 
dimension compared to the other two offer a simple sweep-
meshing strategy [25]. Pairs of large parallel faces are 
discretized and imprinted one onto another in order to 

calculate their intersection in the parametric space. The 
result is then projected back on the boundary representation 
to identify appropriate partitioning geometry, which will be 
used to create the virtual geometry and the virtual split 
operations for sweep meshing through the thickness. This 
integrated virtual topology workflow effectively 
demonstrates multi-sweeping in thin-walled components, 
with explicit interfaces in the decomposed cellular model 
facilitating multi-directional sweeping. 

Truss-like structures, or thin-walled structures with their thin 
sheet removed, feature a lot of long-slender regions. A 
similar approach to Sun’s method [26] is used to extract such 
regions. Long edges with a large aspect ratio relative to the 
width of the faces they bound are identified and grouped into 
loops. These loops are then used to find loops of mappable 
faces, which verify the conditions for sweep meshing. Cap 
faces are identified as a loop of virtual edges. There may also 

be an offset applied if the geometry is prone to the existence 
of skewed elements. This virtual geometry is then used to 
help virtually split the analysis model. 
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Figure 4. Workflow for updating the decomposition and mesh after design change.

Region attributes such as whether a region is thin-sheet or 
long-slender are stored in the mesh recipe relation of the 
CDS. This relation, along with the cellular model of the 
analysis topology, informs the reasoner tools and enables 
automatic identification of the meshing recipe. The meshing 
recipe is then stored in the CDS, describing face and edge 
meshing constraints in terms of size or number of elements.  

Other decomposition reasoners have also been developed to 

identify simple sweepable regions or to decompose models 
into axisymmetric regions and repeated cyclic sectors, 
providing a minimal meshable representation [27]. 

4. UPDATING THE DECOMPOSITION 

Figure 4 shows how the virtual workflow described in the 
previous section can be extended to handle design 
modifications to update the decomposition and ultimately 
the mesh. This section describes first how design 
modifications are identified by comparing the new design 
with the one stored in the CDS. Then, the constraints 

stemming from the hex-meshing strategies assigned to 
regions guide the update of the virtual geometry and the 
analysis topology. This reasoner takes a CAD model with a 
design change and the CDS associated with the previous 
version of the design as an input, and outputs an updated 
CDS for the new design (with updated virtual geometry), 
which can be used to update the mesh. 

Modifications of the design can have various effects on the 

boundary representation of a model, especially for 
decomposed models where the number of boundary entities 
is increased. Figure 5 shows an example of a model 
decomposed for sweep-meshing undergoing various design 
modifications. Any design changes on a model can be 
classified into the following types: 

- Topology only modifications, where the boundary 

representation is modified but not the shape. For 

example, introducing imprints on a face subdivides the 

face but the underlying surface geometry remains the 

same. 

- Geometric only modifications, e.g. Figure 5(c) where 

only the geometry of the design is modified by 

changing the part length. All topology remains 

unchanged. 
- Geometry and topology modifications, e.g. where new 

features, such as bosses, fillets etc. are added or 

removed from a model, Figure 5 (d), or where a 

parametric perturbation results in an additional 

topology change. 

In order to update the decomposition, it is necessary to 
propagate the aforementioned modifications to the analysis 
topology. More specifically, the parasite entities used to 

virtually decompose the model must be modified (if 
necessary) alongside the virtual geometry in order to enable 
the mesh to be updated. In this work, design modifications 
can affect: 

- Only the analysis model geometry. In this case it is 

necessary to determine if the virtual geometry needs to 

be updated, e.g. in Figure 5 (c) where the change in part 

length L requires the invalid virtual geometry (dashed 

red lines) to be morphed to the new model boundary. 
- Both the analysis topology and virtual geometry, e.g. 

feature modifications will trigger geometric and 

topological modifications to propagate to the analysis 

model, such as removing the fillet in Figure 5 (d). 

If the parametric perturbation has modified the design 
topology, then the analysis topology is also modified. 
However, it is possible the topological connectivity of 
parasite entities can be modified without changing the design 
topology. For example, the thickness t of the bottom pad is 
increased in Figure 5 (e), resulting in parasite entities whose 

configuration is now altered. The two parasite faces were 
disconnected in the original decomposition. However, in the 
updated decomposition, Figure 5 (e), they now share a 
common edge (in dashed bold). These changes can be subtle 
but will have a profound impact on updating the mappings 
required to update the mesh automatically. 
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Figure 5. (a) initial decomposition, (b) corresponding meshing strategies, (c) geometric only change, (d) 
topological modification and (e) only the analysis topology is modified, one edge has an invalid projection.

 

Figure 6. Analysis topology before and after design modification for various configurations.
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Figure 6 shows procedures used in this work to determine 
the classification for the various geometric and topological 
configurations for decomposition update that can arise upon 
design modification (virtual faces shown in dark grey for 
visualization). This structure has been determined to be the 

most suitable for the mesh types being used in this paper, 
however a different structure or ordering may be better 
suited to different models, or the requirements of different 
analysts. Although only design changes involving 
geometrical modifications are used to illustrate the 
workflow, topological only modifications are handled in the 
same way. Some configurations are easy to update, e.g. for 
a purely geometric update where both the boundary topology 

and virtual geometry have not changed. However, the top 
right configuration is very challenging to update, as the 
bottom host face on which the boss edges were projected has 
become two unconnected faces due to the extension of the 
pocket. This is related to the persistent naming problem [28], 
where parametric modifications trigger topology changes 
that modify the underlying geometry.  

The workflow in Figure 9 describes the method used to 

identify the aforementioned design changes and to update a 
virtually decomposed model after such design changes. 
Topological and geometrical modifications are identified 
from the CAD model. After the design modifications have 
been identified at the design topology level, analysis model 
modifications need to be identified. This is done by checking 
if the virtual decomposition history can be mapped on the 
new design, by checking if all the virtual splitting entities 

still lie within their hosts. Mapping constraints inferred from 
hex-meshing strategies are checked to ensure they are still 
valid and can inform the update of projected virtual 
geometry. Finally, all the candidate bodies for re-meshing 
are identified. 

4.1 Tracking parametric and feature 
modifications 

The CDS contains a representation of both the analysis 
topology and the original design topology independently 
from the CAD environment and also stores the virtual 
topology relationships required to transform one into the 
other. The original topology in the CDS is used to identify 

and classify both geometric and topological modifications 
after the CAD model has been updated. The VT relationships 
provide the link to map the changes in design to the analysis 
topology. 

This section will describe how changes to the model in the 
CAD environment are propagated to the original topology in 
the CDS and then to the analysis topology describing the 
decomposition. The key point is that all entities in the 

original topology and analysis topology are linked to those 
in the CAD/CAE environment through two different 
attributes:  

1) Name attributes attached to entities in the CAD 
environment. Any unique identifier offered by the CAD 
system (name, tag, color ...) can be used, provided that is can 
be assigned to an entity, queried and will persist between 
different modelling sessions. 

2) Geometric attributes defining unique geometric 
identifiers of entities in the CAD environment, e.g. the center 
point of the edges, as well as the coordinates of its end 
vertices.  

Both attributes are necessary, as structured interrogation of 

them allows the geometric and topological modifications to 
the design to be determined as outlined in the following 
sections. Once modified entities have been identified, each 
entity is mapped to an entity in the analysis topology through 
a series of VT relationships and topological queries. This 
enables the modifications to be identified and the entities of 
the analysis topology to be classified. 

This classification is done from lower dimension entities to 

higher dimension ones, since any modification on the 
boundaries of an entity will propagate to the entity, while an 
entity can be modified without having its boundaries 
modified. While some CAD packages offer the ability to 
attach name attributes to vertices, other packages have not 
implemented this capability. Coordinates used as geometric 
attributes are not enough to classify vertices in the absence 
of name attribute, as a design change can move a vertex to 

the location of a different vertex that is also modified. 
However, the matching of the geometric attribute for edges 
includes checking the coordinates of both the mid-point and 
the bounding vertices. Therefore, the edge classification is 
based on the vertex classification, but not only as the mid-
point factors as well. In this implementation, edges are 
classified first, so that vertex classification can be guided by 
the bounded edges classification. 

 

Figure 7. a) Original decomposition, b) the 
decomposition is not updated after a fillet is added, 
c) original entities classification, d) analysis 
entities classification, e) open design loops are 
closed and new virtual entities are identified, f) 
open analysis loops are closed and g) updated 
decomposition. 
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4.1.1 Edge classification 

After parametric or feature modification, all the original 
edge entities in the CAD model are compared to the ones 
stored in the CDS and classified as follows: 

- Original edge: If both the name and geometric 

attributes match, then it is assumed that the edge has not 

been modified (black edges Figure 7(c)). 
- Modified edges: if the name is matched but not the 

geometric attributes, it is assumed that the edge has 

moved and is modified (purple edges in Figure 7(c)). 

- New edges: Edge from the CAD whose name is not 

matched in the CDS is assumed to be a new edge (red 

edges in Figure 7(c)). 
- Deprecated edges: Edges from the design topology in 

the CDS not matched to entities in the updated CAD 

model are assumed to be deprecated (edge e1 in Figure 

7(a)).  

After adding the fillet, the two faces bounded by e1 are 
bounded by two new edges, but some CAD systems will 

create just one new edge and reuse e1 as the name attribute 
for the other. In previous workflows, this would prevent the 
automatic update of analysis models. Since e1 was bounding 
two faces in the original model that are not connected in the 
updated model, e1 must be classified as deprecated to 
remove any variability in the name attribute assignment. 

New edges in the CAD model are grouped by the faces they 
bound, by querying the CAD model topology. This will be 

used later to simplify the identification of candidate for 
updating face topologies. Face tags that do not exist in the 
database help identify new CAD faces. 

At this stage in the process, only the modifications to the 
design model have been identified. If only the geometric 
attributes of edges have changed, the geometry has changed 
and is updated as described in section 4.2. Otherwise, new 
or missing edges indicates that the original topology has 

changed. Further classification is required to identify 
modified, new and deprecated parasite entities in order to 
update the analysis topology.  

Analysis topology modifications are inferred by their 
connectivity with original entities. For example in Figure 7, 
the parasite face pf1 connected to the modified edge e2 is 
classified as modified, and the mesh-mapping constraint on 
pf1 indicates that the opposing edge pe1 of the edge e2 is 

also modified (purple in Figure 7(d)). This enables meshing 
constraints to be easily propagated to the updated topology. 

4.1.2 Vertex classification 

To accommodate the absence of name identifier on vertices 
in the geometric kernel used in this work, the classification 
of vertices is helped by the classification of the edges they 
bound. Vertices are classified as follow: 

- Original vertex: vertices that bound original edges, or 

modified edges if there are matching geometric 

attributes and topological connectivity (vertex v2 in 

Figure 7(a)). 

- Modified vertex: vertex bounding modified edges with 

consistent topological connectivity. 

- New vertex: vertices bounding a new edge that are not 

original or modified vertices (vertex v3 in Figure 7(c)). 

- Deprecated vertex: vertices bounding deprecated edges 

or modified edges (vertex v1 in Figure 7(a)). 

For each deprecated original edge, the list of edges 
connected to its bounding vertices is queried from the CDS. 
If these edges still exist and share the vertex in the new CAD 

design, the vertex still exists, otherwise it is deprecated. In 
this last case, a new vertex is created for each connected 
edge, and connected edges are stored along with their 
relationship to the old and new vertex to update the design 
topology at a later stage. 

Analysis topology edges connected to the vertex are also 
checked and their relationship is stored. In the case where 
the vertex was bounding a parasite or orphan edge aligned 

with the sweep direction of a region, the eventual parasite or 
orphan edge connected is identified as deprecated. Its end 
vertices are stored to attempt to identify any new parasite 
edges. This is because these edges link the source and target 
faces of swept regions, and topological modification on one 
face can help identify analysis topology modification on the 
other face. For example, the orphan edge oe1 in Figure 7(a) 
is classified as deprecated since the vertex v1 is deprecated, 

hence the parasite edges lying on face f2 are classified as 
modified. 

4.1.3 Face classification 

Topologically modified faces in both the original design and 
analysis topology are identified based on their bounding 
entities, since their geometric definition is more expensive 
to query. Identification of the geometric modifications of 
faces is kept for a later stage of the process, as it will be used 
to assess the validity of meshing strategies. Faces are 
classified as follows: 

- Original topology faces: Faces with all their bounding 

edges classified as original or modified. 

- Modified topology faces: Faces bounded by deprecated 

edges or disconnected modified edges (face f3 in Figure 

7(a)). Hence the boundary definition is incomplete in 

the CDS and will need to be updated. 

- New faces: Face with a new name attribute, bounded by 

new edges. These are identified after updating the 

original topology in the CDS. 

- Deprecated faces: Faces with less than two edges not 

deprecated. 

Faces with an incomplete boundary definition are marked as 

open loops and stored as a sequence of edges, with all 
vertices bounding only one edge marked as open ends. Open 
loops appear when an original or a virtual edge is deprecated. 
Two modified edges bounded by a common deprecated 
vertex also identify an open loop, and the vertex is stored as 
a double open-end until it is replaced by the new vertices 
generated at each end of the modified edges. Furthermore, a 
face that has all its bounding edges deprecated is also 

considered deprecated. However, new parasite faces cannot 
be identified at this stage since the new parasite edges will 
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be identified when updating the design topology (see section 
4.2). 

New faces bounded by an existing or modified edge 
indicates that the face has been subdivided as a result of the 
design modification, similar to the persistent naming 

problem described previously (top right case in Figure 6). By 
looking at the classification of the edges that were connected 
to the edge that is matched, the other sub-faces can be 
identified, and split edges are re-classified to account for the 
fact that their bounding entities have been modified. Faces 
that are merged as a result of parametric modification are 
processed like other topology-modified faces, and the 
boundary entities of the deprecated face are used as 

candidates to complete the boundary definition of the 
modified one. The example in Figure 8 features both split 
and merged configurations where f1 and f3 are merged while 
f2 becomes two faces. 

 

Figure 8. Face definition can be split or merged by 
parametric modifications. 

4.1.4 Body classification 

Original body classification is derived from the 
classification of its bounding entities. Analysis body 
classification is based on the virtual topology relationship 

along with original bodies and meshing strategies checks 
described in section 4.4. They are classified as follow: 

- Original body: Bodies with all their faces, edges and 

vertices classified as original. 

- Modified body: Analysis bodies bounded by modified 

entities that can be re-meshed. 

- Modified topology body: body with deprecated faces 

- Invalid body: Modified body with an invalid meshing 

strategy. 

- New body: New original body with a name attribute 

not referenced in the CDS. 

- Deprecated body: Bodies with all their bounding 

entities removed. 

Modified volume subsets in the analysis topology can be 
preliminarily identified from the open loop faces in their 
boundaries. Further identification is done during the update 
of the analysis topology. Invalid bodies describe a set of 

modified bodies for which the meshing strategy has become 
invalid and is identified at a later stage (see section 4.4). 
These bodies are hence deprecated in the decomposition and 
will be merged to roll back the decomposition, enabling a 
local decomposition update to be performed if necessary. 

4.2 Original topology update 

Once all the entities in the original topology have been 
classified, they can be updated in the CDS to match the new 
design contained in the CAD model, according to Figure 9.  

Deprecated and new entities in the CAD model indicate that 
the design topology has been modified. In that case, all the 

deprecated entities are removed from the CDS. Deprecated 
end vertices are matched against existing vertices, and a new 
vertex entity is created if no valid vertex is found. 
Bounding/bounded relationships and relative orientations 
are updated in the original topology relation. New edges and 
their vertices that are not matched by any existing vertex are 
added in the entity relation, and the bounding/bounded 
relation between edges and vertices is added to both 
topology relations.  

In the case where all the entities are matched, without any 
deprecated or new entities, only the geometry has changed. 
The design topology can be updated by simply updating the 
geometrical attributes in the CDS. Mid-points of the 
modified original edges are updated in the entity relation of 
the CDS, along with the coordinates of modified vertices. 
Updating the topology before the geometry attributes 
enables new entities to be sorted and avoids having the same 

geometric attribute for multiple entities. 

At this point, only the edges and vertices of the design 
topology are updated. Edges and vertices of the analysis 
topology need to be updated (in the next section) before 
updating the original face topology, since analysis topology 
faces are updated simultaneously with the original faces. The 
reason is that some new virtual edges can be identified when 
closing loop of edges on the face (see section 4.3.2). 

 

Figure 9. Geometry and topology update 
workflow. 
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4.3 Virtual geometry and analysis topology 
update 

The next step after the design modifications have been 
identified and classified is to update the virtual geometry, 
and the topological connectivity of modified entities in the 
analysis topology, within the CDS. Deprecated virtual 
geometry vertices and edges are removed from the 
topological description.  

4.3.1 Virtual geometry update 

Modified original edges in the analysis topology have 

already been updated when updating the design topology. 
Here, the virtual geometry subset and parasite edges are 
updated by querying the entities that have been modified and 
propagating the changes to the host entities on which they 
rely. 

In situations where parasite edges have been modified their 
virtual geometry needs to be updated. If a parasite edge is 
bounded by a vertex in the original topology, then a one-way 

projection is sufficient to capture the update virtual 
geometry. End vertices which were projected to create 
parasite edges need to be re-projected, e.g. in Figure 10(a), 
vertices A and B are created by projecting existing vertices 
to the original face f1 and edge e1 respectively.  

A more complicated scenario arises when a modified 
parasite/orphan edge is bounded by two parasite vertices. In 
Figure 10(b), which corresponds to the model in Figure 14, 

the vertices C and D are the result of the reciprocal projection 
between the original edges e2 and e3, hence a two-way 
projection is required. Point containment and angles are used 
to check whether the projection has succeeded, and the pair 
of vertices are stored to identify new potential parasite or 
orphan entities. If the projection has failed, parasite faces 
bounding the parasite edges bounded by the vertices are 
classified as deprecated, and the connected bodies become 
invalid.  

 

Figure 10. Projection of parasite vertices. 

All the parasite vertices lying on modified edges and faces 
are also re-projected in order to update their coordinates. 
This checks the validity of subset edges and faces. Virtual 
geometry is used to assess the point containment of parasite 
vertices splitting parasite edges. Parasite face validity is 
inferred from the validity of their boundary entities. 

4.3.2 Modified face topology update 

At this stage, all the necessary information is available to 
update the topology of faces with an incomplete boundary 
definition or open loops. Design topology and analysis 
topology faces are updated at the same time, as updating the 
design topology to match the CAD topology will guide the 

update of the analysis topology. Suitable candidates to close 
open loops in the design topology are found in the list of new 
boundary edges in the updated design. Candidates for the 
original and parasite loops of the analysis topology include 
new boundary edges and new virtual geometry edges. Subset 
faces are updated using the relationships previously 
identified between edges and their bounded faces.  

Gaps in open loops are filled iteratively by adding candidate 
edges at the open-end vertices and updating the open end 

until another open end is found. The process terminates 
when there are no more open ends, and all the edges belong 
to closed loops. Since this method can handle several 
disconnected gaps in the boundary definition of the loop, 
both inner and outer loops can be processed. In particular, 
the outer loop can absorb a previous inner loop if a feature 
on the face is moved to its boundary (see Figure 16 for 
example, where the rod is moved to the boundary of the 

middle rib). 

In the case of analysis topology, mapping information from 
the attached meshing strategy is used to identify matching 
loops between source and target faces, and identify what 
entities can be projected to complete the opposite loops. This 
highlights the importance of the traceability between design 
topology, analysis topology and meshing attributes. For 
example, if a new edge is added in the loop of a source face 

for a thin-sheet region, this edge can be projected to identify 
a new parasite edge on the target face (Figure 7(e)). If the 
projection succeeds, then a parasite face is created, otherwise 
the thin-sheet meshing strategy needs to be reassessed.  

Once all the open loops have been closed (Figure 7(f)), 
leftover virtual geometry entities are traversed to identify the 
smallest loops and infer new parasite faces. The analysis 
bodies can then be updated, and a valid topological 

representation of the analysis model is obtained (Figure 
7(g)). 

4.4 Updating meshing strategies 

Since the main objective of the decomposition is to identify 
meshing strategies for hex meshing, checks are implemented 
after the analysis topology update to make sure the model 
can still be meshed automatically. Angles are checked to 
make sure no skew elements will be introduced. Wall faces 
of swept regions, such as face f3 in Figure 12(a), also need 
to remain mappable for the sweep mesh generation to be 

successful. The CDS contains the geometrical and 
topological information to perform these tests.  

If the hex meshing strategy becomes invalid, the body is 
classified as residual and connected residual regions are 
merged into a single superset. Since virtual topology is used 
for the decomposition, merging is done by altering entity 
connectivity and orientation in the analysis topology 
contained in the CDS, as described in [8]. Merging retains 
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all the correct imprints from other neighbor cells that would 
be lost by undoing the split operations, hence the meshing 
attributes of the neighbor cells remain valid. In Figure 11(a), 
a plate with two opposite bosses is decomposed into a thin-
sheet and two general sweepable regions. After parametric 

modifications, the two blocks are merged into a single 
residual region while the thin-sheet strategy of the plate 
remains valid, Figure 11(b). 

 

Figure 11: 2 volume cells are merged into one 
residual region after parametric perturbation. 

After a valid analysis topology has been recovered, 
reasoning tools for decomposition are ‘locally’ used to 
recover deprecated meshing strategies or process new 
residual regions. In the case where a region had a previous 
hex-meshing strategy that has been identified as invalid, the 

reasoner related to this particular meshing strategy is used 
first. This also enables to re-use information provided by 
tools external to the framework, such as face-pair 
information. In Figure 12(a-b), a plate with a boss is 
decomposed into a thin-sheet and a general sweepable 
region. Adding a fillet to a bounding edge of the source face 
of the thin sheet makes the sweeping strategy invalid as f3 is 
not mappable anymore, Figure 12 (c). The face pair f1-f2 

initially used to identify the thin-sheet region is re-used to 
identify a thin-sheet and a new residual region, Figure 12 (d). 
The long-slender reasoner is automatically applied to 
classify this residual as sweepable, and the model is once 
again fully hex-meshable Figure 12 (e-f).  

 

Figure 12. Thin-sheet strategy made invalid by a 
fillet insertion is recovered, and a new residual is 
processed to recover a fully hex-meshed model. 

Alternatively, residual regions may become eligible for a 
hex-meshing strategy after a design change and can be re-
assessed. In the case where several invalid bodies have been 
grouped in a single residual superset, the sequence of 
reasoners used to decompose the original design model can 

be re-used on the updated design. This ability to localize 
changes reduces the rework required to generate a valid 
analysis decomposition. 

5. UPDATING THE MESH 

Since all the modification have been localized, the mesh can 
be updated only where necessary, thus significantly reducing 
the expense of re-meshing. The original mesh was created 
from a decomposed model; hence every volume cell in the 
analysis topology is linked to a collection of mesh elements. 
Therefore, only the elements associated to a modified 

volume cells need to be altered. This collection of elements 
is referred to as a mesh collector. Upon first generation, all 
the interface meshes between sub-regions are stored in a 
separate mesh file, allowing interface information to be 
maintained when locally modifying the mesh. Management 
of interfaces in this manner also provides the ability to 
parallelize the meshing and re-meshing processes. Figure 13 

shows an overview of the re-meshing process. Only the 

modified sub-regions are exported to the meshing 
environment, and a meshing recipe is automatically 
identified, taking into consideration constraints from the 
neighboring meshes that are not modified. Finally, the 
deprecated elements are replaced by the new ones directly in 
the input deck file of the solver, hence there is no need to 
load the whole mesh. 

5.1 Meshing recipe update 

The meshing recipe is updated to inform the re-meshing 
process of the modified regions. In simple cases with small 

deformations, the same meshing recipe can be reused. 
However, large modifications require the meshing division 
numbers and constraints to be adapted to the new geometry 
by locally updating the meshing recipe. To ensure 
compatibility with the rest of the mesh, the original recipe is 
interrogated to extract the controls at the interfaces with the 
modified regions. A new integer programming problem is 
created, using the number of elements division on interface 

curves as fixed constraints. Meshing constraints directing 
the flow of elements are recovered from the CDS and new 
constraints are added. The problem is solved using LPSolve 
[24] as before, and the resulting division numbers are used 
to update the meshing recipe. If no feasible solution can be 
found then the constraints are relaxed where possible, or a 
larger portion of the model needs to be re-meshed. 
Alternatively, further decomposition can be carried out on 

the modified volume cells in order to create the necessary 
transition zones to remove over constraints. 
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Figure 13. Local re-meshing workflow. Only the modified sub-regions are extracted from the virtual 
decomposition and re-meshed in the meshing environment, after the meshing recipe is locally updated and 
the interface nodes are recovered. Then the new mesh is re-assembled in the main mesh file

5.2 Local body extraction 

Efficient re-meshing of a modified region is achieved by 
transferring only the modified regions to the meshing 

environment. This implies that any sub region can be 
geometrically extracted from the virtual decomposition in 
the analysis without having to decompose the whole model. 
This is possible through the robust connections that exist 
between the analysis topology and the geometric definitions 
in the CAD and CAE environments. To achieve this, all the 
interface entities can be identified from the analysis topology 
relation in the CDS. These parasite faces are created, 
grouped into connected sets and sewed together to make 

them usable for CAD geometry split. The result can then be 
extracted and exported, before the split is undone and the 
cutting faces deleted, to keep the CAD design model 
unaltered. Geometric modifications are only required for the 
mesh generation. The residual region in Figure 14 (c) can be 
extracted without having to remove thin-sheet and long 
slender regions first, with all the appropriate imprints from 
neighboring regions. 

 

Figure 14. (a) virtually decomposed model, (b) 
parasite faces of the residual regions created and 
sewed, and (c) extracted residual with imprints. 

5.3 Meshing sub-regions 

All the nodes lying on the interfaces between the sub-region 
being re-meshed and the rest of the analysis model are 
recovered from the mesh files of the interfaces. These nodes 
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are imported into the meshing environment as frozen (locked 
in space) mesh points and associated with the corresponding 
face geometry in order to rebuild the surface mesh of the 
interface. The labels of interface nodes and elements are then 
updated to match the original mesh labelling. This ensures 

that the interface nodes will not be modified by the 3D 
meshing algorithm and that the new elements can be 
connected to the unmodified part of the analysis model 
mesh. If the re-meshing involves several connected bodies, 
all the new interface nodes generated will be added to the 
interface mesh file. Any deprecated nodes and elements are 
removed. 

After the local mesh controls have been applied from the 

meshing recipe, the 3D elements are generated by the 
meshing reasoner described in section 2.2, and a mesh file 
containing all the new mesh for the concerned subsets is 
exported as a neutral mesh file. Nodes and elements indexing 
are automatically managed by setting the start index as the 
largest value in the current mesh file to ensure compatibility 
with the existing mesh and conformity at the interface. 

5.4 Mesh manipulations 

After the modified bodies have been re-meshed, the main 
mesh file needs to be updated. Since all the elements are 

grouped by sub-region into mesh collectors, the neutral mesh 
file can be re-written to include new nodes and elements. 
The updated mesh file is first created by copying the headers 
until the section containing the nodes is reached. Nodes are 
read and copied to the new file, removing deprecated nodes 
and updating the modified ones. All the new nodes are 
inserted at the end. Then mesh collectors of each of the 
bodies are transferred, with elements and their nodal 

connectivity replaced in the case where bodies are re-
meshed. New collectors are copied from the mesh file 
containing new subset meshes, and finally the material 
properties section is updated and copied. 

RESULTS AND DISCUSSION 

The proposed method is run automatically on a large number 
of test models to ensure that the decomposition and meshing 
update can handle many configurations. Figure 15 shows the 
resulting meshes after a design change on a L-shaped 
bracket. Modifications to the L-shaped bracket include 

parametric changes by modifying wall thicknesses, and more 
advanced topological changes by adding fillets etc. to the 
model. The initial hex mesh in Figure 15 (a) is automatically 
updated to fully conforming hex meshes after all design 
modifications. In particular, thin-sheet decompositions are 
updated without having to interrogate the face pairs again, 
which is a costly part of the initial process. 

The model in Figure 16 is taken from [21] in order to assess 

the performance of the method presented here on a complex 
design modification. The model is automatically 
decomposed in 12 seconds, and the meshing requires 16 
seconds. After perturbation of the parameter ‘d’ in Figure 
16(c), the analysis topology and virtual geometry are 
updated in 3.8 seconds, and the model is re-meshed in 11 
seconds, recovering a full hex mesh. This corresponds to a 

47% gain of time compared to running the automatic 
meshing procedure form the beginning. 

 

Figure 15. L-bracket re-meshed after various 
design modifications. 

 

Figure 16. Re-meshing all hex model. (a) Virtually 
decomposed model, (b) all-hex mesh, (c) 
parameter d is increased, and (d) updated mesh. 
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Figure 17. Automatic meshing and re-meshing of a rib model. (a) Original design, (b) decomposed analysis 
topology, (c) equivalent geometric decomposition, (d) interfaces are meshed first, (e) resulting mesh, (f) design 
modification with topological changes, (g) updated analysis topology, (h) modified cell extraction, (i) updated 
interfaces meshes and interfaces nodes import, (j) re-meshed cell and (k) updated mesh.

While the proposed method offers significant time reduction 

compared to a process involving manual decomposition and 
meshing for large models, the re-meshing process is not as 
beneficial for small analysis models, where a design 
modification can require re-meshing of most of the sub-
regions. 

An example of a larger model is given in Figure 17. 

Successive reasoners are used to decompose the model 
within 2 minutes (on a windows workstation with a 3.7 GHz 
Intel Xeon E5-1630 CPU with 32GB RAM) in Figure 17(b), 
and the geometric decomposition is generated in 1 minute, 
Figure 17(c).  The mesh is automatically generated within 5 
minutes in Figure 17(e), with 235,000 hexahedra and 78,000 
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tetrahedra. The interface mesh file (Figure 17(d)), contains 
19,800 quad elements allowing individual manipulation of 
each of the 174 meshed sub-regions. After changing the 
design by removing a hole and its protrusion near the leading 
edge, the virtual decomposition is updated in 3.5 seconds 

(Figure 17(g)), and the model is locally re-meshed (Figure 
17(h-k)) in 19.4 seconds. 7850 elements of the previous 
mesh are replaced by 2430 new hexes. The normal re-
meshing in the CAE environment for this modification takes 
approximately 6 minutes, which is only for re-meshing. This 
does not include the manual time required to update the 
decomposition and link it to the meshed model.  

A critical scenario for this approach arise when an original 

entity hosting many subsets is modified. In Figure 18, all the 
projections need to be updated to ensure they are still valid 
after perturbation of the bottom face; hence the modification 
propagate to a large portion of the analysis model. Although 
applying a front propagation technique that stops once the 
modified subsets have been updated is future work, the 
current implementation still outperforms any manual 
intervention.  

 

Figure 18. All the projection must be checked after 
the bottom face is modified. 

In the event of rigid body motion, the whole decomposition 
is modified. In the absence of topological modification, the 
analysis model is easily updated. However, all bodies are 
modified, hence the model needs to be fully re-meshed in the 
current implementation. This could be easily handled by any 
mesh deformation algorithm in future work.  

One important challenge when re-meshing is to ensure a 
good quality mesh will be re-generated, as moving features 

can create small faces that will drive down the size of 
elements and increase computation time. In Figure 19, 
virtual geometry is moved in close proximity to original 
entities. Detection of close entities is carried out using the 
medial axis while taking into account the virtual geometry, 
since the proximity is a result of the decomposition. This 
information will be used in future work to decide merging 
operations and define whether topological updates are 
required to the parasite topologies. 

 

Figure 19. Medial axis (in blue) on thin sheet source 
and target faces to identify close entities. 

Whilst the automated workflow in this paper has been 

demonstrated around the use of thin-sheet and long-slender 
decomposition reasoners, the same process is valid for any 
decomposition reasoner that introduces meshing strategy 
which creates mapping constraints between entities. For 
example, if a reasoner identifying regions suitable for 
transfinite meshing methods were applied, the mapping 
between opposite pairs of faces and edges would help to 
propagate the design modification. The reason is that 

meshing constraints are used to guide the update of the 
decomposition, and the proposed approach is capable of 
automatically updating these meshing attributes to match 
design modifications.  

 

Figure 20. Manually defined block can be updated. 
(a) original model, (b) sweepable blocks defined 
manually, (c) automatic mesh, (d) parametric 
modification, (e) automatically updated 
decomposition and (f) updated mesh. 

Virtual block decomposition defined manually can also be 
updated if meshing strategies have also been defined by the 
user (Figure 20). Limiting the update to only those blocks 
that have been modified provides analysts with the assurance 

they will not have to perform a block decomposition for all 
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subsequent design changes. This enables an analyst to focus 
only on the regions of interest that have been modified. This 
is important in the context of large analysis models where a 
manual block decomposition could be performed on a 
modified region with all interfaces, meshing constraints and 

re-meshing automatically handled by the work presented 
here. 

The identification of modified regions relies on the postulate 
that all the splitting entities connectivity can be traced back 
to original entities, hence they can be identified by 
manipulating the topological graphs of the models and the 
virtual topology relation. If the modifications cannot be 
processed with the method described here, the model can 

still be automatically meshed using the virtual topology 
workflow presented from the beginning. The user-defined 
parameters such as the sequence of the reasoners and the 
target aspect ratios are automatically recovered and re-used. 
However, if a bump was to appear on a face without moving 
any of the points sampled for the identification of 
geometrical modification nor changing the topology, the 
current method would be unable to identify this modification 

and no modification would be made to match the new 
design. Alternative shape descriptors could be used to 
identify these localized geometric updates and feed this 
information into the workflow. 

CONCLUSION 

A virtual topology workflow has been extended to handle 
design changes in automatic meshing workflows, by using 
the cellular description of the mesh to manipulate and update 
it. Significant time reduction is achieved by automatically 
controlling the re-meshing process, especially since only 

parts of the mesh are loaded and updated. This approach has 
achieved the following objectives: 

 The model can be re-meshed after large parametric 

modifications or feature changes, and all design 

modifications are propagated to the analysis 

model. 

 The mesh structure is maintained as much as 

possible by taking into account hexahedral 

meshing constraints. 

 The mesh update process is fully automated and 

more efficient than traditional approaches. 

FUTURE WORK 

The presented method is limited by the variety of reasoners 
applied in the work, and further work is required to improve 
and validate the proposed approach. This includes: 

 Implementing more decomposition reasoners. 

Only reasoners that identifies region hex-

meshable with a one-to-one sweeping method 

have been used. Reasoners dedicated to the 

identification of mappable cube-like region can be 

used within the proposed method, as the meshing 

constraints are similar and can be used to guide the 

update of the decomposition. 

 Many-to-many sweeping is currently not handled 

since the mesh reasoner is limited to simple one-

to-one sweeps. Many-to-many sweeping 

introduces different constraints on entities than 

mapping or sweeping techniques, and therefore 

will require additional reasoning to help the update 

of the decomposition. 

 The decomposition reasoners used provide good 

results on thin models, but introducing different 

blocking tools could enhance further the method. 

Special care will be required if singularity lines are 

introduced, since the mapping of entities through 

meshing constraints will become more difficult. 
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